ME 501A Seminar in Engineering Analysis Page 1

Similar documents
ME 501A Seminar in Engineering Analysis Page 1

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

ORDINARY DIFFERENTIAL EQUATIONS

Lecture 26 Finite Differences and Boundary Value Problems

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Pythagorean Theorem and Trigonometry

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

CENTROID (AĞIRLIK MERKEZİ )

Model Fitting and Robust Regression Methods

Principle Component Analysis

International Journal of Pure and Applied Sciences and Technology

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

6 Roots of Equations: Open Methods

Lecture 36. Finite Element Methods

Least squares. Václav Hlaváč. Czech Technical University in Prague

Introduction to Numerical Integration Part II

Numerical Analysis Topic 4: Least Squares Curve Fitting

Module 3: Element Properties Lecture 5: Solid Elements

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

Lecture 4: Piecewise Cubic Interpolation

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

Course Review Introduction to Computer Methods

Shuai Dong. Using Math and Science to improve your game

Definition of Tracking

4. Eccentric axial loading, cross-section core

INTRODUCTORY NUMERICAL ANALYSIS

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Review of linear algebra. Nuno Vasconcelos UCSD

Outline. Review Small Grid (N = 6, M = 5) Review Finite Differences. Review N = 6, M = 5 Matrix. More numerical elliptic PDEs March 30, 2009

Multiple view geometry

Outline. Review Numerical Approach. Schedule for April and May. Review Simple Methods. Review Notation and Order

Lecture 7 Circuits Ch. 27

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

50 AMC Lectures Problem Book 2 (36) Substitution Method

Numerical Differentiation and Integration

Chapter Simpson s 1/3 Rule of Integration. ( x)

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Computation of Fifth Degree of Spline Function Model by Using C++ Programming

Section 2.1 Special Right Triangles

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

Introduction to Algebra - Part 2

Linear Regression & Least Squares!

Chapter 12-b Integral Calculus - Extra

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

Outline. Review Quadrilateral Equation. Review Linear φ i Quadrilateral. Review x and y Derivatives. Review φ Derivatives

Effectiveness and Efficiency Analysis of Parallel Flow and Counter Flow Heat Exchangers

Remember: Project Proposals are due April 11.

Work and Energy (Work Done by a Varying Force)

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

6.5 Improper integrals

CENTROID (AĞIRLIK MERKEZİ )

Algebra: Function Tables - One Step

1. Extend QR downwards to meet the x-axis at U(6, 0). y

Section 1.3 Triangles

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

8 factors of x. For our second example, let s raise a power to a power:

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7

Ellipses. The second type of conic is called an ellipse.

CENTROID (AĞIRLIK MERKEZİ )

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Machine Learning Support Vector Machines SVM

INTRODUCTION TO COMPLEX NUMBERS

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Calculating Tank Wetted Area Saving time, increasing accuracy

1 Matrix representations of canonical matrices

Physics 41 Chapter 22 HW Serway 7 th Edition

Trigonometry Revision Sheet Q5 of Paper 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

The Trapezoidal Rule

Censored Models. Li Gan. April, Examples of censored regression: (1) stadium attendance= min(attendance *, capacity)

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

Topic 6b Finite Difference Approximations

September 13 Homework Solutions

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

2.4 Linear Inequalities and Interval Notation

Shuai Dong. Isaac Newton. Gottfried Leibniz

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

International Mathematical Olympiad. Preliminary Selection Contest 2012 Hong Kong. Outline of Solutions

Chapter Trapezoidal Rule of Integration

Solution for singularly perturbed problems via cubic spline in tension

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

Gauss Quadrature Rule of Integration

The Schur-Cohn Algorithm

Precalculus Notes: Unit 6 Law of Sines & Cosines, Vectors, & Complex Numbers. A can be rewritten as

Transcription:

More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot nd tr nte fferenes Toms lgortm Oter oundr vlues Grdent oundr vlues Med oundr vlues genvlue prolems Soure of su prolems Soluton metods Revew Lst Leture In oundr-vlue prolem, we ve ondtons set t two dfferent lotons seond-order O d /d = g(,, ), needs two oundr ondtons Smplest re () = nd (L) = n lso ve d/d+ = t =, L Two soluton pproes: Soot-nd-tr nte dfferenes Soot-nd-Tr ppro Tke n ntl guess of dervtve oundr ondtons t = nd use n ntl-vlue routne to get (omp) (L) t te oter oundr ompre te vlue of (omp) (L) found from te prevous step to te oundr ondton on (L) Use te dfferene etween (omp) (L) nd (L) to terte te ntl vlue of z = d/d = nd ontnue untl (omp) (L) (L) 4 Soot-nd-Tr mple Solve d /d +6sn( ) = wt = t = nd = L = Must fnd pr of frst order equtons Set d/d = z s one O Orgnl O eomes dz/d = 6sn( ) We know () =, ut we need z() guess z () () = [(L) ()]/L = ( )/ = Ts z () () gves () =.684 (RK4, =.) Tr z () () = [(L) () (L) ()]/L = [ (.684) ] =.76 () = () (L) (L) =.684 = -.684 5 6 M 5 Semnr n ngneerng nlss Pge

More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 Soot-nd-Tr Lner Os or lner O te soluton n e found on te trd terton omplete two soot-nd-tr solutons, () () nd () () nd for two ntl guesses, z () ( ) nd z () ( ) nte fferene ppro efne unform or non-unform grd; unform s eser nd s ger order trunton error; note: = ( )/ ----- -------- ------------- ~ ~ ------- --- - - t e node wrte fnte-dfferene equvlent to dfferentl equton Hndle oundr ondtons t nd (smplest f = () nd = (L) gven, ut n ve grdent oundres) 7 8 nte-fferene mple Solve d T/d + T = nte dfferene equton t node [d T/d + T] = (T + + T - T )/ + T + O( ) = Ignore trunton error Ignore trunton error nd get fntedfferene equton sstem T + + T - T + T = Hve + nodes numered from to wt oundr ondtons t nd 9 Trdgonl Mtr qutons nte-dfferene equtons n mtr form wt = ve trdgonl form solved Toms lgortm used wt u splne T T T T T T T rror nd rror Order Get overll mesure of error (lke norm of vetor) Tpll use mmum error (n solute vlue) or root-men-squred (RMS) error = s m =.4 - nd RMS =.8 -. or =, m =.4-5 nd RMS =.7-5. Seond-order error n soluton RMS ( T et T ) numerl oundr Grdents Use seond-order dervtve epressons dt T 4T T q k k d dt T 4T T q k k d -q et /k -q/k rror.995..57.68.995..999.6 -.95. -.9.786 -.95. -.955. M 5 Semnr n ngneerng nlss Pge

More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 M 5 Semnr n ngneerng nlss Pge Toms lgortm Generl formt for trdgonl equtons 4 Toms lgortm II Guss elmnton upper trngulr form Hve to fnd nd 5 Toms lgortm III orwrd omputtons Intl: = / = / ppl equtons elow for =, -: t fnl pont k susttute: = + + 6 Oter oundr ondtons Generl ondton dt/d + T = =, = for eumnn (grdent gven) =, = for rlet (vlue gven) Wrte grdent usng seond order forwrd ( = ) or kwrd dfferene ( = ) omne wt equton for frst node n from te oundr to elmnte term wt seond node from oundr Result onforms to trdgonl sstem 7 Generl oundr mple Look t = oundr; results for = follow smlr dervton 4 d d 4 ) ( dd tese two equtons elmntng ) ( 8 Generl oundr mple II quton just derved s seen to gve orret rlet result for =, = ) ( Smlr dervton t = gves ) ( qutons sown ere wll work for = or =, ut t lest one must e nonzero

More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 onlner Prolems Soot-nd-tr requres no spel proedures for nonlner prolems or fnte dfferene or fnte elements, solve lnerzed equton mple s pendulum equton d /dt = (-g/l) sn (usull solved wt sn ) Tlor seres: sn = sn + [d(sn )/d] ( ) = sn + os ( ) Reple sn lner result to terte 9 onlner mple Strt wt d /dt = (-g/l) sn Reple sn lnerzed seres Wrte n tertve form wt (m+) s new terton nd use (m) n nonlner terms d (m+) /dt = (-g/l) [sn (m) + os (m) ( (m+) (m) ) efne = g/l nd rerrnge d (m+) /dt + (m+) os (m) = [sn (m) (m) os (m) ] = r onlner mple II onvert d (m+) /dt + (m+) os (m) = r to (lner) fnte-dfferene form n (m+) ( m) ( m) r ( m) ( m) os Hve trdgonl sstem ( m) ( m) sn ( m) r ( m) ( m) r ( m) onlner mple III Mke ntl guesses for () Lner profle () (t) = () + [(L) ()]t/t nd ll nodl vlues for () usng () to ompute te nonlner terms Repet te proess untl te dfferenes etween tertons s good enoug ompute resduls to test onvergene R ( m) ( m) ( m) r ( m) Hndlng oundr ondtons We ve used n emple prolem wt fed (rlet) oundr ondtons We lso mentoned grdent (eumnn) nd med oundr ondtons. If te dependent vrle s u nd te ntl nd fnl nodes n fntedfferene grd re nd te fed oundr ondtons re u = t = nd u = t = Grdent nd Med oundres We use dretonl dervtve to represent oundr grdents 4 4 ouple ts oundr ondton equton wt frst (lst) possle fnte dfferene equton t = nd = 4 M 5 Semnr n ngneerng nlss Pge 4

More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 Grdent oundr t = nte-dfferene equton for d /d = s (u + u + u - )/ + u = Wrte ts s u + + u + u - = were = rst ( = ) equton s u + u + u = Grdent t = : g = -u + 4u u omne tese to get g = -u + 4u u = -u + 4u + (u + u ) = (4 + )u u or TM soluton omned equton [-u + (4 + )u = g ] s frst; prevous frst equton,u + u + u =, s seond5 Grdent oundr t = Strt wt sme fnte-dfferene equton u + + u + u - = were = Lst ( = ) equton s u + u - + u - = Grdent t = : g = u 4u - + u - omne tese to get g = u 4u - + u - = u 4u - (u - + u ) = (4 + )u - + u or TM soluton omned equton [u (4 + )u - = g ] s lst; prevous lst equton,u - +u - + u =, s seond-to-lst 6 Med oundr ondton Med oundr ondton reltes oundr grdent to oundr vlue of dependent vrle ommon emple s onveton et trnsfer oundr ondton: t = : k(dt/d) = (T T) t = : k(dt/d) = (T T ) Use forwrd/kwrd epresson for grdents 7 Med oundr ondton II or = : k(dt/d) = (T T) wt forwrd dfferene eomes or = : k(dt/d) = (T T ) wt kwrd dfferene eomes omne wt fnte dfferene equtons: T + T + T = / T - + T - + T = 8 Med oundr t = nte-dfferene: T + T + T = oundr: 4 4 4 Ts eomes te frst equton n te TM lgortm nd te frst fnte-dfferene equton ove eomes te seond 9 Med oundr t = nte-dfferene: T - + T - + T = oundr: 4 4 4 Ts eomes te lst equton n te TM lgortm nd te frst fnte-dfferene equton ove eomes te seond-to-lst M 5 Semnr n ngneerng nlss Pge 5

More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 M 5 Semnr n ngneerng nlss Pge 6 genvlue Prolems umerl egenvlue prolems our wen te numer of oundr ondtons s greter tn te order of te dfferentl equton mple of ts s soluton for urnng velot of lmnr flme s ppro s to use fntedfferenes nd trnsform prolem nto numerl mtr egenvlue prolem genvlue Prolems II Look t smple prolem wt known soluton s n emple d /d + = wt () =, () = nd d = Hve tree oundr ondtons nd onl seond order equton ontrvl soluton: = sn wt = n Use seond order fnte dfferenes ( + + - )/ + = genvlue Prolem III nte-dfferene equtons n mtr form wt = ; wt s soluton? 4 genvlue Prolem IV Hve mtr egenvlue prolem wt = - s te egenvlue 5 genvlue Prolems V Solve numerl tenques for fndng mtr egenvlues Te ur of te egenvlues depends on te grd Often need onl one (lowest or gest) n onl fnd s mn egenvlues s tere re grd nodes (not ountng oundr nodes) 6 mple genvlue Prolem O: d /d + k = wt ()=()= k s n unknown prmeter (egenvlue) Soluton s = sn(k) were k = n Solve wt =. nte dfferene equton s Δ Wrte s mtr equton for =.

More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 mple genvlue Prolem II.4k.4k.4k.4k Ts s egenvlue equton ( I) = Here =.4k et( I) = s (.4k ) 4 (.4k ) + = umerl solutons for k ompred to et vlues on net slde 7 mple genvlue Prolem III genvlues Perent umerl t error.9.4.66% 5.878 6.8 6.45% 8.9 9.45 4.6% 9.5.566 4.% ote lrger errors for ger egenvlues Joe. Hoffmn, umerl metods for ngneers nd Sentsts, ( nd ed), Mrel ekker (), p. 48. 8 MTL O genvlues MTL s two solvers vp4 nd vp5 for solvng oundr-vlue Os MTL doumentton sows te use of vp4 for omputng te egenvlue of n O ttps://www.mtworks.om/elp/mtl/re f/vp4.tml mple sows te omputton of sngle egenvlue s unknown prmeter n te soluton sed on ntl guess of egenvlue 9 M 5 Semnr n ngneerng nlss Pge 7