INTRODUCTORY NUMERICAL ANALYSIS

Size: px
Start display at page:

Download "INTRODUCTORY NUMERICAL ANALYSIS"

Transcription

1 ITRODUCTORY UMERICL LYSIS Lecture otes y Mrce ndrecut Unversl Pulshers/UPUBLISHCOM Prlnd FL US

2 Introductory umercl nlyss: Lecture otes Copyrght Mrce ndrecut ll rghts reserved ISB: 877 Unversl Pulshers/uPUBLISHcom US wwwupulshcom/oos/ndrecuthtm To my fther nd my son

3 Prefce The m of ths oo s to provde smple nd useful ntroducton for the fresh students nto the vst feld of numercl nlyss Le ny other ntroductory course on numercl nlyss ths oo contns the sc theory whch n the present tet refers to the followng topcs: lner equtons nonlner equtons egensystems nterpolton ppromton of functons numercl dfferentton nd ntegrton stochstcs ordnry dfferentl equtons nd prtl dfferentl equtons lso the tet s restrcted to twelve lectures nd one ppend coverng only one semester of techng hours/lecture nd hours/em Becuse the students need to qucly understnd why the numercl methods correctly wor the proofs of theorems were shorted s possle nsstng more on des thn on lot of lger mnpulton The ncluded emples re presented wth mnmum of complctons emphszng the steps of the lgorthms The numercl methods descred n ths oo re llustrted y computer progrms wrtten n C Our gol ws to develop very smple progrms whch re esly to red nd understnd y students lso the progrms should run wthout modfcton on ny compler tht mplements the SI C stndrd Becuse our ntenton ws to esly produce screen nputoutput usng scnf nd prntf n cse of WIDOWS vsul progrmmng envronments le Vsul C Mcrosoft nd Borlnd C Bulder the proect should e consolepplcton Ths wll e not prolem for DOS nd LIU complers If ths mterl s used s techng d n clss I would pprecte f under such crcumstnces the nstructor of such clss would send me note t the ddress elow nformng me f the mterl s useful lso I would pprecte ny suggestons or constructve crtcsm regrdng the content of these lecture notes Dr M ndrecut Fculty of Physcs BesBoly Unversty Clupoc Romn eml: ndrecut@physucluro

4

5 TBLE OF COTETS Lecture Ect Methods For Lner Systems 7 Lecture Itertve Methods For Lner Systems Lecture Sclr onlner Equtons Lecture Systems of onlner Equtons Lecture Egensystems 6 Lecture 6 Trdgonl Systems 77 Lecture 7 Polynoml Interpolton 9 Lecture 8 Best ppromton of Functons 7 Lecture 9 umercl Dfferentton nd Integrton Lecture Stochstcs Lecture Ordnry Dfferentl Equtons 7 Lecture Prtl Dfferentl Equtons 77 ppend Some Theorems on Dfferentle Functons 9 References 99

6 6

7 Lecture Ect Methods for Lner Systems Introducton Let us consder the prolem of solvng the lner system of equtons: B Here the rsed dot denotes mtr product [ ] s # mtr wth det $ B [ ] s the rghthnd sde wrtten s column vector nd [ ] s the unnown vector: 7 B The forml soluton of ths lner system cn e wrtten s B where s the nverse of the mtr The nverse of # mtr s defned to e mtr such tht I where I [ ] s the # dentty mtr f ; f $ The squre mtr s nvertle ff det $ The nverse s then unque nd to fnd we cn solve I Ths corresponds to solvng lner system for rghthnd sdes The ect methods for solvng lner systems gves the ect soluton n the sence of roundoffs fter fnte numer of rthmetc nd logcl opertons

8 Guss Elmnton Method Guss elmnton s the most frequently used ect method for solvng systems of lner equtons Let us strt wth the smple emple of three equtons wth three unnowns: On the ssumpton tht $ the frst equton of the system s dvded y Then from ech remnng equton we sutrct the frst equton multpled y the pproprte coeffcent s result of these opertons the system tes the form: where / The frst unnown ws elmnted from ll equtons ecept the frst ow on the ssumpton tht $ we dvde the second equton y the coeffcent nd elmnte the second unnown from the thrd equton resultng where 8

9 9 / Fnlly the thrd equton s dvded y whch for nonsngulr mtr must e nonzero $ The resulted equvlent system s where The soluton s otned y cwrd susttuton / One cn see tht the fnl mtr s uppertrngulr wth the elements on the mn dgonl equl to s onus the determnnt of mtr s gven y det Let us return to the generl cse of equtons wth unnowns fter elmnton steps we hve to elmnte the unnown The system s gven y # #

10 where / Fnlly the equvlent system s reduced to the uppertrngulr form # # Usng the c susttuton the soluton vector s otned s follows / Ovously the determnnt of the mtr s gven y det In order to vod the effect of computtonl error correspondng to dvson y possle zero dgonl element we must use the Gussn method wth pvotng The pvotng procedure conssts n nterchngng rows prtl pvotng or rows nd columns full pvotng so s to put prtculrly desrle element the pvot n the dgonl poston In prctce the pvot corresponds to the lrgest n mgntude vlle element

11 Emple pply the Guss elmnton method wth prtl pvotng to the followng system: nterchnge row nd row ; row row # ; row row # ; nterchnge row nd row ; row row # ; Bcwrd susttuton gves

12 C progrm / Gussn Elmnton nd Pvotng UpperTrngulrzton Followed y Bc Susttuton To fnd the soluton of =B y reducng the mtr to uppertrngulr form nd performng the c susttuton / #nclude<stdoh> #nclude<stdlh> #nclude<mthh> // #defne m // The mmum numer of equtons // vod Gussnt doule [][m] nt p q t; // Loop counters nt row[m]; // Vector wth rownumers doule [m] sum m; // Solutonvector // Intlze the vector wth rownumers for=; <=; row[]=; // Strt uppertrngulrzton routne forp=; p<=; p for=p; <=; ffs[row[]][p]>fs[row[p]][p] t=row[p]; row[p]=row[]; row[]=t; f[row[p]][p]== prntf\n ERROR: the mtr s sngulr ; et; for=p; <=; m=[row[]][p]/[row[p]][p]; forq=p; q<=; q [row[]][q]=m[row[p]][q]; // End of uppertrngulrzton routne

13 // Strt the cwrd susttuton routne f[row[]][]== prntf\n Error: the mtr s sngulr ; et; []=[row[]][]/[row[]][]; for=; >=; sum=; forq=; q<=; q sum=[row[]][q][q]; []=[row[]][]sum/[row[]][]; // End of the cwrd susttuton routne // Soluton vector for=; <=; [][]=[]; // vod mnvod nt ; // Loop counters doule [m][m]; // =[ B] n =B nt ; // umer of equtons // Strt the mn routne // Intlze the ugmented mtr =[ B] prntf\n Input the numer of equtons <d = m; scnfd ; prntf Enter elements of =[ B] row y row:\n; for=; <=; for=; <=; prntf Input [d][d]= ; scnflf [][]; Guss ; prntf\n Soluton:; for=; <=; prntf\n [d]=lf [][]; // Remr By conventon the frst nde of n element denotes ts row the second ts column In mthemtcl notton ndces te the vlues n C notton the ndces te vlues

14 Emple Solve the lner system B where [ B] Soluton: [] = [] = [] = [] = LU Decomposton more effcent wy for solvng lner systems s the LU decomposton method whch mples lowerupper fctorzton of the gven mtr In other words we see to represent the mtr s product of two trngulr mtrces such tht wth l l L l l l # l L U u U u u u # u u The LU decomposton cn e used to solve the lner system B L U L U B y frst solvng for the vector Y the lner system L Y B nd then solvng U Y

15 The ulry vector Y s computed y forwrd susttuton: y l : 7 8 y l y l 9 6 The soluton vector s then otned y cwrd susttuton n the sme mnner s n the Guss elmnton method The system y u : 7 8 y u u 9 6 s equvlent to the followng L U l u equtons wth unnowns l u the dgonl eng represented twce In fct t s lwys possle to put l lso due to the trngulr structure of L nd U the summton nde wll not run over the whole ntervl [ ] We hve n fct the followng equtons: l u for ; l u for < Ths leds to the followng recursve procedure for computng l u : u u l u : 7 8 l lu u 9 6

16 6 s consequence of the LU decomposton the determnnt s clculted very esly s followng u u u U L U L det det det det Pvotng s lso n mportnt spect of the LU lgorthm ecuse of the dvson operton used n the ove equtons Here only prtl pvotng nterchnge of rows cn e mplemented It follows tht prctclly we decompose rowwse permutton of Includng the permutton mtr the orgnl system s trnsformed le tht B P U L P Emple pply the LU decomposton wth pvotng to the followng mtr: row Pvot new row l u 9 T new u l row Pvot

17 7 9 new row l u T new u l row Pvot new row l u T new u l row l u Hence U L P P L U

18 C progrm / LU Fctorzton wth Pvotng To fnd the soluton of the lner system =B y usng the followng steps: Fnd the mtrces P L U tht stsfy P=LU where P s the permutton mtr L s the lowertrngulr mtr U s the uppertrngulr mtr Fnd the soluton Y of the lowertrngulr system LY=PB Fnd the soluton of the uppertrngulr system U=Y The dgonl elements of L re ll these vlues re not stored The coeffcents of L nd U overwrte the mtr The soluton s returned n the lst column of ugmented mtr =[B] The determnnt of mtr s gven n det vrle / #nclude<stdoh> #nclude<stdlh> #nclude<mthh> // #defne m // The mmum numer of equtons // doule LU_fctorztonnt doule [][m] nt p q t; // Loop counters doule y[m] [m]; // Solutonvectors nt row[m]; // Vector wth rownumers doule sum d=; // Intlze the vector wth rownumers for=; <=; row[]=; // Strt the LU fctorzton routne forp=; p<=; p for=p; <=; ffs[row[]][p]>fs[row[p]][p] d=d; t=row[p]; row[p]=row[]; row[]=t; 8

19 f[row[p]][p]== prntferror: the mtr s sngulr \n; et; d=d[row[p]][p]; for=p; <=; [row[]][p]=[row[]][p]/[row[p]][p]; forq=p; q<=; q [row[]][q]=[row[]][p][row[p]][q]; d=d[row[]][]; // Strt the forwrd susttuton routne y[]=[row[]][]; for=;<=; sum=; forq=; q<=; q sum=[row[]][q]y[q]; y[]=[row[]][]sum; f[row[]][]== prntferror: the mtr s sngulr \n; et; // Strt the c susttuton routne []=y[]/[row[]][]; for=; >=; sum=; forq=; q<=; q sum=[row[]][q][q]; []=y[]sum/[row[]][]; // Soluton vector for=; <; [][]=[]; return d; // vod mnvod nt ; // =numer of equtons doule [m][m]; // =[B] n =B doule det; // det=det // Intlze the ugmented mtr =[B] 9

20 prntf\n Input the numer of equtons <d= m; scnfd ; prntf Enter elements of =[B] row y row:\n; for=; <=; for=; <=; prntf Input [d][d] = ; scnflf [][]; det=lu_fctorzton ; prntf\n Soluton:; for=; <=; prntf\n [d] = lf [][]; prntf\n det=lf det; // Emple Solve the lner system B where [ B] Soluton: [] = [] = [] = [] = det =

21 Lecture Itertve Methods for Lner Systems The Method of Smple Iterton The methods descred so fr re clled ect methods However n the ect methods the roundoff errors ccumulte nd f the mtr s ner sngulr the errors re mplfed n n nconvenent wy In such cses one cn use the tertve methods to fnd n mproved soluton Let e the ect soluton of the lner system B nd let e some slghtly wrong soluton such tht Insertng ths wrong soluton n the lner system we fnd B The rghthnd sde of ths equton s nown snce s the wrong soluton nd we cn use t to compute nd therefore ow we cn nterpret ths equton s n tertve formul B = used to mprove the soluton of the lner system dfferent pproch s sed on the replcement of the nverse of the mtr y n ppromton Q > nd defnng the resdul mtr? s? I Q Here I s the dentty mtr It follows tht Q Q Q Q Q Q I? Q I?? Q

22 Therefore the nverse lm Q n n@ s gven y Q n I?? Q The soluton vector s then gven y the followng tertve formuls n Q n B n wth Q n n Q B I Q Q B? > Here the most mportnt prolem s to estlsh the condtons for the convergence of the lmt lm Q n n@ n In order to do such nlyss we need to ntroduce few concepts regrdng the norm of vectors nd mtrces T Let B C D R then some emples of vector norms re the one norm the two norm or Euclden length m the nfnty norm or m ; ; The ove norms re prtculr cses of Vector norms re requred to stsfy: p : 8 9 p 7 6 p E F D R nd G ; H H F D R nd FH D R ; Y ; Y F Y D R

23 One cn esly prove tht ll of the emples gven ove stsfy these requrements The nturl norm of squre mtr s defned n terms of gven vector norm s followng m $ Thus mesures the mmum reltve stretchng n gven vector norm tht occurs when multplyng ll nonzero vectors D R y From the ove defnton t mmedtely results tht ; F D R Theorem ll mtr norm defned n terms of gven vector norm stsfy E nd G O zero mtr; v H H F H D R ; B ; B B ; B Proof: B m B m B $ $ ; B B ; m ; m m B $ $ $ v B B B B m ; m ; m B $ $ $

24 For specfc choces of vector norm t s convenent to epress the correspondng nduced mtr norm n terms of the elements of the mtr For emple n the cse of the nfnty norm m ; ; m ; ; ; m m ; ; lso for ny squre mtr there s lwys vector Y for whch Y ; m To show ths let e the row of for whch s mmum nd te the vector It follows tht T By y y C D R Y f E y / f I y Y ; m From the ove consdertons clerly results ; ; Smlrly one cn show tht m mmum solute row sum m mmum solute column sum ; ;

25 Emple Let us consder then m nd m6 ow we need to ntroduce few concepts regrdng the egenvlues nd the egenvectors of mtrces We shll consder how to compute the egenvlues of mtrces n other lecture For the present t s suffcent to now tht f there re nonzero vectors nd sclrs H whch together stsfy the equtons H where s squre the mtr nd solutons of the chrcterstc equton det H I One cn show tht # mtr then the constnts H re clled egenvlues of re the correspondng egenvectors The egenvlues re m m H $ ; ; where H re ndeed nonnegtve ecuse the mtr re the egenvlues of the mtr T these egenvlues Theorem For ny mtr norm we hve J ; T s rel nd symmetrc where J s the modulus of the egenvlue of gretest mgntude of mtr the spectrl rdus of mtr

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that us. Introducton he us s the nverse of the us,.e., () Snce we now tht nd therefore then I V () V I () V I (4) So us reltes the nodl current njectons to the nodl voltges, s seen n (4). In developng the power

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Course Review Introduction to Computer Methods

Course Review Introduction to Computer Methods Course Revew Wht you hopefully hve lerned:. How to nvgte nsde MIT computer system: Athen, UNIX, emcs etc. (GCR). Generl des bout progrmmng (GCR): formultng the problem, codng n Englsh trnslton nto computer

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Systematic Construction of examples for cycling in the simplex method

Systematic Construction of examples for cycling in the simplex method Systemtc Constructon of emples for cyclng n the smple method Prof. r. Peter Zörng Prof. Assocdo Unversdde de Brsíl UnB eprtmento de Esttístc e-ml: peter@un.r ) Lner progrmmng prolem cnoncl form: stndrd

More information

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numercl Anlss Dr Muhrrem Mercmek INTEPOLATION ELM Numercl Anlss Some of the contents re dopted from Lurene V. Fusett, Appled Numercl Anlss usng MATLAB. Prentce Hll Inc., 999 ELM Numercl Anlss Dr Muhrrem

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all th Prelmnry E 689 Lecture Notes by B. Yo 0. Prelmnry Notton themtcl Prelmnres It s ssumed tht the reder s fmlr wth the noton of set nd ts elementry oertons, nd wth some bsc logc oertors, e.g. x A : x s

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache INITE NEUTROSOPHIC COMPLEX NUMBERS W. B. Vsnth Kndsmy lorentn Smrndche ZIP PUBLISHING Oho 11 Ths book cn be ordered from: Zp Publshng 1313 Chespeke Ave. Columbus, Oho 31, USA Toll ree: (61) 85-71 E-ml:

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Three hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 16th January 2013 Time: 09:45-12:45

Three hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 16th January 2013 Time: 09:45-12:45 Three hours UNIVERSITY OF MANHESTER SHOOL OF OMPUTER SIENE Prllel Progrms nd ther Performnce Dte: Wednesdy 16th Jnury 2013 Tme: 09:45-12:45 Plese nswer ny TWO Questons from the FOUR Questons provded. Ths

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

H-matrix theory and applications

H-matrix theory and applications MtTrd 205, Combr H-mtrx theory nd pplctons Mj Nedovć Unversty of Nov d, erb jont work wth Ljljn Cvetkovć Contents! H-mtrces nd DD-property Benefts from H-subclsses! Brekng the DD Addtve nd multplctve condtons

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

A New Algorithm Linear Programming

A New Algorithm Linear Programming A New Algorthm ner Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tlk Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.com Astrct In ths pper we propose two types of new lgorthms for lner progrmmng. The frst

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

September 13 Homework Solutions

September 13 Homework Solutions College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are

More information

2.12 Pull Back, Push Forward and Lie Time Derivatives

2.12 Pull Back, Push Forward and Lie Time Derivatives Secton 2.2 2.2 Pull Bck Push Forwrd nd e me Dertes hs secton s n the mn concerned wth the follown ssue: n oserer ttched to fxed sy Crtesn coordnte system wll see mterl moe nd deform oer tme nd wll osere

More information

Numerical Solution of Linear Fredholm Fuzzy Integral Equations by Modified Homotopy Perturbation Method

Numerical Solution of Linear Fredholm Fuzzy Integral Equations by Modified Homotopy Perturbation Method Austrln Journl of Bsc nd Appled Scences, 4(): 646-643, ISS 99-878 umercl Soluton of Lner Fredholm Fuzzy Integrl Equtons y Modfed Homotopy Perturton Method S.M. Khorsn Ksr, M. Khezerloo, 3 M.H. Dogn Aghcheghloo

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

Work and Energy (Work Done by a Varying Force)

Work and Energy (Work Done by a Varying Force) Lecture 1 Chpter 7 Physcs I 3.5.14 ork nd Energy (ork Done y Vryng Force) Course weste: http://fculty.uml.edu/andry_dnylov/techng/physcsi Lecture Cpture: http://echo36.uml.edu/dnylov13/physcs1fll.html

More information

Mixed Type Duality for Multiobjective Variational Problems

Mixed Type Duality for Multiobjective Variational Problems Ž. ournl of Mthemtcl Anlyss nd Applctons 252, 571 586 2000 do:10.1006 m.2000.7000, vlle onlne t http: www.delrry.com on Mxed Type Dulty for Multoectve Vrtonl Prolems R. N. Mukheree nd Ch. Purnchndr Ro

More information

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method Aled Mthetcs 3 4 4-9 htt://ddoorg/436/34a3 Pulshed Onlne Jnury 3 (htt://wwwscrorg/ournl/) uercl Soluton of Frehol-Volterr Integrl Equtons y Usng Sclng Functon Interolton Method Yousef Al-Jrrh En-Bng Ln

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

Solution of Tutorial 5 Drive dynamics & control

Solution of Tutorial 5 Drive dynamics & control ELEC463 Unversty of New South Wles School of Electrcl Engneerng & elecommunctons ELEC463 Electrc Drve Systems Queston Motor Soluton of utorl 5 Drve dynmcs & control 500 rev/mn = 5.3 rd/s 750 rted 4.3 Nm

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Numerical solution of fractional elliptic PDE's by the collocation method

Numerical solution of fractional elliptic PDE's by the collocation method Avlle t http://pvmuedu/m Appl Appl Mth ISS: 93-9466 Vol Issue (June 07) pp 470-478 Applctons nd Appled Mthemtcs: An Interntonl Journl (AAM) umercl soluton of frctonl ellptc PE's y the collocton method

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962). 005 Vectors nd Tensors R. Shnkr Subrmnn Good Sources R. rs, Vectors, Tensors, nd the Equtons of Flud Mechncs, Prentce Hll (96). nd ppendces n () R. B. Brd, W. E. Stewrt, nd E. N. Lghtfoot, Trnsport Phenomen,

More information

Lecture Solution of a System of Linear Equation

Lecture Solution of a System of Linear Equation ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updted /) Lecture 8- - Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS 6 ORDINARY DIFFERENTIAL EQUATIONS Introducton Runge-Kutt Metods Mult-step Metods Sstem o Equtons Boundr Vlue Problems Crcterstc Vlue Problems Cpter 6 Ordnr Derentl Equtons / 6. Introducton In mn engneerng

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Numerical Solution of Nonlinear Multi-order Fractional Differential Equations by Implementation of the Operational Matrix of Fractional Derivative

Numerical Solution of Nonlinear Multi-order Fractional Differential Equations by Implementation of the Operational Matrix of Fractional Derivative Studes n Nonlner Scences (): 5-, ISSN -9 IOSI Publctons, Numercl Soluton of Nonlner Mult-order Frctonl fferentl Equtons by Implementton of the Opertonl Mtr of Frctonl ervtve M.M. Khder eprtment of Mthemtcs,

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Compilers. Top-down analysis. Third course Spring term. Top-down analysis. Top-down analysis Overview. Introduction

Compilers. Top-down analysis. Third course Spring term. Top-down analysis. Top-down analysis Overview. Introduction Complers Thrd course prng term Alfonso Orteg: lfonso.orteg@um.es nrque Alfonsec: enrque.lfonsec@um.es Overvew Blnd serch, depth-frst serch nd wdth-frst serch. low cktrckng wth LL(1) grmmrs Procedures for

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market CHAPTER - 7 Frefly Algorthm sed Strtegc Bddng to Mxmze Proft of IPPs n Compettve Electrcty Mrket 7. Introducton The renovton of electrc power systems plys mjor role on economc nd relle operton of power

More information

The areolar strain concept applied to elasticity

The areolar strain concept applied to elasticity Computtonl Methods nd Epermentl Mesurements XIII 579 The reolr strn concept ppled to elstct I. D. Kotchergenko Insttuto Mltr de Engenhr, Ro de Jnero, Brl Astrct In contrst to the ooks tht strt th solutons

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

ANALOG CIRCUIT SIMULATION BY STATE VARIABLE METHOD

ANALOG CIRCUIT SIMULATION BY STATE VARIABLE METHOD U.P.B. Sc. Bull., Seres C, Vol. 77, Iss., 25 ISSN 226-5 ANAOG CIRCUIT SIMUATION BY STATE VARIABE METHOD Rodc VOICUESCU, Mh IORDACHE 22 An nlog crcut smulton method, bsed on the stte euton pproch, s presented.

More information

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION talan journal of pure appled mathematcs n. 33 2014 (63 70) 63 SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION M.R. Farhangdoost Department of Mathematcs College of Scences Shraz Unversty Shraz, 71457-44776

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Phscs for Scentsts nd Engneers I PHY 48, Secton 4 Dr. Betr Roldán Cuen Unverst of Centrl Flord, Phscs Deprtment, Orlndo, FL Chpter - Introducton I. Generl II. Interntonl Sstem of Unts III. Converson of

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

Matrix Eigenvalues and Eigenvectors September 13, 2017

Matrix Eigenvalues and Eigenvectors September 13, 2017 Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl nequltes: technques nd pplctons Mnh Hong Duong Mthemtcs Insttute, Unversty of Wrwck Eml: m.h.duong@wrwck.c.uk Jnury 4, 07 Abstrct Inequltes re ubqutous n Mthemtcs (nd n rel lfe.

More information

The 7 th Balkan Conference on Operational Research BACOR 05 Constanta, May 2005, Romania STEADY-STATE SOLUTIONS OF MARKOV CHAINS

The 7 th Balkan Conference on Operational Research BACOR 05 Constanta, May 2005, Romania STEADY-STATE SOLUTIONS OF MARKOV CHAINS The 7 th Blkn Conference on Opertonl Reserch BACOR 5 Constnt My 25 Romn STEADY-STATE SOLUTIONS OF MARKOV CHAINS DIMITAR RADEV Deprtment of Communcton Technque & Technologes Unversty of Rousse Bulgr VLADIMIR

More information

MODIFIED CHOLESKY FACTORIZATIONS IN INTERIOR-POINT ALGORITHMS FOR LINEAR PROGRAMMING. STEPHEN J. WRIGHT y

MODIFIED CHOLESKY FACTORIZATIONS IN INTERIOR-POINT ALGORITHMS FOR LINEAR PROGRAMMING. STEPHEN J. WRIGHT y MODIFIED CHOLESKY FACTORIZATIONS IN INTERIOR-POINT ALGORITHMS FOR LINEAR PROGRAMMING STEPHEN J. WRIGHT y Abstrct. We nvestgte moded Cholesky lgorthm typcl of those used n most nterorpont codes for lner

More information