Monolithic N-Channel JFET Duals

Similar documents
Monolithic N-Channel JFET Dual

Monolithic N-Channel JFET Dual

2N5545/46/47/JANTX/JANTXV

Monolithic N-Channel JFET Dual

Monolithic N-Channel JFET Dual

Monolithic N-Channel JFET Dual

Matched N-Channel JFET Pairs

Matched N-Channel JFET Pairs

J/SST111 Series. N-Channel JFETs. Vishay Siliconix J111 SST111 J112 SST112 J113 SST113

2N4856JAN/JANTX/JANTXV Series. N-Channel JFETs. Vishay Siliconix

N- & P-Channel Enhancement Mode Field Effect Transistor

DATA SHEET. PMBFJ308; PMBFJ309; PMBFJ310 N-channel silicon field-effect transistors DISCRETE SEMICONDUCTORS

Data Sheet BUY25CS54A-01

2SJ182(L), 2SJ182(S)

Product Summary: BVDSS 30V RDSON (MAX.) 50mΩ 4.5A I D. Pb Free Lead Plating & Halogen Free EMB50P03J

SIPMOS Small-Signal Transistor BSP 149

2SJ280(L), 2SJ280(S)

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

P-Channel Enhancement Mode Field Effect Transistor PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS

2SJ332(L), 2SJ332(S)

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

500V N-Channel MOSFET

LNTA4001NT1G S-LNTA4001NT1G. Small Signal MOSFET 20 V, 238 ma, Single, N-Channel, Gate ESD Protection LESHAN RADIO COMPANY, LTD.

BF545A; BF545B; BF545C

TPC8116-H TPC8116-H. High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter Applications

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 600 V V GS Gate-Source Voltage ±30 V

IRF5851. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge.

Type V DS I D R DS(on) Package Ordering Code BTS V 10 A 0.2 Ω TO-220AB C67078-A5008-A2

P-channel enhancement mode MOS transistor

DATA SHEET. BSN304 N-channel enhancement mode vertical D-MOS transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Jun 17

BSS84 P-Channel Enhancement Mode Field-Effect Transistor

DATA SHEET. BF245A; BF245B; BF245C N-channel silicon field-effect transistors DISCRETE SEMICONDUCTORS

SPECIFICATIONS (T J = 25 C, unless otherwise noted)

N-Channel Enhancement-Mode Vertical DMOS FET

N-Channel Lateral DMOS FETs

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 30 V V GS Gate-Source Voltage ±20 V

N-Channel 30-V (D-S) MOSFET With Sense Terminal

A I DM. W/ C V GS Gate-to-Source Voltage ± 20. Thermal Resistance Symbol Parameter Typ. Max. Units

Dual N-Channel OptiMOS MOSFET

N-Channel Depletion-Mode DMOS FET

P-Channel Enhancement Mode Mosfet

TO-247-3L Inner Circuit Product Summary I C) R DS(on)

OptiMOS Power-Transistor

Features. R DS(on) = 25 C unless otherwise noted. Symbol Parameter Q2 Q1 Units

FEATURES SYMBOL QUICK REFERENCE DATA

FEATURES SYMBOL QUICK REFERENCE DATA

N-Channel Lateral DMOS FETs

AOT404 N-Channel Enhancement Mode Field Effect Transistor

Dual N-/Dual P-Channel 30-V (D-S) MOSFETs

P-Channel Enhancement Mode Mosfet

Product Summary: BVDSS RDSON (MAX.) D 60V 60mΩ 12A I D. UIS, Rg 100% Tested Pb Free Lead Plating & Halogen Free EMB60N06C

N-Channel 20-, 30-, 40-V (D-S) MOSFETs

N-channel TrenchMOS transistor

PMV56XN. 1. Product profile. 2. Pinning information. µtrenchmos extremely low level FET. 1.1 Description. 1.2 Features. 1.

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type SSM3J16TE. DC I D 100 ma Pulse I DP 200

PMV40UN. 1. Product profile. 2. Pinning information. TrenchMOS ultra low level FET. 1.1 Description. 1.2 Features. 1.

OptiMOS 2 Power-Transistor

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

Features. T A =25 o C unless otherwise noted

DATA SHEET. BF246A; BF246B; BF246C; BF247A; BF247B; BF247C N-channel silicon junction field-effect transistors DISCRETE SEMICONDUCTORS

OptiMOS TM Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-MOSFET

PDM6UT20V08E N-Channel and P-Channel,20V,Small signal MOSFET

OptiMOS 3 Power-Transistor

OptiMOS -P Small-Signal-Transistor

OptiMOS TM 3 Power-Transistor

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

OptiMOS TM 3 Power-Transistor

Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

OptiMOS 3 Power-MOSFET

AO7401 P-Channel Enhancement Mode Field Effect Transistor

OptiMOS TM Power-MOSFET

PINNING - SOT223 PIN CONFIGURATION SYMBOL

OptiMOS TM 3 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K17FU

OptiMOS TM Power-Transistor

µtrenchmos standard level FET Low on-state resistance in a small surface mount package. DC-to-DC primary side switching.

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

N-channel µtrenchmos ultra low level FET. Top view MBK090 SOT416 (SC-75)

TSP10N60M / TSF10N60M

SIPMOS Small-Signal-Transistor

OptiMOS -P2 Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM6N44FE. DC I D 100 ma Pulse I DP 200

IXTT440N04T4HV V DSS

OptiMOS TM Power-Transistor

OptiMOS Power-Transistor

Complementary (N- and P-Channel) MOSFET

OptiMOS 2 Power-Transistor

OptiMOS 2 Power-Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK6A50D

OptiMOS 3 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSIII) 2SK2610

SIPMOS Small-Signal-Transistor

OptiMOS 2 + OptiMOS -P 2 Small Signal Transistor

PMN40LN. 1. Description. 2. Features. 3. Applications. 4. Pinning information. TrenchMOS logic level FET

AO4802 Dual N-Channel Enhancement Mode Field Effect Transistor

Maximum Ratings, att j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current. IDpulse 88 E AS 90.

Transcription:

Monolithic N-Channel JFET Duals N96/97/98/99 Part Number V GS(off) (V) V (BR)GSS Min (V) Min (ms) I G Max (pa) V GS V GS Max (mv) N96.7 to N97.7 to N98.7 to N99.7 to Monolithic Design High Slew Rate Low Offset/Drift Voltage Low Gate Leakage: pa Low Noise High CMRR: db Tight Differential Match vs. Current Improved Op Amp Speed, Settling Time Accuracy Minimum Input Error/Trimming Requirement Insignificant Signal Loss/Error Voltage High System Sensitivity Minimum Error with Large Input Signal Wideband Differential Amps High-Speed, Temp-Compensated, Single-Ended Input Amps High Speed Comparators Impedance Converters The N96/97/98/99 JFET duals are designed for high-performance differential amplification for a wide range of precision test instrumentation applications. This series features tightly matched specs, low gate leakage for accuracy, and wide dynamic range with I G guaranteed at V DG = V. The hermetically-sealed TO-7 package is available with full military processing (see Military Information and the N/6/7JANTX/JANTXV data sheet). For similar products see the low-noise U/SST series, the high-gain N9/9, and the low-leakage U/ data sheets. TO-7 S G 6 D D G S Top View Gate-Drain, Gate-Source Voltage............................... V Gate Current................................................. ma Lead Temperature ( / 6 from case for sec.).................. C Storage Temperature................................... 6 to C Operating Junction Temperature.......................... to C Document Number: 7 S- Rev. D, -Jun- Power Dissipation : Per Side a........................ mw Total b........................... mw Notes a. Derate mw/c above 8C b. Derate mw/c above 8C 8-

N96/97/98/99 Static N96 Limits N97 Parameter Symbol Test Conditions Typ a Min Max Min Max Unit Gate-Source Breakdown Voltage V (BR)GSS I G = A, V DS = V 7 Gate-Source Cutoff Voltage V GS(off) V DS = V, I D = na.7.7 Saturation Drain Current b I DSS V DS = V, V GS = V.7 7.7 7 ma V GS = V, V DS = V pa Gate Reverse Current I GSS T A = C na V DG = V, I D = A pa Gate Operating Current I G T A = C.8 na Gate-Source Voltage V GS V DG = V, I D = A...8..8 V Dynamic Input Capacitance Reverse Transfer Capacitance C iss C rss V DS = V, V GS = V f = khz V DS = V, I D = A f = khz V DS = V, V GS = V f = MHz. ms S.8.7.6.7.6 ms S 6 6 Equivalent Input Noise Voltage e n V DS = V, V GS = V, f = khz 9 Noise Figure Matching NF V DS = V, V GS = V f = Hz, R G = M V pf nv Hz.. db Differential Gate-Source Voltage V GS V GS V DG = V, I D = A mv Gate-Source Voltage Differential Change with Temperature V GS V GS T V DG = V, I D = A T A = to C V/C Saturation Drain Current Ratio I DSS I DSS V DS = V, V GS = V.98.9.9 Transconductance Ratio Differential VDS V = V, I D = A f = khz.99.97.97. S Differential Gate Current I G I G V DG = V, I D = A, T A = C. na Common Mode Rejection Ratio c CMRR V DG = to V, I D = A db 8- Document Number: 7 S- Rev. D, -Jun-

N96/97/98/99 Static N98 Limits N99 Parameter Symbol Test Conditions Typ a Min Max Min Max Unit Gate-Source Breakdown Voltage V (BR)GSS I G = A, V DS = V 7 Gate-Source Cutoff Voltage V GS(off) V DS = V, I D = na.7.7 Saturation Drain Current b I DSS V DS = V, V GS = V.7 7.7 7 ma V GS = V, V DS = V pa Gate Reverse Current I GSS T A = C na V DG = V, I D = A pa Gate Operating Current I G T A =C.8 na Gate-Source Voltage V GS V DG = V, I D = A...8..8 V Dynamic. ms V DS = V, V GS = V, f = khz S V DS = V, I D = A f = khz.8.7.6.7.6 ms S Input Capacitance C iss 6 6 Reverse Transfer Capacitance C rss V DS = V, V GS = V, f = MHz Equivalent Input Noise Voltage e n V DS = V, V GS = V, f = khz 9 Noise Figure Matching NF V DS = V, V GS = V f = Hz, R G = M V pf nv Hz.. db Differential Gate-Source Voltage V GS V GS V DG = V, I D = A mv Gate-Source Voltage Differential Change with Temperature V GS V GS T V DG = V, I D = A T A = to C V/C Saturation Drain Current Ratio I DSS I DSS V DS = V, V GS = V.97.9.9 Transconductance Ratio Differential VDS V = V, I D = A f = khz.97.9.9. S Differential Gate Current I G I G V DG = V, I D = A, T A = C. na Common Mode Rejection Ratio c CMRR V DG = to V, I D = A 97 db Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. NQP b. Pulse test: PW s duty cycle %. c. This parameter not registered with JEDEC. Document Number: 7 S- Rev. D, -Jun- 8-

N96/97/98/99 Drain Current and Transconductance vs. Gate-Source Cutoff Voltage na Gate Leakage Current I DSS Saturation Drain Current (ma) I DSS I DSS @ V DS = V, V GS = V @ V DG = V, V GS = V f = khz.6..8. (ms) I G Gate Leakage na na pa pa pa I G @ I D = A T A = C I GSS @ C A A A I GSS @ C T A = C. pa V GS(off) Gate-Source Cutoff Voltage (V) V DG Drain-Gate Voltage (V) V GS(off) = V V GS(off) = V V GS = V. V V GS = V. V. V.6 V.8 V. V. V.6 V.9 V. V. V.8 V. V. V. V 8 6 8 6. V GS(off) = V V GS(off) = V V GS = V. V.6 V GS = V. V..6 V..8.. V.6 V.8 V. V. V. V....9 V. V. V.8 V. V.6 V...6.8. V...6.8 8- Document Number: 7 S- Rev. D, -Jun-

N96/97/98/99 t Transfer Characteristics V GS(off) = V V DS = V Gate-Source Differential Voltage V DG = V T A = C T A = C C (mv) V GS V GS N99 N96 C..... V GS Gate-Source Voltage (V).. Voltage Differential with Temperature Common Mode Rejection Ratio V GS V GS ( V/ C ) V DG = V T A = to C T A = to C N99 N96 CMRR (db) CMRR = log V DG = V V V DG V GS V GS 9.. 8.. A V Voltage Gain 8 6. Circuit Voltage Gain V GS(off) = V A V R L R L Assume V DD = V, V DS = V R L V I D V GS(off) = V. r DS(on) Drain-Source On-Resistance ( Ω ) k 8 6 On-Resistance V GS(off) = V V GS(off) = V.. Document Number: 7 S- Rev. D, -Jun- 8-

N96/97/98/99 Input Capacitance vs. Gate-Source Voltage Reverse Feedback Capacitance vs. Gate-Source Voltage Ciss Input Capacitance (pf) 8 6 f = MHz V DS = V V V V Crss Reverse Feedback Capacitance (pf) f = MHz V DS = V V V V 8 6 8 6 V GS Gate-Source Voltage (V) V GS Gate-Source Voltage (V) Equivalent Input Noise Voltage vs. Frequency. V DS = V V GS(off) = V V DS = V f = khz en Noise Voltage nv / Hz 6 8 I D @ A V GS = V (µs).... C T A = C C k k k f Frequency (Hz)... k On-Resistance and vs. Gate-Source Cutoff Voltage (ms).... V GS(off) = V C T A = C C V DS = V f = khz.. r DS(on) Drain-Source On-Resistance ( Ω ) 8 6 r DS r DS @ I D = A, V GS = V @ V DS = V, V GS = V, f = khz 8 6 gos (S) V GS(off) Gate-Source Cutoff Voltage (V) 8-6 Document Number: 7 S- Rev. D, -Jun-