Quantum dynamics in Single-Molecule Magnets

Similar documents
Voyage dans le nanomonde des aimants

Intermolecular interactions (dipolar and exchange)

Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics

Spins Dynamics in Nanomagnets. Andrew D. Kent

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

Recent Developments in Quantum Dynamics of Spins

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

Decoherence in molecular magnets: Fe 8 and Mn 12

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent

Photon-induced magnetization changes in single-molecule magnets invited

Quantum step heights in hysteresis loops of molecular magnets

The First Cobalt Single-Molecule Magnet

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

arxiv:cond-mat/ v2 10 Dec 1998

nano Josephson junctions Quantum dynamics in

Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids

Beyond the Giant Spin Approximation: The view from EPR

Spin electric coupling and coherent quantum control of molecular nanomagnets


SUPPLEMENTARY INFORMATION

magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010)

Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 }

High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution

Low temperature dynamics of magnetic nanoparticles

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

arxiv:cond-mat/ v1 9 Jan 2001

arxiv:cond-mat/ Jan 2000

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

Superconducting Flux Qubits: The state of the field

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum

arxiv: v1 [cond-mat.mes-hall] 22 Aug 2014

Introduction to SCMs. Dr. Rodolphe Clérac

Strong tunable coupling between a charge and a phase qubit

Search for new iron single-molecule magnets

[Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets

arxiv: v2 [cond-mat.mes-hall] 4 Aug 2010 Jonathan R. Friedman

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE. ERNEST MEŠTROVIĆb. HR Zagreb, Croatia

Metastable states in an RF driven Josephson oscillator

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Interaction between a single-molecule

Lecture 2: Double quantum dots

Experimental Evidence of the Néel-Brown Model of Magnetization Reversal

arxiv: v1 [cond-mat.mes-hall] 12 May 2017

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

PI 2 -ICMA. Título del proyecto: Understanding the magnetic anisotropy in Single- Molecule-Magnets for future molecular spintronic applications

MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS.

Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Möbius strip

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

Multi-bit magnetic memory using Fe 8 high spin molecules. Oren Shafir Magnetism Group, Physics Department

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Manipulation of Dirac cones in artificial graphenes

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study

Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance

High-Temperature Criticality in Strongly Constrained Quantum Systems

Chapter 8 Magnetic Resonance

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

arxiv: v1 [cond-mat.mes-hall] 29 Oct 2015

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Disordered Solids. real crystals spin glass. glasses. Grenoble

Techniques for inferring M at small scales

Superconducting Qubits

Inelastic Neutron Scattering Study of Electron Reduction in Mn 12 Derivatives

Magnetic qubits as hardware for quantum computers

Electron spins in nonmagnetic semiconductors

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

Magnetic quantum tunnelling in subsets of

Multiphoton antiresonance in large-spin systems

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Simulations of Quantum Dimer Models

Distributing Quantum Information with Microwave Resonators in Circuit QED

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics

Magnetic measurements (Pt. IV) advanced probes

The effect of uniaxial pressure on the magnetic anisotropy of the Mn 12 -Ac single-molecule magnet

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM

Fabio Chiarello IFN-CNR Rome, Italy

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Mn 4 single-molecule magnets with a planar diamond core and S/9

Interference: from quantum mechanics to nanotechnology

/ nd August Issue. Biologically Active Molecules with a Light Switch G. Mayer and A. Heckel

Distribution of eigenstate populations and dissipative beating dynamics in uniaxial single-spin magnets

Current-induced Domain Wall Dynamics

Lectures on magnetism at the Fudan University, Shanghai October 2005

Transcription:

Quantum dynamics in Single-Molecule Magnets Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30

permanent magnets macroscopic micron particles Magnetic structures nanoparticles clusters atomic molecular clusters atoms S = 10 2 0 10 1 0 10 8 10 6 10 5 10 4 10 3 10 2 10 1 multi - domains single - domains spins 1 mm 20 nm 3 nm 1 nm

Magnetization reversal in magnetic structures permanent magnets macroscopic micron particles nanoparticles clusters atomic molecular clusters atoms S = 10 2 0 10 1 0 10 8 10 6 10 5 10 4 10 3 10 2 10 1 multi - domains nucleation, propagation and annihilation of domain walls single - domains uniform rotation, curling, etc. spins quantum tunneling, interference, coherence 1 1 1 M / M S 0 M / M S 0 M / M S 0 Fe 8 1 K 0.7K 0.1K -1-1 -1-40 -20 0 20 40 µ 0 H(mT) -100 0 100 µ 0 H(mT) -1 0 1 µ 0 H(T)

Magnetization reversal in magnetic structures permanent magnets macroscopic micron particles nanoparticles clusters atomic molecular clusters atoms S = 10 2 0 10 1 0 10 8 10 6 10 5 10 4 10 3 10 2 10 1 multi - domains nucleation, propagation and annihilation of domain walls single - domains uniform rotation, curling, etc. spins quantum tunneling, interference, coherence Classical magnetism Micromagnetics Landau Lifshitz Gilbert equation Quantum magnetism Schrödinger equation Operator formalism Path intergrals ab-initio calulations etc.

Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - spin chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

Lis, 1980 Single-molecule magnets (SMM) Giant spins Müller, 1993 Mn 12 S = 10 V 15 S = 1/2 Ni 12 S = 12 Mn 84 S 6 Fe 8 S = 10 Christou, 2004 Winpenny, 1999 Wiegart, 1984

Micro-SQUID magnetometry particle stray field B 1 µm fabricated by electron beam lithography (D. Mailly, LPN, Marcoussis - Paris) sensitivity : 10-4 Fo 10 2-10 3 µ B i.e. (2 nm) 3 of Co 10-18 - 10-17 emu Josephson junctions A. Benoit, CRTBT, 1989

Roadmap of the micro-squid technique

Crystal of SMMs

crystal Micro-SQUID array B crystal size > few µm 10-12 to 10-17 emu temperature 0.03-7 K field < 1.4 T and < 20 T/s rotation of field transverse field several SQUIDs at different positions 50 µm

Micro-magnetometry µ-hall Effect µ-squid B sample B sample 1 µm Hall bars 1 to 10 µm Jospheson Junctions Based on Lorentz Force Measures magnetic field V H =!I ne M Large applied in-plane magnetic fields (>20 T) Broad temperature range Single magnetic particles Ultimate sensitivity ~10 2 µ B Based on flux quantization Measures magnetic flux Applied fields below the upper critical field (~1 T) Low temperature (below T c ) Single magnetic particles Ultimate sensitivity ~1 µ B

Outline I. A simple tunnel picture (Mn 12, Fe 8 ) Giant spin model Landau Zener tunneling Berry phase II. Coupling with environment

Mn 12 -tbuac [Mn 12 O 12 (O 2 CCH 2 Bu t ) 16 (CH 3 OH) 4 ].CH 3 OH Mn III : s = 2 Mn IV : s = 3/2

Mn 12 -Ac Comparison between Mn 12 -tbuac [Mn 12 O 12 (O 2 CCH 3 ) 16 (H 2 O) 4 ].2CH 3 CO 2 H.4H 2 O [Mn 12 O 12 (O 2 CCH 2 Bu t ) 16 (CH 3 OH) 4 ].CH 3 OH not aligned well aligned!! larger unit cell less disorder

Giant spin approximation (Mn 12 ) S = 10 Mn III : s = 2 Mn IV : s = 3/2

Giant spin approximation Example: Mn12-ac Hilbert space: (2x2 + 1) 8 (2x3/2 + 1) 4 10 8 Mn 3+ 160 Mn 4+ J 1 J 2 J 4 J 3 J 1-215 K J 2 J 3-86 K J 4 < 43 K Energy(K) 120 80 40 0 30 K S = 10 D = 0.63 K S = 9 D' = 0.57 K -10-8 -6-4 -2 0 2 4 6 8 10 quantum number M I. Tupitsyn (2000)

Spin Hamiltonian: Giant spin model " = #D S z 2 # B S z 4 +" tr # gµ B r S r H (2S + 1) energy states: M = -S, -S+1,, S Energy levels: Zeeman diagram Energy H = 0 energy 8-10! -10-5 0 5 10 quantum number M -10 magnetic field 8 with S = 10, D = 0.56 K, B = 1.5 mk

Tunneling probability at an avoided level crossing Landau-Zener model (1932) S, m' > S, m > energy! 1 P 1 - P $ P =1" exp "c #2 ' & ) %& dh /dt() S, m > magnetic field S, m' > c = " 2h gµ B m # m' µ 0 L. Landau, Phys. Z. Sowjetunion 2, 46 (1932); C. Zener, Proc. R. Soc. London, Ser. A 137, 696, (1932); E.C.G. Stückelberg, Helv. Phys. Acta 5, 369 (1932); S. Miyashita, J. Phys. Soc. Jpn. 64, 3207 (1995); V.V. Dobrovitski and A.K. Zvezdin, Euro. Phys. Lett. 38, 377 (1997); L. Gunther, Euro. Phys. Lett. 39, 1 (1997); G.Rose and P.C.E. Stamp, Low Temp. Phys. 113, 1153 (1999); M. Leuenberger and D. Loss, Phys. Rev. B 61, 12200 (2000); M. Thorwart, M. Grifoni, and P. Hänggi, Phys. Rev. Lett. 85, 860 (2000);

0.1 K Application of Landau-Zener tunneling Mn 12 S = 10 1 2 3 4-7 5-8 -9-10 10 9 8 6 7 " = #D S z 2 # B S z 4 +" tr # gµ B r S r H with D = 0.56 K, B = 1.5 mk

Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

Landau-Zener tunneling & temperature Mn 12 S = 10 1 2 3 4-7 5-8 -9-10 10 9 8 6 7 " = #D S z 2 # B S z 4 +" tr # gµ B r S r H with D = 0.56 K, B = 1.5 mk

Field derivative of M(H) at different temperatures Mn 12 -tbuac W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/0508437

Temperature dependence of the peak positions of dm/dh Mn 12 -tbuac 5 4 (10:0) (10:1) (10:2) (10:3) (9:0) (9:1) (9:2) (9:3) (8:0) (8:1) (8:2) (8:3) (7:0) (7:1) 2 mt/s µ 0 H z (T) 3 2 (7:2) (7:3) (6:0) (7:4) (6:1) (6:2) (6:3) (6:4) (5:3) (5:4) (5:5) (4:3) (4:4) (4:5) 1 (2:4) (2:5) (2:6) (3:4) (3:5) (3:6) (1:5) (1:6) (1:7) 0 0 0.5 1 1.5 2 2.5 3 3.5 4 T (K) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/0508437

Mn 12 -Ac Comparison between Mn 12 -tbuac I. Chiorescu, B. Barbara, et al., Phys. Rev. Lett. 85, 4807 (2000) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/0508437

Mn 12 -Ac Comparison between Mn 12 -tbuac A. D. Kent, et al., EPL 49, 521 (2000) and J. Appl. Phys. 87, 5493 (2000) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/0508437

Mn 12 -Ac Comparison between Mn 12 -tbuac K. M. Mertes, M. P. Sarachik, et al. Phys. Rev. B 65, 212401 (2002) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/0508437

Mn 12 -Ac Comparison between Mn 12 -tbuac sharp crossover L. Bokacheva, A. D. Kent, et al., PRL 85, 4803 (2000) smooth crossover I. Chiorescu, B. Barbara, et al., PRL 85, 4807 (2000) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/0508437 sharp crossover in agreement with theory E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 79, 004469 (1997)

M/M S 1 0.5 0-0.5-1 40 mk v=140 mt/s v=70 mt/s v=14 mt/s v=2.8 mt/s 0-1 -0.5 0 0.5 1 µ 0 H(T) Application of Landau-Zener tunneling Fe 8 S = 10-10 Energy (K) -20-30 -7 7-8 8-9 9-10 -40-1 -0.5 0 0.5 1 µ 0 H z (T) 10! = "D S 2 z + E S 2 2 r ( x " S y ) + gµ B S H r with S = 10, D = 0.27 K, E = 0.046K A.-L. Barra et al. EPL (1996)

Giant spin Hamiltonian of Fe 8! = "D S 2 z + E S 2 2 r ( x " S ) y + gµ B S H r easy axis Z S x H x + S y H y + S z H z j H trans Y X hard axis easy plan YZ

Hysteresis loops at different transverse fields 1-0.9-0.92 H t r a n s = 0 T M/M S 0.5 0-0.5-1 -0.94-0.96-0.98-1 d H z /dt = 1.4 mt/s -0.04-0.02 0 0.02 0.04 dh z /dt = 14 mt/s 0.056 T 0.112 T 0.196 T H trans = 0.196 T 0.112 T 0.056 T 0.000 T -0.2 0 0.2 0.4 0.6 0.8 µ 0 H z (T)

Quantum phase interference (Berry phase) in single-molecule magnets Tunnel splitting!(10-7 K) 10!! 90!! 50!! 20 easy axis Z!! 7 1 j H trans!! 0 X M = -10 10 hard axis 0.1 0 0.2 0.4 0.6 0.8 1 Transverse field (T) 1.2 1.4 easy plan YZ W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999) Y

Transverse field dependence of tunnel splitting (operator formalism) Tunnel splitting!(10-7 K) 10 1! " 90! " 50! " 20 M = -10 -> 10! " 7! " 0 0.1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Magnetic transverse field (T) Tunnel spitting!(10-7 K) 10 1 0.1! = 90 50 30 20 10 0 0.2 0.4 0.6 0.8 1 1.2 Magnetic tranverse field (T) 5 0 W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999)

Path integrals (Feynman) Path-integral partition function: where L E is the Euclidean magnetic Lagrangian related to the real-time Lagrangian L through L E = - L (t -it ) extremal trajectories that minimize the Euclidian action, at T = 0 Z A destructive interference occures whenever the shaded area is kp/s, for odd k. X! H B Y A. Garg, Europhys. Lett. 22, 205 (1993)

Transverse field dependence of tunnel splitting (path integrals formalism) Z 10 7 A 10 5! = 90 50 30! Y! (10-8 K) 1000 10 20 10 5 X H B 0.1 0.001 0 0.5 1 1.5 2 2.5 3 µ 0 H t r a n s ( T )! = "D S 2 z + E S 2 2 r ( x " S ) y + gµ B S H r 0 A. Garg, Europhys. Lett. 22, 205 (1993)

Quantum phase interference and spin parity in Mn 12 [Mn 12 ] -e S = 19/2 [Mn 12 ] -2e S = 10 1.9 K 10-2 10-1 1.8 K 1.2 K!M/M s 10-2 1.7 K 1.6 K!M/M s 10-3 1.1 K 10-3 1.5 K 10-4 1.0 K 10-4 -1.2-0.8-0.4 0 0.4 0.8 1.2 µ 0 H (T) 10-5 -1.2-0.8-0.4 0 0.4 0.8 1.2 µ 0 H (T) W. Wernsdorfer, N. E. Chakov, G. Christou, PRL 95, 037203 (2005)

2004 Spin ground states of Mn based SMMs 25 20 2004 Mn 25 S 15 Mn 18 10 Mn 4 Mn 12 5 Mn 2 Mn 9 Mn30 Mn 70 Mn 84 0 1 2 3 4 5 7 10 20 30 50 100 number of Mn-ions

Anisotropy barriers of Mn based SMMs 2004 70 60 50 2004 Mn 12!E (K) 40 30 20 Mn 4 Mn 9 Mn 18 Mn 70 10 0 Mn 2 Mn Mn 84 30 Mn 25 1 2 3 4 5 7 10 20 30 50 100 number of Mn-ions

Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets Bis(phthalocyaninato)terbium Naoto Ishikawa, Department of Applied Chemistry, Chuo University, Tokyo 0.5 nm E (K) 600 K 1.5 nm N.Ishikawa, et al., J.Phys.Chem. A 106, 9543 (2002) J. Am.Chem.Soc. 125, 8694 (2003) Inorg.Chem. 42, 2440 (2003) J.Phys.Chem. A 107, 9543 (2003) J. Phys.Chem.B 108, 11265 (2004) H (T)

Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets Bis(phthalocyaninato)terbium Naoto Ishikawa, Department of Applied Chemistry, Chuo University, Tokyo 1 0.5 0.14 T/s 2% Tb M/M s 0 E (K) 600 K -0.5-1 0.04 K 2.0 K 7 K -1.2-0.8-0.4 0 0.4 0.8 1.2 µ 0 H (T) H (T) N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 44,2 (2005) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 127, 3650 (2005)

H = Zeeman + LF term + A hf J I + P quad {I z 2 + (1/3)I(I+1)} M/M s - 643.8-644.0-644.2-644.4-644.6 1 0.5 0-60 - 40-20 0 20 40 60 0.04 K 2% Tb A hf =0.0173cm -1 P quad =0.010cm - 1 :avoided crossing occurs by off-diagonal LF term :avoided crossing occurs by transverse field Others :avoided crossing does not occur by either LF term nor transverse field -0.5 0.280 T/s 0.140 T/s 0.070 T/s 0.035 T/s 0.017 T/s 0.008 T/s 0.004 T/s 0.002 T/s 0.001 T/s -1-0.06-0.04-0.02 0 0.02 0.04 0.06 µ 0 H (T) N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 44,2 (2005) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 127, 3650 (2005)

Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets 9/2-9/2-9/2 J J 9/2 W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson & G. Christou Nature 416, 406 (28 March 2002)

Single-chain magnets (SCM) Mn 2 Ni - chain of S = 3 units R. Clérac, H. Miyasaka, M. Yamashita, and C. Coulon, J. Am. Chem. Soc.124, 12837 (2002). See talk of L. Bogani Monday, 16:15 Quantum nucleation in a single-chain magnet WW et al. cond-mat/0509309

Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

Quantum computing in molecular magnets Michael N. Leuenberger & Daniel Loss NATURE, 410, 791 (2001) implementation of Grover's algorithm storage unit of a dynamic random access memory device. fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 10 5 with access times as short as 0.1 nanoseconds.

Photon assisted tunneling Absorption of circular polarized microwaves H = 0 0 Energy M = +1 hw tunneling -10-5 0 5 10 quantum number m M = -1 hw Energy (K) -10-20 -30 PRB 68, 220407(R) (2003) -7-8 -9 h!!m = ±1-10 10-40 -1-0.5 0 0.5 1 µ 0 H z (T) 7 8 9

Photon assisted tunneling Absorption of circular polarized microwaves 115 GHz PRB 68, 220407(R) (2003)

Absorption of circular polarized microwaves 1 0.5 60 mk 115 GHz 0.007 T/s (115 GHz) PRB 68, 220407(R) (2003) M/M s 0-0.5 P/P 0 = -1-1 -0.5 0 0.5 1 µ 0 H z (T) 0 0.119 0.151 0.190 0.237 0.256 0.320 0.458

Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

Conclusion Beginning: Mn 12 -ac L. Thomas, B. Barbara, et al., Nature (1996) T. Lis, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 2042 (1980) R. Sessoli, D. Gatteschi, M. Novak, D. Hendrikson, G. Christou, et al. (1989-93) M. Novak, C. Paulsen, B. Barbara, et al. (1994) J. Friedman, M. Sarachik, et al., PRL (1996) L. Thomas, B. Barbara et al., Nature (1996)

Followed by: >250 systems (in our group) Mn, Mn 2, Mn 3, Mn 4, [Mn 4 ] 2, Mn 5, Mn 6, Mn 7, Mn 8, Mn 9, Mn 10, Mn 11, Mn 12, Mn 13, Mn 16, Mn 18, Mn 21, Mn 22, Mn 24, Mn 26, Mn 30, Mn 70, Mn 84 Fe 2, Fe 3, Fe 4, Fe 5, Fe 6, Fe 7, Fe 8, Fe 10, Fe 11, Fe 13, Fe 17/19, Fe 19, Fe 30 Ni 4, Ni 5, Ni 6, Ni 8, Ni 12, Ni 21, Ni 24 Co 4, Co 5, Co 6, Co 7, Co 10 Co 2 Gd 2, Co 2 Dy 2, Cr 12, CrNi 6, CrNi 2, CrCo 3, Fe 10 Na 2, Fe 2 Ni 3, Mn 2 Dy 2, Mn 2 Nd 2, V 15, Ho, Fe 2 Ho 2, Mn 11 Ln 4,... Only few of these molecules are SMMs!! S = 0, 1/2, 1, 3/2, 2, 5/2, 4, 9/2, 5,. 51/2

Development of molecular Spin-Electronics APS March Meeting 2004

Mesoscopic Physics 4 nm Mn 30 Mn 4 Mn 12 Mn 84 N 1 10 100 1000 Quantum world Classical world A. J.Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A.Abboud, and G. Christou, Angew. Chem. Int. Ed., 43, 2117 (2004)

Collaborations (Physics) L. Thomas PhD 1996: Mn 12 -ac F. Lionti PhD 1997: Mn 12 -ac, Fe 17/19 I. Chiorescu PhD 2000: Mn 12 -ac, V 15 R. Giraud PhD 2002: Ho 3+ C. Thirion PhD 2003: nanoparticles, GHz R. Tiron PhD 2004: [Mn 4 ] 2 S. Bahr PhD started 2005: GHz K. Petukhov post-doc 2004-5: GHz F. Balestro, E. Bonet, W. Wernsdorfer, B. Barbara, LLN, CNRS, Grenoble T. Ohm PhD 1998: Fe 8 V. Villar PhD 2001: Fe 8, chaines E. Lhotel PhD 2004: chaines V. Bouchiat, C. Paulsen, A. Benoit, CRTBT, CNRS, Grenoble L. Sorace, post-doc 2003: GHz A.-L. Barra, LCMI - CNRS, Grenoble J. Villain, CEA, Grenoble D. Mailly, LPN, CNRS, Marcoussis

Winpenny, 2003 Collaborations (Chemistry) Group of G. Christou, Dept. of Chemistry, Florida Group of R. Sessoli, D. Gatteschi, Univ. de Firenze, Italie Group of A. Cornia, Univ. de Modena, Italie Group of R.E.P. Winpenny, Univ. de Manchester, UK Group of E. Brechin, Univ. de Manchester, UK Group of T. Mallah, Orsay Group of V. Marvaud, Univ. P. et M. Curie, Paris Group of A. Müller, Univ. de Bielefeld, Germany Group of A. Powell, Univ. de Kahlsruhe, Germany Group of D. Hendrickson, Dept. of Chemistry, San Diego Group of E. Coronado, Univ. de Valence, Spain Group of D. Luneau, Univ. of Lyon, France Group of G. Royal, Univ. J. Fourier, Grenoble Group of R. Clerac & C. Coulon, Univ. Bordeaux, Pessac Group of H. Miyasaka, Tokyo Metropolitan Uni. Group of M. Verdaguer, Univ. P. et M. Curie, Paris Group of M. Julve, Univ. de Valence, Spain SMMs SCMs Mn 84 Christou, 2004