Advanced SAR 2 Polarimetry

Similar documents
Making a case for full-polarimetric radar remote sensing

Evaluation and Bias Removal of Multi-Look Effect on Entropy/Alpha /Anisotropy (H/

ADVANCED CONCEPTS POLSARPRO V3.0 LECTURE NOTES. Eric POTTIER (1), Jong-Sen LEE (2), Laurent FERRO-FAMIL (1)

SAN FRANCISCO BAY. L-band 1988 AIRSAR. DC8 P, L, C-Band (Quad) Microwaves and Radar Institute, Wolfgang Keydel

Soil moisture retrieval over periodic surfaces using PolSAR data

General Four-Component Scattering Power Decomposition with Unitary Transformation of Coherency Matrix

EE/Ge 157 b. Week 2. Polarimetric Synthetic Aperture Radar (2)

THE PYLA 2001 EXPERIMENT : EVALUATION OF POLARIMETRIC RADAR CAPABILITIES OVER A FORESTED AREA

Model based forest height estimation with ALOS/PalSAR: A first study.

Analysis of Compact Polarimetric SAR Imaging Modes

Analysis of the Temporal Behavior of Coherent Scatterers (CSs) in ALOS PalSAR Data

POLARIMETRY-BASED LAND COVER CLASSIFICATION WITH SENTINEL-1 DATA

Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures

A New Model-Based Scattering Power Decomposition for Polarimetric SAR and Its Application in Analyzing Post-Tsunami Effects

POLARIMETRIC SPECKLE FILTERING

Polarimetric Calibration of the Ingara Bistatic SAR

Features for Landcover Classification of Fully Polarimetric SAR Data

A Multi-component Decomposition Method for Polarimetric SAR Data

Wave Propagation Model for Coherent Scattering from a Randomly Distributed Target

STUDIES OF OCEAN S SCATTERING PROPERTIES BASED ON AIRSAR DATA

Comparison between Multitemporal and Polarimetric SAR Data for Land Cover Classification

ABSTRACT. Index terms compact polarimetry, Faraday rotation, bare soil surfaces, soil moisture.

Polarimetry-based land cover classification with Sentinel-1 data

Study and Applications of POLSAR Data Time-Frequency Correlation Properties

2986 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 5, MAY 2013

DUAL FREQUENCY POLARIMETRIC SAR DATA CLASSIFICATION AND ANALYSIS

EVALUATION OF CLASSIFICATION METHODS WITH POLARIMETRIC ALOS/PALSAR DATA

The Importance of Microwave Remote Sensing for Operational Sea Ice Services And Challenges

New Simple Decomposition Technique for Polarimetric SAR Images

Archimer

POLARIMETRIC SAR MODEL FOR SOIL MOISTURE ESTIMATION OVER VINEYARDS AT C-BAND

Land Cover Feature recognition by fusion of PolSAR, PolInSAR and optical data

THE OBJECTIVE of the incoherent target decomposition

Improved sea-ice monitoring for the Baltic Sea Project summary

CLASSIFICATION, decomposition, and modeling of polarimetric

Decomposition of polarimetric synthetic aperture radar backscatter from upland and ooded forests

Snow property extraction based on polarimetry and differential SAR interferometry

Currents and Objects

BUILDING HEIGHT ESTIMATION USING MULTIBASELINE L-BAND SAR DATA AND POLARIMETRIC WEIGHTED SUBSPACE FITTING METHODS

Microwave Remote Sensing of Soil Moisture. Y.S. Rao CSRE, IIT, Bombay

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity

Monitoring Sea Ice with Space-borne Synthetic Aperture Radar

Application of Bootstrap Techniques for the Estimation of Target Decomposition Parameters in RADAR Polarimetry

DLR s TerraSAR-X contributes to international fleet of radar satellites to map the Arctic and Antarctica

LAND COVER CLASSIFICATION OF PALSAR IMAGES BY KNOWLEDGE BASED DECISION TREE CLASSI- FIER AND SUPERVISED CLASSIFIERS BASED ON SAR OBSERVABLES

DUAL-POLARIZED COSMO SKYMED SAR DATA TO OBSERVE METALLIC TARGETS AT SEA

Investigating Coastal Polynya Thin Sea Ice State in the Laptev Sea Using TerraSAR-X Dual-Pol Stripmap Data

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Fitting a two-component scattering model to polarimetric SAR data from forests

Knowledge-based sea ice classification by polarimetric SAR

TEXTURE ANALSYS OF SAR IMAGERY IN THE SPACE-SCALE-POLARIZATION DOMAIN BY WAVELET FRAMES

DECOMPOSITION THEOREMS APPLIED TO RANDOM AND STATIONARY RADAR TARGETS

RADAR REMOTE SENSING OF PLANETARY SURFACES

CHAPTER-7 INTERFEROMETRIC ANALYSIS OF SPACEBORNE ENVISAT-ASAR DATA FOR VEGETATION CLASSIFICATION

Training Course on Radar & Optical RS, IES, Cēsis, Latvia, 5-9 September SAR Marine Applications. Wind and Waves

Shashi Kumar. Indian Institute of Remote Sensing. (Indian Space Research Organisation)

MULTI-POLARISATION MEASUREMENTS OF SNOW SIGNATURES WITH AIR- AND SATELLITEBORNE SAR

CHARACTERISTICS OF SNOW AND ICE MORPHOLOGICAL FEATURES DERIVED FROM MULTI-POLARIZATION TERRASAR-X DATA

Linking Different Spatial Scales For Retrieval Of Sea Ice Conditions From SAR Images

A Family of Distribution-Entropy MAP Speckle Filters for Polarimetric SAR Data, and for Single or Multi-Channel Detected and Complex SAR Images

INTERPRETATION OF POLARISATION BEHAVIOUR OF RADAR WAVES TRANSMITTED THROUGH ANTARCTIC ICE SHELVES.

PUBLICATIONS. Radio Science. Impact of cross-polarization isolation on polarimetric target decomposition and target detection

ANALYSIS OF ASAR POLARISATION SIGNATURES FROM URBAN AREAS (AO-434)

Multitemporal Spaceborne Polarimetric SAR Data for Urban Land Cover Mapping

Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan

An Introduction to PolSAR-Ap: Exploitation of Fully Polarimetric SAR Data for Application Demonstration

On the use of Matrix Information Geometry for Polarimetric SAR Image Classification

Modeling Surface and Subsurface Scattering from Saline Soils

UE SPM-PHY-S Polarization Optics

A New Approach to Estimate Forest Parameters Using Dual-Baseline POL-InSAR Data

RADAR TARGETS IN THE CONTEXT OF EARTH OBSERVATION. Dr. A. Bhattacharya

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light

Airborne Holographic SAR Tomography at L- and P-band

K&C Phase 4 Status report. Use of short-period ALOS-2 observations for vegetation characterization and classification

Polarization Optics. N. Fressengeas

SAR data Sensords and examples

1. Regarding the availability of two co-polarized (HH and VV) channels.

IEEE Copyright notice.

Cameron Decomposition Applied to Polarimetric Synthetic Aperture Radar Signature Detection

Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures

K&C Phase 4 Status report. Ice Sheet Monitoring using ALOS-2. University of California, Irvine 2 JPL

Unsupervised Wishart Classifications of Sea-Ice using Entropy, Alpha and Anisotropy decompositions

Polarimetry of homogeneous half-spaces 1

SAR Training Course, MCST, Kalkara, Malta, November SAR Maritime Applications. Wind and Waves

GEOGG141 Principles & Practice of Remote Sensing (PPRS) RADAR III: Applications Revision

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Waves in Linear Optical Media

THE THEMATIC INFORMATION EXTRACTION FROM POLINSAR DATA FOR URBAN PLANNING AND MANAGEMENT

POLARIMETRIC MODELING OF LUNAR SURFACE FOR SCATTERING INFORMATION RETRIEVAL USING MINI-SAR DATA OF CHANDRAYAAN-1

DEMOSS. Title: Development of Marine Oil Spills/slicks Satellite monitoring System elements for the Black Sea, Caspian Sea and /Kara/Barents Seas

Identifiability of 3D Attributed. Sparse Nonlinear Apertures. Julie Jackson Randy Moses

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation

Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering

SAR POLARIMETRIC MONITORING BY NATURAL CALIBRATORS

GLOBAL FOREST CLASSIFICATION FROM TANDEM-X INTERFEROMETRIC DATA: POTENTIALS AND FIRST RESULTS

Detecting an area affected by forest fires using ALOS PALSAR

RADAR Remote Sensing Application Examples

ATTI. XIX Riunione Nazionale di Elettromagnetismo (RiNEm) DELLA «FONDAZIONE GIORGIO RONCHI» Numero Speciale 8 - Serie di Elettromagnetismo su

LAND COVER CLASSIFICATION BASED ON SAR DATA IN SOUTHEAST CHINA

Intégration de connaissance experte

Transcription:

Advanced SAR Polarimetry Eric POTTIER Monday 3 September, Lecture D1Lb5-3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 1

$y RADAR POLARIMETRY $x r Ezt (, ) $z Radar Polarimetry (Polar : polarisation Metry: measure) is the science of acquiring, processing and analysing the polarization state of an electromagnetic field Radar Polarimetry deals with the full vector nature of polarized electromagnetic waves 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER

RADAR POLARIMETRY The POLARISATION information Contained in the waves backscattered from a given medium is highly related to: its geometrical structure reflectivity, shape and orientation its geophysical properties such as humidity, roughness, 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 3

APPLICATIONS OF RADAR POLARIMETRY IN REMOTE SENSING (EARTH MONITORING) AGRICULTURE LAND USE METEOROLOGY HYDROLOGY GEOLOGY FORESTRY SEA / ICE OCEANOGRAPHY TOPOGRAPHY CARTOGRAPHY SECURITY HUMANITARIAN DEMINING 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 4

SCATTERING COEFFICIENT R X T A X X X T X X X X TRANSMITTER: RECEIVER: X X R X SXX SXX SXX SXX SCATTERING COEFFICIENT S XX 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 5

$y $x POLARISATION ELLIPSE r Ezt (, ) $z r E REAL ELECTRIC FIELD VECTOR ( z,t) E = E E x y z = E = E = x y cos cos ( ωt kz δ ) x ( ωt kz δ ) y 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 6

$y $x POLARISATION ELLIPSE r Ezt (, ) $y r Ez ( t), $x z $z THE REAL ELECTRIC FIELD VECTOR MOVES IN TIME ALONG AN ELLIPSE E E x x E E x x E E y y cos y ( δ ) + = sin ( δ ) 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 7 E E y With: δ = δ y δ x

$y $y r Ezt (, = ) $x A φ α $,$ zn φ τ $x φ : ORIENTATION ANGLE A : WAVE AMPLITUDE π π φ α : ABSOLUTE PHASE τ : ELLIPTICITY ANGLE π τ 4 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 8

POLARISATION HANDENESS ROTATION SENSE: LOOKING INTO THE DIRECTION OF THE WAVE PROPAGATION $y $x +τ τ $z ANTI-CLOCKWISE ROTATION CLOCKWISE ROTATION LEFT HANDED POLARISATION RIGHT HANDED POLARISATION ELLIPTICITY ANGLE : τ > π π τ 4 4 ELLIPTICITY ANGLE : τ < 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 9

HORIZONTAL POLARISATION STATE $y $z r Ezt (, ) $x H JONES VECTOR 1 = φ = τ = VERTICAL POLARISATION STATE $y $z r Ezt (, ) $x V = 1 π φ = τ = LEFT CIRCULAR POLARISATION STATE $y $z r E( z, t) $x 1 1 LC = j π π φ + π τ = + 4 RIGHT CIRCULAR POLARISATION STATE $y $z r E( z, t) $x 1 1 RC = j π π φ + π τ = 4 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 1

R X X X T T R Y A X A Y X X X X R X S XX S XX S XX S XX R Y TRANSMITTER: RECEIVERS: X X & Y S YX S YX S YX S YX JONES VECTORS 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 11 E S = WAVE POLARIMETRY S S XX YX

R X X Y T T R Y A X A Y X Y X Y R X S XX S XY S XX S XY R Y TRANSMITTER: RECEIVERS: X & Y X & Y S YX S YY S YX S YY SINCLAIR MATRICES 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 1 [ S] = S S XX YX SCATTERING POLARIMETRY S S XY YY

POLARIMETRIC AIRBORNE SAR SENSORS AES1 InterMap Technologies (D) GulfStream Commander X-Band (HH), P-Band (Quad) AIRSAR NASA / JPL (USA) DC8 P, L, C-Band (Quad) AuSAR - INGARA D.S.T.O (Aus) DC3 (97) KingAir 35 () Beach 19C X-Band (Quad) DOSAR EADS / Dornier GmbH (D) DO 8 (89), C16 (98), G () S, C, X-Band (Quad), Ka-Band (VV) ESAR DLR (D) DO 8 P, L, S-Band (Quad) C, X-Band (Sngl) EMISAR DCRS (DK) G3 Aircraft L, C-Band (Quad) MEMPHIS / AER II-PAMIR FGAN (D) Transal C16 Ka, W-Band (Quad) / X-Band (Quad) STORM UVSQ / CETP (F) Merlin IV C-Band (Quad) PHARUS TNO - FEL (NL) CESSNA Citation II C-Band (Quad) PISAR NASDA / CRL (J) GulfStream L, X-Band (Quad) RAMSES ONERA (F) Transal C16 P, L, S, C, X, Ku, Ka, W-Band (Quad) SAR58 Environnement Canada (CA) Convair CV-58 C, X-Band (Quad) 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 13

POLARIMETRIC SPACEBORNE SAR SENSORS SIR-C NASA / JPL (USA) April 1994 (1 days) October 1994 (1 days) L, C-Band (Quad) ENVISAT / ASAR ESA (EU) C-Band (Sngl / Twin) ALOS / PALSAR JAXA (J) January 6 L-Band (Sngl / Twin / Quad) TerraSAR-X DLR / EADS-ASTRIUM / InfoTerra GmbH June 7 X-Band (Sngl / Twin / Quad?) RADARSAT CSA / MDA (CA) 7 C-Band (Quad) 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 14

ESAR DO 8 P, L, S-Band (Quad) C, X-Band (Sngl) P-Band Experimental Synthetic Aperture Radar System X-Band L-Band C-Band Courtesy of 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 15

ALLING P-Band C-Band L-Band Deutsches Zentrum für Luft- und Raumfahrt Institut für Hochfrequenztechnik und Radarsysteme Google Earth 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 16

ALLING Tx Rx Tx Rx Tx Rx HH db HV db VV db -3dB -15dB db 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 17

Google Earth HH HV VV 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 18

H V POLARIMETRIC DESCRIPTORS [S] SINCLAIR Matrix S S HH HV [ S] = VH S S VV TRANSMITTER: RECEIVERS: H & V H & V k [T] Target Vector 3x3 COHERENCY Matrix 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 19

BACKSCATTERING MATRIX or SINCLAIR MATRIX RECIPROCITY THEOREM S = BSA XY S BSA YX E E s X s Y = e r jkr S S XX XY S S XY YY E E i X i Y DEFINED IN THE LOCAL COORDINATES SYSTEM [S] IS INDEPENDENT OF THE POLARISATION STATE OF THE INCIDENCE WAVE [S] IS DEPENDENT ON THE FREQUENCY AND THE GEOMETRICAL AND ELECTRICAL PROPERTIES OF THE SCATTERER TOTAL SCATTERED POWER ([ S] ) = Trace [ S][ S] ( T* ) = S + S S Span + 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER XX XY YY

S S VECTORIZATION OF [S] S HH HV [ S] = k = V ([ S] ) = Trace( [ S][ ψ ]) HV S VV SET OF x COMPLEX MATRICES FROM THE PAULI MATRICES GROUP 1 [ ] ψ P = 1, 1 1, 1 1 1 TARGET VECTOR 1 k = S + S S S S [ ] HH VV HH VV HV FROBENIUS NORM = SPAN [S] ( ) ([ ]) [ ][ ] T* * HH HV VV k = k k = span S = Trace S S = S + S + S 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 1 T

TARGET VECTOR k 1 k = S + S S S S [ ] HH VV HH VV HV T COHERENCY MATRIX [T] [ T] * T = k k = A C jd H + jg C + jd B + B E+ jf H jg E jf B B HERMITIAN MATRIX - RANK 1 A, B+B, B-B : HUYNEN TARGET GENERATORS [T] is closer related to Physical and Geometrical Properties of the Scattering Process, and thus allows a better and direct physical interpretation 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER

TARGET GENERATORS PHYSICAL INTERPRETATION SINGLE BOUNCE SCATTERING (ROUGH SURFACE) DOUBLE BOUNCE SCATTERING VOLUME SCATTERING T + 11 = A = SHH SVV T = 33 = B B SHV T = B + B = SHH SVV 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 3

ALLING HH+VV db HV db HH-VV db -3dB -15dB db 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 4

Google Earth HH+VV HV HH-VV T 11 =A T 33 =B -B T =B +B 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 5

ELLIPTICAL BASIS TRANSFORMATION [ S ] ( B,B ) U( A,A ) a( B,B ) SINCLAIR MATRIX [ ] T [ S ][ ] ( A,A ) U( A,A ) a( B, ) = B CON-SIMILARITY TRANSFORMATION [ U ] ( A,A ) a( B, ) B [ T ] ( B,B ) U 3( A,A ) a( B,B ) U() SPECIAL UNITARY ELLIPTICAL BASIS TRANSFORMATION MATRIX COHERENCY MATRIX [ ][ ][ ] T 1 ( A,A ) U 3( A,A ) ( B,B ) = a SIMILARITY TRANSFORMATION [ U ] 3 ( A,A ) a( B, ) B U(3) SPECIAL UNITARY ELLIPTICAL BASIS TRANSFORMATION MATRIX 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 6

ELLIPTICAL BASIS TRANSFORMATION [ U] = cos sin SPECIAL UNITARY SU() GROUP jα ( φ ) sin( φ ) cos( τ ) j sin( τ ) e ( ) ( ) ( ) ( ) jα φ cos φ j sin τ cos τ e [ U ( φ )] [ U ( τ )] [ ( α )] U 1 cos ( ) ( ) ( ) ( α ) ( ) ( α ) cos τ j sin τ cos α j sin ( φ ) sin( φ ) 1 j sin α cos ( φ ) cos( φ ) ( ) ( ) j sin τ cos τ [U 3 (φ)] [U 3 (τ)] [U 3 (α)] sin ( φ τ, α ) SPECIAL UNITARY SU(3) GROUP, POLARIZATION ELLIPSE PARAMETERS 1 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 7

ELLIPTICAL BASIS TRANSFORMATION $y $x $z Pauli Color Coding (H,V) Pauli Color Coding (+45,-45) Ernst LÜNEBURG (PIERS95 - Pasadena) Pauli Color Coding (L,R) 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 8

POLARIMETRIC TARGET DIMENSION POLARIMETRIC GOLDEN NUMBER 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 9

S S XX XY [ S] = YX S S YY 5 DEGREES OF FREEDOM S φ XX, XY XX S XY, φ, S YY YY XX COHERENCY MATRIX [T] 9 HUYNEN REAL PARAMETERS (A, B, B, C, D, E, F, G, H) TARGET MONOSTATIC POLARIMETRIC «DIMENSION» = 5 9-5 = 4 TARGET EQUATIONS 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 3

[ T ] PURE TARGET MONOSTATIC CASE = k k *T A = C + jd H jg C jd B E + B jf H + jg E + jf B B 3x3 HERMITIAN MATRIX - RANK 1 A C H ( B + B) C D = A ( B B) A DG ( B B) EH GF = D( B B) A F CG DH = G( B + B) ( B + B) CE DF = E + CH 9 PRINCIPAL MINORS = = F 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 31 B B G E H = = + FH GE = + FC ED =

S φ XX, XY XX S XY, φ, S YY YY XX S S XX XY [ S] = 5 DEGREES OF FREEDOM COHERENCY MATRIX [T] YX S S YY 9 HUYNEN REAL PARAMETERS (A, B, B, C, D, E, F, G, H) TARGET MONOSTATIC POLARIMETRIC «DIMENSION» = 5 9-5 = 4 TARGET EQUATIONS A A ( B + B) ( B B) A E A F = C = G + D + H = CH DG = CG + DH 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 3

POLARIMETRIC REMOTE SENSING POLARIMETRIC SAR DATA SET(S) POLSAR - POLINSAR DATA PROCESSING QUALITATIVE ANALYSIS TWO-STEP INVERSION PROCEDURE POLARIMETRIC DESCRIPTORS EXTRACTION BIO and GEO PHYSICAL PARAMETERS MODEL-BASED PHYSICAL PARAMETER INVERSION QUANTITATIVE ANALYSIS 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 33

YY YX XY XX POL-SAR PROCESSING PHENOMENOLOGIC QUALITATIVE ANALYSIS POLARIMETRIC SPECKLE FILTERING POLARIMETRIC TARGET DECOMPOSITION POLARIMETRIC CLASSIFICATION MONO/DUAL CHANNELS 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 34

YY YX XY XX POL-SAR PROCESSING PHENOMENOLOGIC QUALITATIVE ANALYSIS POLARIMETRIC SPECKLE FILTERING POLARIMETRIC TARGET DECOMPOSITION POLARIMETRIC CLASSIFICATION MONO/DUAL CHANNELS 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 35

SPECKLE FILTERING SPECKLE PHENOMENON DISTORTION OF THE INTERPRETATION SPECKLE FILTERING HOMOGENEOUS AREA HETEROGENEOUS AREA SPECKLE REDUCTION (RADIOMETRIC RESOLUTION) DETAILS PRESERVATION (SPATIAL RESOLUTION) 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 36

SPECKLE FILTERING SPECKLE FILTER AVERAGING DATA [ ] T = *T kk SECOND ORDER STATISTICS COHERENCY MATRICES 1 N N [ T ] = i= 1 *T k i k i SMOOTHING AVERAGING CONCEPT OF THE DISTRIBUTED TARGET 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 37

TARGET DECOMPOSITIONS PURE TARGET COHERENCY MATRIX [T] POLARIMETRIC DISTRIBUTED TARGET «DIMENSION»= 5 9 REAL DEPENDANT HUYNEN PARAMETERS (A,B,B,C,D,E,F,G,H) 9-5 = 4 TARGET EQUATIONS A A ( B + B) ( B B) A E A F = C = G + H 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 38 + D = CH DG = CG + DH

TARGET DECOMPOSITIONS DISTRIBUTED TARGET COHERENCY MATRIX <[T]> POLARIMETRIC DISTRIBUTED TARGET «DIMENSION»= 9 9 REAL INDEPENDANT HUYNEN PARAMETERS (<A>,<B>,<B>,<C>,<D>,<E>,<F>,<G>,<H>) 9 TARGET INEQUATIONS ( ) ( ) ( ) ( ) ( ) ( ) A B + B C + D H B + B C E + D F A B B G + H G B + B C F D E A E C H D G C B B H E + F G A F C G + D H D B B F H G E B B + E + F 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 39

TARGET DECOMPOSITIONS [ S ] 1 [ T ] 1 [ S ] [ T ] [ S ] 3 [ T ] 3 [ S ] N [ T ] N DECOMPOSITION THEOREM 1 N i = N i= 1 [ T ] = [ ] [ T ] T i DISTRIBUTED TARGET or AVERAGED TARGET MEAN TARGET 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 4

YY YX XY XX POL-SAR PROCESSING PHENOMENOLOGIC QUALITATIVE ANALYSIS POLARIMETRIC SPECKLE FILTERING POLARIMETRIC TARGET DECOMPOSITION POLARIMETRIC CLASSIFICATION MONO/DUAL CHANNELS 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 41

[ S ] COHERENT DECOMPOSITION [ T ] [ C ] AZIMUTHAL SYMMETRY E. KROGAGER (199) W.L. CAMERON (199) EIGENVECTORS BASED DECOMPOSITION S.R. CLOUDE (1985) MODEL BASED DECOMPOSITION A.J. FREEMAN S.L. DURDEN (199) Y. YAMAGUSHI (5) [ K ] TARGET DICHOTOMY W.A. HOLM (1988) EIGENVECTORS / EIGENVALUES ANALYSIS & MODEL BASED DECOMPOSITION J.J. VAN ZYL (199) J.R. HUYNEN (197) R.M. BARNES (1988) EIGENVECTORS / EIGENVALUES ANALYSIS ENTROPY / ANISOTROPY / ALPHA S.R. CLOUDE - E. POTTIER (1996-1997) 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 4

THE H / A / α POLARIMETRIC TARGET DECOMPOSITION THEOREM S.R. CLOUDE - E. POTTIER (1995-1996) 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 43

λ1 1 T = U U = u u u 1 3 λ u u u λ3 [ ] [ 3][ Σ][ 3] H / A / α TARGET VECTOR LOCAL ESTIMATE OF THE COHERENCY MATRIX DECOMPOSITION 1 k = S + S S S S EIGENVECTORS / EIGENVALUES ANALYSIS ORTHOGONAL EIGENVECTORS [ XX YY XX YY XY ] 1 N 1 N N N i= 1 i= 1 * [ T] = ki k T i = [ Ti ] 1 3 REAL EIGENVALUES λ > λ > λ 1 3 P λ i i = 3 λ k k= 1 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 44 T * T

H / A / α DECOMPOSITION [ U 3 ] = PARAMETERISATION OF THE SU(3) UNITARY MATRIX cos( α 1) cos( α ) cos( α 3) j sin( )cos( )e 1 j α sin( )cos( )e sin( )cos( )e 1 β1 α β α 3 β3 j sin( 1)sin ( 1 )e 1 j α β sin( α ) sin ( β)e sin( α 3)sin( β3)e δ δ jδ3 γ γ jγ 3 3 ROLL INVARIANT PARAMETERS ENTROPY 3 H = Pi log 3( Pi ) i= 1 α PARAMETER α = P α α + 1 1 + P P3 α 3 ANISOTROPY A = λ λ3 λ + λ 3 S.R. CLOUDE - E. POTTIER (1995-1996) 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 45

H / A / α DECOMPOSITION λ 1 1 T = U U = u u u 3 3 u u u 1 3 λ λ 3 [ ] [ ][ Σ ][ ] ORTHOGONAL EIGENVECTORS REAL EIGENVALUES λ 1 > λ > λ 3 1 3 * T PARAMETERISATION OF THE SU(3) UNITARY MATRIX [ U 3 ] = cos( α 1) cos( α ) cos( α 3) j sin( )cos( )e 1 j α sin( )cos( )e sin( )cos( )e 1 β1 α β α 3 β3 j sin( 1)sin ( 1 )e 1 j α β sin( α ) sin ( β)e sin( α 3)sin( β3)e δ δ jδ3 γ γ jγ 3 TARGET 1 TARGET TARGET 3 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 46

H / A / α DECOMPOSITION ROLL INVARIANCE PROPERTY ORIENTED (θ ) COHERENCY MATRIX SU(3) UNITARY ROTATION MATRIX (θ ) [ ( )] = ( ) [ ] [ ] [ ( )] T θ U θ T U θ R R 1 1 U R ( θ ) = cosθ sinθ sinθ cos θ [ ] EIGENVECTORS / EIGENVALUES ANALYSIS [ T ( θ) ] = [ U ( θ) ][ Σ ] U ( θ) 3 3 [ ] 1 EIGENVALUES λ 1 λ λ 3 : ROLL INVARIANT PROBABILITIES P 1 P P 3 : ROLL INVARIANT 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 47

H / A / α DECOMPOSITION EIGENVECTORS UNITARY MATRIX [ ( θ) ] = ( θ) [ ][ ] U U U 3 R 3 PARAMETERIZATION OF THE UNITARY MATRIX cos( α 1) cos( α ) cos( α 3) U 3 = j sin( )cos( )e 1 j α1 β1 sin( α)cos( β )e sin( α 3)cos( β 3)e j sin( 1)sin ( 1 )e 1 j α β sin( α) sin ( β )e sin( α 3)sin( β 3)e [ ] δ δ jδ 3 γ γ jγ 3 α = P α + P α + P α 1 1 3 3 : ROLL INVARIANT PHYSICAL INTERPRETATION 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 48

H / A / α α = P α + P α + P α DECOMPOSITION 1 1 3 3 : ROLL INVARIANT PHYSICAL INTERPRETATION SINGLE BOUNCE SCATTERING (ROUGH SURFACE) DOUBLE BOUNCE SCATTERING VOLUME SCATTERING a a b ν a α a a a b ε a π α a a >> b ε ν π α a 4 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 49

α PARAMETER HH+VV HV HH-VV T 11 =A T 33 =B -B T =B +B 45 9 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 5

H / A / α DECOMPOSITION EIGENVALUES λ 1 λ λ 3 : ROLL INVARIANT PROBABILITIES P 1 P P 3 : ROLL INVARIANT ENTROPY (DEGREE OF RANDOMNESS STATISTICAL DISORDER) 3 H= Pi log 3( Pi) i= 1 PURE TARGET λ 1 =SPAN λ = λ 3 = H = DISTRIBUTED TARGET λ 1 = λ = λ 3 = SPAN / 3 H = 1 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 51

ENTROPY (H) HH+VV HV HH-VV T 11 =A T 33 =B -B T =B +B.5 1. 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 5

SEGMENTATION OF THE H / α SPACE 9 MULTIPLE SCATTERING VOLUME SCATTERING SURFACE SCATTERING Alpha (α) 8 7 6 5 4 3 DIPOLE 1 DIHEDRAL SCATTERER 4 7 BRAGG SURFACE FORESTRY DBLE BOUNCE 5 VEGETATION 8 SURFACE ROUGHNESS PROPAGATION EFFECTS 3 6 9 BRANCH / CROWN STRUCTURE CLOUD OF ANISOTROPIC NEEDLES NO FEASIBLE REGION 1..4.6.8 1 Entropy (H) LOW ENTROPY PERTURBATION OF 1st ORDER SCATTERING THEORIES DUE TO nd ORDER EVENTS MEDIUM ENTROPY HIGH ENTROPY DEGREE OF ARBITRARINESS (SCATTERING PROCESSES RANDOM NOISE 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 53

POLSAR DATA DISTRIBUTION IN THE H / α PLANE.5 1. H Alpha ( α ) 9 8 7 6 5 4 3 1..4.6.8 1 Entropy (H) 45 9 α 1 n 1 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 54

H - α classification HH+VV HV HH-VV T 11 =A T 33 =B -B T =B +B 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 55

H / A / α DECOMPOSITION DIFFICULT MECHANISM DISCRIMINATION WHEN : H >.7 ANISOTROPY (EIGENVALUES SPECTRUM) A = λ λ λ3 + λ 3 λ 1 λ λ 3 COMPLEMENTARY TO ENTROPY DISCRIMINATION WHEN H >.7 ROLL INVARIANT 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 56

H / A / α DECOMPOSITION 1. λ λ λ λ 3 1 1.4.4 A = 1..8.6.4.8 H =.9 1. 1..3.4...3.1..6.7.5..4.6.8 1. λ λ A =.54 1 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 57

ANISOTROPY (A) HH+VV HV HH-VV T 11 =A T 33 =B -B T =B +B.5 1. 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 58

(1-H)(1-A) H(1-A) 1 MECHANISM 3 MECHANISMS A(1-H) HA MECHANISMS MECHANISMS.5.5 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 59

H / A / α DECOMPOSITION H = ENTROPY 3 i= 1 P log i 3 ( P i ) α PARAMETER α = P α α + 1 1 + P P3 α 3 ANISOTROPY A = λ λ3 λ + λ 3 3 ROLL INVARIANT PARAMETERS I = α H A H( 1 A) ( 1 H ) A ( )( ) 1 H 1 A PHYSICAL SCATTERING MECHANISM TYPE OF SCATTERING PROCESS SEGMENTATION / CLASSIFICATION 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 6

YY YX XY XX POL-SAR PROCESSING PHENOMENOLOGIC QUALITATIVE ANALYSIS POLARIMETRIC SPECKLE FILTERING POLARIMETRIC TARGET DECOMPOSITION POLARIMETRIC CLASSIFICATION MONO/DUAL CHANNELS 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 61

Questions? 3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 6