DESIGN OF SLENDER COLUMNS

Similar documents
Design of reinforced concrete sections according to EN and EN

THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS

Basis of Design, a case study building

Reinforced concrete structures II. 4.5 Column Design

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Finite Element Modelling with Plastic Hinges

OPTIMISATION OF REINFORCEMENT OF RC FRAMED STRUCTURES

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES

SHEAR RESISTANCE BETWEEN CONCRETE-CONCRETE SURFACES

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

Eurocode Training EN : Reinforced Concrete

Reliability analysis of slender reinforced concrete column using probabilistic SBRA method

Validation of the Advanced Calculation Model SAFIR Through DIN EN Procedure

NEW NUMERICAL MODELS FOR BEHAVIOUR OF STEEL AND CONCRETE STRUCTURES EXPOSED TO FIRE

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

University of Sheffield The development of finite elements for 3D structural analysis in fire

Fundamentals of Structural Design Part of Steel Structures

APPROXIMATE DESIGN OF SLENDER BI-AXIALLY LOADED RC COLUMNS

Nonlinear static analysis PUSHOVER

Practical Design to Eurocode 2

Unit 18 Other Issues In Buckling/Structural Instability

Inelastic shear response of RC coupled structural walls

BUCKLING OF VARIABLE CROSS-SECTIONS COLUMNS IN THE BRACED AND SWAY PLANE FRAMES

SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6.

STEEL JOINTS - COMPONENT METHOD APPLICATION

LOAD BEARING CAPACITY OF SPLICED COLUMNS WITH SINGLE ROW BOLTED BUTT-PLATES

STEEL MEMBER DESIGN (EN :2005)

EUROCODE EN SEISMIC DESIGN OF BRIDGES

Hardened Concrete. Lecture No. 16

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels

EFFECT OF TRANSIENT THERMAL STRAIN ON THE BUCKLING OF SLENDER CONCRETE AND CONCRETE-FILLED COLUMNS IN FIRE

Uncertainty modelling using software FReET

Example 4.1 [Uni-axial Column Design] Solution. Step 1- Material Step 2-Determine the normalized axial and bending moment value

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

Design of Compression Members

Chapter. Materials. 1.1 Notations Used in This Chapter

Advanced stability analysis and design of a new Danube archbridge. DUNAI, László JOÓ, Attila László VIGH, László Gergely

Effective stress method to be used in beam finite elements to take local instabilities into account

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

DESIGN OF END PLATE JOINTS SUBJECT TO MOMENT AND NORMAL FORCE

3. Stability of built-up members in compression

9.5 Compression Members

On Nonlinear Buckling and Collapse Analysis using Riks Method

Where and are the factored end moments of the column and >.

Sensitivity and Reliability Analysis of Nonlinear Frame Structures

Influence of residual stress on the carrying-capacity of steel framed structures. Numerical investigation

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

FINITE ELEMENT ANALYSIS OF THE ROTATION CAPACITY OF BEAM-TO-COLUMN END-PLATE BOLTED JOINT

RELIABLITY OF CURVED TIMBER BEAM EXPOSED TO FIRE

Structural Steelwork Eurocodes Development of a Trans-National Approach

Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed

Flexure: Behavior and Nominal Strength of Beam Sections

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

Fatigue failure mechanisms of thin-walled hybrid plate girders

SENSITIVITY ANALYSIS OF LATERAL BUCKLING STABILITY PROBLEMS OF HOT-ROLLED STEEL BEAMS

Pushover Seismic Analysis of Bridge Structures

Lecture-08 Gravity Load Analysis of RC Structures

A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A )

Towards The. Design of Super Columns. Prof. AbdulQader Najmi

EXPERIMENTAL BEHAVIOUR OF END-PLATE BEAM-TO-COLUMN JOINTS UNDER BENDING AND AXIAL FORCE Database reporting and discussion of results

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator

ADVANCED DESIGN OF STEEL AND COMPOSITE STRUCTURES

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension

Advanced Analysis of Steel Structures

Plastic design of continuous beams

[8] Bending and Shear Loading of Beams

MECHANICS OF MATERIALS Sample Problem 4.2

Structural Steelwork Eurocodes Development of A Trans-national Approach

Transactions of the VŠB Technical University of Ostrava, Mechanical Series. article No Roland JANČO *

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition

Formulation of Equivalent Steel Section for Partially Encased Composite Column under Concentric Gravity Loading

Engineeringmanuals. Part2

9-3. Structural response

Calculation for Moment Capacity of Beam-to- Upright Connections of Steel Storage Pallet Racks

Fracture Mechanics of Non-Shear Reinforced R/C Beams

SECTION 7 DESIGN OF COMPRESSION MEMBERS

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

Eurocode 3: Design of steel structures. Part 1-6: Strength and Stability of Shell Structures National Annex

CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS

Strengthening of columns with FRP

NUMERICAL SIMULATIONS OF CORNERS IN RC FRAMES USING STRUT-AND-TIE METHOD AND CDP MODEL

Bending and Shear in Beams

CHAPTER 6: ULTIMATE LIMIT STATE

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

Fire Analysis of Reinforced Concrete Beams with 2-D Plane Stress Concrete Model

VALLOUREC & MANNESMANN TUBES. Design-support for MSH sections

Bridge deck modelling and design process for bridges

Tutorial #1 - CivE. 205 Name: I.D:

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

HONGJUN LI Department of Mechanical Engineering University of Strathclyde Glasgow, Scotland, UK

Severe accident risk assessment for Nuclear. Power Plants

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

Software Verification

BAR ELEMENT WITH VARIATION OF CROSS-SECTION FOR GEOMETRIC NON-LINEAR ANALYSIS

Standardisation of UHPC in Germany

Transcription:

Slovak Chamber of Civil Engineers DESIGN OF SLENDER COLUMNS Prof. Dipl. - Ing. Dr. Vladimír BENKO, PhD. Slovak University of Technology in Bratislava ECEC European Council of Engineer s Chambers CPD-Lectures at 16th of September, 2015 Belgrade/SRB Bratislava /SVK 1

Failure of the Concrete Slender Columns by Stability loss Experimental and numerical analysis 2

Why slender concrete columns? 3

Influence of slenderness on deformation and resistance of columns a) short column N Ed e 0 N Ed b) e 0 e 2 N Ed N Rd(a) M 0Ed = M Rd c) slender column N Rd(b) M 2 e 0 e 2 NEd N Rd(c) e 0 N cr cross-section failure e 2 e 2 e 2 stability loss critical cross section M Ed 4

EN 1992-1-1 betónových konštrukcií 5 Structural analysis 5.1 General 5.2 Geometric imperfections 5.3 Idealization of structure 5.4 Linear elastic analysis 5.5 Linear analysis with limited redistribution 5.6 Plastic analysis 5.7 Non-linear analysis 5.8 Analysis of second order effects with axial load 5.9 Lateral instability of slender beams 5.10 Prestressed members and structures 5

EN 1992-1-1 betónových konštrukcií 5.7 Non-linear analysis 5.8 Analysis of second order effects with axial load 5.8.1 Definitions 5.8.2 General 5.8.3 Simplified criteria for second order effects 5.8.3.1 Slenderness Criterion for isolated members 5.8.3.2 Slenderness and effective length of isolated members 5.8.3.3 Global second order effects in buildings 5.8.4 Creep 5.8.5 Methods of analysis 5.8.6 General method 5.8.7 Method based on nominal stiffness 5.8.8 Method based on nominal curvature... 6

5.7 Non-linear analysis (4)P The use of material characteristics which represent the stiffness in a realistic way but take account of the uncertainties of failure shall be used when using non-linear analysis... (5) For slender structures, in which second order effects cannot be ignored, the design method given in 5.8.6 may be used. 7

5.8 Analysis of second order effects with axial load 5.8.6 General method (3) Stress-strain relationships for concrete and steel given in 3.1.5, Expression (3.14) and 3.2.3 (Figure 3.8) may be used. With stress-strain diagrams based on design values... 8

Method of partial coefficients according to Eurocodes EN 1990 E d R d g F E k R g k M g F g M E d R d partial factor for actions, also accounting for model uncertainties and dimensional variationsneistoty partial factor for a material property, also accounting for model uncertainties and dimensional variations design value of the effect of actions design value of the resistance 9

design charecteristic mean N [kn] Section λ=0 2500 y z g F E k R g k M 2000 1500 mean characteristic design 1000 g M 500 N cr N Rd(c) 0 41,8 62,7 68,9 MATERIAL PROPERTY 0 10 20 30 40 50 60 M [knm] M [knm] 10

Applied research - Faculty of Civil Engineering, STRABAG 7 columns series S1 (normal concrete C45/55) 6 columns series S2 (HPC C70/85) 6 columns series S3 (HPC C100/115) 11

150 e 1 =40 l = 3840 Planned strain for stability loss section 240 x 150 mm 4 φ 14 L=3840 mm λ=89 e 1 =40 N e 1 =? mm e 2 =? 240 z z y os vnesenia sily N 12

e 0 - scheduled eccentricity N [kn] 250x150 C45/55 1000 800 600 e25 mm e30 mm 400 e40 mm 200 Stredný ID Návrhový ID 0 0 10 20 30 40 M [knm] 13

z y C45/55-11/2013 C70/85-11/2013 C100/115-12/2014 C200 -??/201? 14

l = 3840 150 e 1 =40 Planned strain for stability loss 240 section 240 x 150 mm 4 φ 14 L=3840 mm λ=89 e 1 =40 mm -800 N (kn) y M-N diagram C45/55 os vnesenia sily z e 1 =40 N ATENA -600 STAB2NL NÁVRHOVÝ ID e 2 =? -400 NbR = 351 NbR = 337-200 N 0 0 10 20 30 M (knm) 15

Predicting the failure of the columns by loss of stability -400 N (kn) M-N diagram (S1) 41% -300-200 -100 0 NÁVRHOVÝ ID STREDNÝ ID e1=40mm KISAC CUHAK KENDICKY BOHUNICKY MORAVCIK, KOTES BELES FRANA STRAUSS S1-2 S1-3 S1-4 S1-5 S1-6 0 10 20 30 M (knm) 40 16

Predicting the failure of the columns by loss of stability Spoločnosť Riešiteľ Softvér N [kn u y [mm] M [kn.m] STU Bratislava Kišac M. Aténa 357,8 20,9 21,8 STU Bratislava Čuhák M. Metóda A 344,4 35,5 26,0 STU Bratislava Kendický P. Stab2NL 336,8 26,4 22,4 Leptón s.r.o. Bohunický B. Metóda C 342,0 44,0 28,0 ZU Žilina Moravčík M. Atena 396,6 38,7 31,2 Nemetschek-Scia Beleš I. Scia 325,5 49,4 29,1 Dlubal - CZ Fráňa J. Dlubal 363,0 30,3 25,5 BOKU Wien - A Strauss A. Atena 323,0 18,9 19,0 23% 161% 17

EXPERIMENT - C45/55 C100/115 (BRATISLAVA 2014) l=88 18

Production of the columns (ZIPP Bratislava spol. Ltd.) 7 columns series S1 (normal concrete C45/55) 19

Production of the columns (ZIPP Bratislava spol. Ltd.) processing of concrete with immersion vibrators production of samples (cylinders, cubes, prisms) 20

Experimental verification (laboratory Bratislava 2014) laboratory conditions l= 89 21

Experimental results of the columns: series S1 (C45/55) compression strain εc= 1,55 in case of loss of the stability (λ=89) -350 N (kn) M-N diagram C45/55 N (kn) ε-n diagram C45/55-250 -150-50 ID design ID characteristic ID mean S1-1 S1-2 S1-3 S1-4 S1-5 S1-6 S1-1 S1-2 S1-3 S1-4 S1-5 S1-6 0 10 20 M (knm) 30 0-1 ε ( ) -2 1,55 22

Results of tested columns: series S1 (C45/55) -350 N (kn) Diagram e2 - N -300-250 -200-150 S1-1 - S1-3 S1-4 - S1-6 e =40mm 0 e =40mm 0 S1-1 S1-2 S1-3 -100 S1-4 -50 stred stĺpa stred stĺpa S1-5 S1-6 0 0 20 40 60 80 100 e 2 (mm) 23

Column N [kn u y [mm] M [kn.m] S1-1 324,4 57,6 31,7 S1-2 323,4 42,7 26,8 S1-3 332,6 38,3 26,0 S1-4 271,2 58,4 26,7 S1-5 296,0 59,4 29,4 S1-6 311,4 55,0 29,6 23% 52% 24

Evaluation of the failure predictions at what normal force occurs the failure of the column by the loss of stability? 1. STRAUSS (ATÉNA) 4,8 %, 2. BELEŠ (SCIA) 5,5 %, 3. KENDICKÝ (STAB2NL) 8,7 %. what will be the deformation in the critical cross section of the column by the loss of stability? 1. BELEŠ (SCIA) 5,6 %, 2. BOHUNICKÝ (own software) 18,6 %. 3. MORAVČÍK - KOTEŠ (ATÉNA) 34,8 %, 25

Overall evaluation of the failure predictions 1. BELEŠ 2. BOHUNICKÝ 3. MORAVČÍK - KOTEŠ 26

Failure by Stability loss -400 N (kn) M-N diagram C45/55-300 -200-100 0 S1-1 S1-2 S1-3 S1-4 S1-5 S1-6 NÁVRHOVÝ ID Charakter. ID Stredný ID e1=40mm 0 10 20 30 40 M (knm) 27

Overall Reliability of the Cross Section N (kn) M-N diagram C45/55-1200 -1000-800 N Rk =850,6 g M =1,34-600 N Rd =635,9 g F =1,4 g G =1,88-400 N Ek =453,6 e1=40mm -200 NÁVRHOVÝ ID Charakter. ID Stredný ID 0 0 10 20 30 40 M (knm) 28

Overall Reliability of the Cross Section N (kn) M-N diagram C45/55-1200 -1000 N Rm =982,5-800 g Mm =1,55-600 N Ed =635,9 g F =1,4 g Gm =2,17-400 N Ek =453,6 e1=40mm -200 NÁVRHOVÝ ID Charakter. ID Stredný ID 0 0 10 20 30 40 M (knm) 29

Overall Reliability of the Column according to 5.7 (4) N (kn) M-N diagram C45/55-1000 -800 e1=40mm NÁVRHOVÝ ID CHARAKTER. ID -600 Stredný ID S1-3 -400 N Rbm =332,6 g F =1,4-200 0 N Ek =237,5 0 10 20 30 40 g B g g Gm F 2,17 1,4 1,55 M (knm) 30

Overall Reliability of the Column according to 5.8.6 (3) M-N diagram C45/55 N (kn) -1000 e1=40mm NÁVRHOVÝ ID -800 CHARAKTER. ID Stredný ID S1-3 -600 N s fcd -400 N Rbm =332,6 g F =1,2-200 N Rbd =269,1 g F =1,4 g G =1,68 N Ek =192,2 0 0 10 20 30 40 M (knm) 31

5 Nationale Erläuterungen zu ÖNORM EN 1992-1-1 Zu Abschnitt 5.8.6(3) Wird die Stabilitätslast (rechnerisches Versagen durch Stabilitätsverlust) mit den mittleren Baustoffkennwerten berechnet, so muß sie mindestens das 1,3 fache der maßgebenden Bemessungslast erreichen. Die Aufnahme der Schnittgrößen unter der maßgebenden Bemessungslast ist mit den Bemessungswerten der Baustofffestigkeiten nachzuweisen. 32

Concrete slender columns 33

Slovak Chamber of Civil Engineers DESIGN OF SLENDER COLUMNS Prof. Dr. - Ing. Vladimír BENKO, PhD. Slovak University of Technology in Bratislava Thank you for your attention! 34