Application of Bootstrap Techniques for the Estimation of Target Decomposition Parameters in RADAR Polarimetry

Size: px
Start display at page:

Download "Application of Bootstrap Techniques for the Estimation of Target Decomposition Parameters in RADAR Polarimetry"

Transcription

1 Application of Bootstrap Techniques for the Estimation of Target Decomposition Parameters in RADAR Polarimetry Samuel Foucher Research & Development Dept Computer Research Institute of Montreal Montreal, Canada Grégory Farage, Goze B. Bénié Geography Dept. University of Sherbrooke Sherbrooke, Canada Abstract The precise estimation of the eigenvalues of PolSAR reponses is essential in the derivation of Target Decomposition parameters such as the Cloude-Pottier parameters (Entropy, Anisotropy and average angle Alpha). However, sample eigenvalues are strongly biased for small sample sizes leading to underestimated Entropy and overestimated Anisotropy values. In this paper, we investigate the use of a particular bootstrap technique for the correction of the bias. Bootstrap techniques are attractive because they can deal with very small sample sizes under minimal assumptions on the signal distribution. Here, we are using the jackknife bias correction technique which has been successfully applied to various signal processing problems. Monte-Carlo simulations reveal that the jackknife bias correction directly applied on the Cloude-Pottier parameters lead to better bias reduction. Keywords-bootstrap; jackknife; polarimetry; I. INTRODUCTION Target Decomposition (TD) parameters such as the Cloude- Pottier Parameters [3] and the Freeman-Durden parameters [4] are essential to the understanding of the scattering mechanisms of extended targets. Their computation is dependent upon the correct estimation of the sample covariance eigenvalues and eigenvectors. However, these parameter estimates are known to be sensitive to the number of looks involved in the estimation (i.e. the number of independent samples). For instance, for a small number of looks, the sample entropy has been shown to underestimate the true value [1]. Previous approaches for bias-correction in sample eigenvalues include an asymptotic analysis by Lopèz-Martinez et al. [2] based on a derivation of the sample eigenvalue probability density function (pdf). The resulting estimator (AQ- MLE) has been shown to significantly reduce the bias for the Anisotropy and the Entropy but not for alpha. However, an optimal bias correction on TD parameters would require an analytical derivation of the pdfs of the Cloude-Pottier parameters which remains an ongoing problem. Bootstrap techniques have been widely applied on statistical and signal processing problems [6][7]. For instance, Brich et al. [7] have applied bootstrap techniques for source detection in array processing. Bootstrap techniques are very attractive for two main reasons: 1) they are valid for a large class of Gaussian and non-gaussian signals; and 2) the finite sample, and not the asymptotic, distributions are estimated removing the requirement for large sample sizes. The bootstrap paradigm is based on a resampling technique. Reseampling can be performed with or without replacement [6][7][8]. The latter is referred to as jackknife. Among the different bootstrap techniques, the jackknife technique is computationally more efficient. We propose to apply the jackknife technique for the bias correction on eigenvalues of the covariance/coherency matrix and for the direct bias correction of the Cloude-Pottier parameters ( H / A/ α ). The paper is organized as follows. In section II, some background on bootstrap techniques is provided. In Section III, we perform Monte-Carlo simulations are performed on typical targets in order to assess the bias on the TD parameters. II. BACKGROUND ON BOOTSTRAP TECHNIQUES A. The Bootstrap Principle Let X = { X1, X2,..., X N } be a sample of N i.i.d. random variables drawn from a completely unspecified distribution F. Let θ be a statistic of interest of F such as the mean. Only an estimator ˆθ of θ is available to us such as the sample mean. If we want to infer θ from ˆθ, we need to find the distribution of ˆθ. The bootstrap is composed of the following steps: 1. Let x = { x1, x2,..., x N } be the observed realization of X (i.e. a particular experiment) from which we derive ˆθ. 2. Construct the sample probability distribution ˆF, putting mass 1/ N at each observation x i. 3. with fixed ˆF, draw a random sample x * (called a * * * bootstrap resample) of size N: X = x, X Fˆ i i i 4. Approximate the distribution of ˆθ by the distribution * * of ˆθ derived from the resample x. This work has been supported in part by the NSERC of Canada (Discovery Grant) and the MDEIE of the Gouvernement du Québec.

2 In short, the bootstrap procedure is observing the variability of ˆθ in our artificial resamples in order to assess the natural variability of θ without the requirement of a large N value [6][8]. The bootstrap does not work in all of the situations because the resamples are not generated by F but by ˆF that may have not taken into account some important features of F despite being a consistent estimator. In such a case, the jackknife has been shown to be more appropriate [8][7]. The jackknife is based on a resampling without replacement or subsampling and is less computer intensive when the subsamples are N-1 in size. A. Eigenvalue Estimation We wanted to estimate the bias reduction on sample eigenvalues of the coherency matrix. We fixed the true eigenvalues to {4,3,2}. The result of the Monte-Carlo simulation is provided in Fig. 2. We observed that the bias reduction from the AQ-MLE [2] and the jackknife are similar (a slightly better bias reduction was obtained for the third eigenvalue with the jackknife). III. APPLICATION IN POLARIMETRY A. General Approach Suppose we are given a sample of N target vectors x= { k,..., 1 k N }. The jackknife method is based on the sample delete-one-observation (i.e. a subsample) at a time [6][7], {,,...,,,..., } x = k k k k k (1) () i 1 2 i i+ 1 N from which we can derive the subsample coherency matrix given by N () i 1 H T = kjk j (2) N 1 j= 1, j i Suppose that s( x ) is a statistic of interest (e.g. the coherency matrix, sample eigenvalues, etc.). We want to estimate the bias on the estimate based on the entire sample Θˆ = s( x ). For each ith jackknife sample, we calculate the ith jackknife estimate, i.e., ˆ () i = s( () i ) Θ x (3) The jackknife estimate of the bias on ˆΘ is then N ˆ 1 ( 1) ˆ ˆ Θ = N Θ Θ (4) N i = 1 () i ( ) Bias JCK IV. MONTE-CARLO SIMULATION We followed an approach similar to Lee et al. [1]. We consider three types of targets taken from an AIRSAR image: grass, forest and urban. All the Monte-Carlo experiments are conducted with at least 20,000 runs using Matlab. Simulations are performed for sample sizes N ranging from 2 to 16 and then for 25,36,49,64 and 81. The eigendecompositions are performed using the SVD algorithm. Figure 2. Eigenvalue sample means (top) and standard deviation on the first eigenvalue (bottom). B. H / A/ α Bias Estimation We performed the bias correction using three different approaches: 1) the AQ-MLE correction [2]; 2) the jackknife bias correction on the sample eigenvalues (JACK-EIG); and 3) the jackknife bias correction on the sample parameters directly (JACK-PAR). The grass area (dominant surface scattering) has the following parameter values H / A/ α =0.17/0.1/21.6. The forest area (dominant volume scattering) has H / A/ α = 0.96/0.18/51.9. The urban area (dominant double bond) has H / A/ α =0.69/0.78/56.1. Figure 1. Areas in the AIRSAR image where sample coherency matrices were estimated for use in the Monte-Carlo simulation.

3 Figure 3. Monte-Carlo Entropy means for grass, forest and urban areas 1) Entropy: The result for the entropy for the 3 different target types is provided in Fig. 3. The reduction of the bias is substantial especially with the JACK-PAR procedure where the bias is correctly estimated for as low as 4-5 looks. Figure 4. Monte-Carlo anisotropy mean. 2) Anisotropy: The bias reduction on the Anisotropy (Fig. 4) provided by the JACK-EIG is superior to the AQ-MLE as a results of a better bias reduction on the third eigenvalue (see Fig. 2). However, the bias reduction for the Urban area appears to be less stable as compared to the AQ-MLE particularly in respect to the JACK-PAR.

4 Figure 5. Monte-Carlo angle alpha mean. 3) Average alpha angle: The result for the average angle alpha for the 3 targets is provided in Fig. 5. We observe that bias correction of the eigenvalues (AQ-MLE and JACK-EIG) does not lead to an accurate correction for the average angle because of the effect of the eigenvectors. However, the direct estimation of the bias on α (JACK-PAR) appears to have reduced bias especially for the grass target. Figure 6. Monte-Carlo standard deviations obseved for the grass target. 4) Variance: A second important quality for any estimator is its variance. We observe that the standard deviation is increasing when bias correction techniques are applied especially for the Anisotropy. The JACK-PAR leads to greater estimator variances.

5 V. RESULTS ON IMAGES In Fig. 7, we exhibit the Entropy images calculated on an AIRSAR/JPL image based on a 3x3 boxcar filter. We can appreciate in Fig. 7.c the effect of the jackknife bias correction where values for the Entropy are corrected upwardly, in particular, on forest areas. a) b) compared to a bias correction only on the eigenvalues (JACK- EIG): The bias correction on the Entropy parameter produces very good results especially for small number of looks. Correction on the average angle alpha parameter appears to surpass the AQ-MLE. The performance of the jackknife bias correction does not seem to be dependent upon the type of target. There is a fairly large body of literature covering the subject of bootstrapping and we have not yet begun to explore its potential for PolSAR applications. The preliminary results observed here are encouraging and lead to the possibility of formulating a simple bias correction technique for small number of looks. Future work will focus on the bootstrapping of eigenvectors, which remains a difficult problem, as well as the evaluation of resampling on other TD parameters (e.g. the Freeman-Durden parameters [4]). Additionally, the effect of correlation between samples has not been investigated. ACKNOWLEDGMENT This work has been supported in part by the NSERC of Canada (Discovery Grant) and the MDEIE of the Gouvernement du Québec. The authors wish to thank Lisa Hollinger and Elaine Rosenberg for their linguistic expertise. c) Figure 7. AIRSAR image of the San Francisco Bay: a) color composite; b) Entropy estimated using a 3x3 boxcar filter; c) Same as b) but with a jackknife bias correction. VI. CONCLUSION This paper has explored the use of a particular bootstrap technique, known as the jackknife. Two approaches were evaluated: 1) the bias correction of the eigenvalues; and 2) the bias correction of the H / A/ α parameters. Based on the results of Monte-Carlo experiments, we were able to make the following observations: The jackknife technique is less computer intensive and easier to implement than a resampling with replacement. The bootstrap on eigenvalues (JACK-EIG) gives a similar bias correction to the AQ-MLE. The use of a jackknife bias correction directly on the TD parameters (JACK-PAR) produces superior results as REFERENCES [1] J.-S. Lee, T. L. Ainsworth, and C. Lopez-Martinez, Monte Carlo Evaluation of Multi-Look Effect on Entropy/Alpha/ Anisotropy Parameters of Polarimetric Target Decomposition, IGARSS'2006. [2] C. Lopez-Martinez, E. Pottier, and S. R. Cloude, Statistical Assessment of Eigenvector-based Target decomposition Theorems in Radar Polarimetry IEEE Trans. Geosci. Remote Sens., vol. 40, no. 4, Apr. 2003, pp [3] S. R. Cloude, and E. Pottier, A Review of Target Decomposition Theorems in Radar Polarimetry, IEEE Trans. Geosci. Remote Sens., vol. 34, no. 2, pp , March [4] A. Freeman and S. L. Durden, A Three Component Scattering Model for Polarimetric SAR Data, IEEE Trans. Geosci. Remote Sens., vol. 33, no. 3, pp , May [5] R. Touzi, Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 1, Jan. 2007, pp [6] A. Zoubir and B. Boashash, The Bootstrap and its Application in Signal Processing, IEEE Signal Processing Mag., pp , January [7] R. F. Brcich, A. M. Zoubir, and P. Pelin, Detection of Sources using Bootstrap Techniques, IEEE Trans. Signal Process., vol. 50, no 2, Date: Feb 2002, pp [8] D. N Politis, Computer-Intensive Methods in Statistical Analysis, IEEE Signal Processing Magazine, 1998, pp

Evaluation and Bias Removal of Multi-Look Effect on Entropy/Alpha /Anisotropy (H/

Evaluation and Bias Removal of Multi-Look Effect on Entropy/Alpha /Anisotropy (H/ POLINSAR 2009 WORKSHOP 26-29 January 2009 ESA-ESRIN, Frascati (ROME), Italy Evaluation and Bias Removal of Multi-Look Effect on Entropy/Alpha /Anisotropy (H/ (H/α/A) Jong-Sen Lee*, Thomas Ainsworth Naval

More information

A New Model-Based Scattering Power Decomposition for Polarimetric SAR and Its Application in Analyzing Post-Tsunami Effects

A New Model-Based Scattering Power Decomposition for Polarimetric SAR and Its Application in Analyzing Post-Tsunami Effects A New Model-Based Scattering Power Decomposition for Polarimetric SAR and Its Application in Analyzing Post-Tsunami Effects Yi Cui, Yoshio Yamaguchi Niigata University, Japan Background (1/5) POLSAR data

More information

SAN FRANCISCO BAY. L-band 1988 AIRSAR. DC8 P, L, C-Band (Quad) Microwaves and Radar Institute, Wolfgang Keydel

SAN FRANCISCO BAY. L-band 1988 AIRSAR. DC8 P, L, C-Band (Quad) Microwaves and Radar Institute, Wolfgang Keydel SAN FRANCISCO BAY L-band 1988 AIRSAR DC8 P, L, C-Band (Quad) TARGET GENERATORS HH+VV T11=2A0 HV T33=B0-B HH-VV T22=B0+B TARGET GENERATORS Sinclair Color Coding HH HV VV Pauli Color Coding HH+VV T11=2A0

More information

General Four-Component Scattering Power Decomposition with Unitary Transformation of Coherency Matrix

General Four-Component Scattering Power Decomposition with Unitary Transformation of Coherency Matrix 1 General Four-Component Scattering Power Decomposition with Unitary Transformation of Coherency Matrix Gulab Singh, Member, IEEE, Yoshio Yamaguchi, Fellow, IEEE and Sang-Eun Park, Member, IEEE Abstract

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part III: Parametric Bootstrap Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD)

More information

A Multi-component Decomposition Method for Polarimetric SAR Data

A Multi-component Decomposition Method for Polarimetric SAR Data Chinese Journal of Electronics Vol.26, No.1, Jan. 2017 A Multi-component Decomposition Method for Polarimetric SAR Data WEI Jujie 1, ZHAO Zheng 1, YU Xiaoping 2 and LU Lijun 1 (1. Chinese Academy of Surveying

More information

New Simple Decomposition Technique for Polarimetric SAR Images

New Simple Decomposition Technique for Polarimetric SAR Images Korean Journal of Remote Sensing, Vol.26, No.1, 2010, pp.1~7 New Simple Decomposition Technique for Polarimetric SAR Images Kyung-Yup Lee and Yisok Oh Department of Electronic Information and Communication

More information

POLARIMETRY-BASED LAND COVER CLASSIFICATION WITH SENTINEL-1 DATA

POLARIMETRY-BASED LAND COVER CLASSIFICATION WITH SENTINEL-1 DATA POLARIMETRY-BASED LAND COVER CLASSIFICATION WITH SENTINEL-1 DATA Xavier Banqué (1), Juan M Lopez-Sanchez (2), Daniel Monells (1), David Ballester (2), Javier Duro (1), Fifame Koudogbo (1) (1) Altamira

More information

ADVANCED CONCEPTS POLSARPRO V3.0 LECTURE NOTES. Eric POTTIER (1), Jong-Sen LEE (2), Laurent FERRO-FAMIL (1)

ADVANCED CONCEPTS POLSARPRO V3.0 LECTURE NOTES. Eric POTTIER (1), Jong-Sen LEE (2), Laurent FERRO-FAMIL (1) ADVANCED CONCEPTS Eric POTTIER (), Jong-Sen LEE (), Laurent FERRO-FAMIL () () I.E.T.R UMR CNRS 664 University of Rennes Image and Remote Sensing Department, SAPHIR Team Campus de Beaulieu, Bat D, 63 Av

More information

Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery

Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery PUBLISHED IN IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO., NOVEMBER 9 Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery Stian Normann Anfinsen,

More information

STUDIES OF OCEAN S SCATTERING PROPERTIES BASED ON AIRSAR DATA

STUDIES OF OCEAN S SCATTERING PROPERTIES BASED ON AIRSAR DATA STUDIES OF OCEAN S SCATTERING PROPERTIES BASED ON AIRSAR DATA Wang Wenguang *, Sun Jinping, Wang Jun, Hu Rui School of EIE, Beihang University, Beijing 00083, China- wwenguang@ee.buaa.edu.cn KEY WORDS:

More information

On the use of Matrix Information Geometry for Polarimetric SAR Image Classification

On the use of Matrix Information Geometry for Polarimetric SAR Image Classification On the use of Matrix Information Geometry for Polarimetric SAR Image Classification Pierre Formont 1,2,Jean-PhilippeOvarlez 1,andFrédéric Pascal 2 1 French Aerospace Lab, ONERA DEMR/TSI, France 2 E3S-SONDRA,

More information

A8824: Statistics Notes David Weinberg, Astronomy 8824: Statistics Notes 6 Estimating Errors From Data

A8824: Statistics Notes David Weinberg, Astronomy 8824: Statistics Notes 6 Estimating Errors From Data Where does the error bar go? Astronomy 8824: Statistics otes 6 Estimating Errors From Data Suppose you measure the average depression of flux in a quasar caused by absorption from the Lyman-alpha forest.

More information

Study and Applications of POLSAR Data Time-Frequency Correlation Properties

Study and Applications of POLSAR Data Time-Frequency Correlation Properties Study and Applications of POLSAR Data Time-Frequency Correlation Properties L. Ferro-Famil 1, A. Reigber 2 and E. Pottier 1 1 University of Rennes 1, Institute of Electronics and Telecommunications of

More information

Advanced SAR 2 Polarimetry

Advanced SAR 2 Polarimetry Advanced SAR Polarimetry Eric POTTIER Monday 3 September, Lecture D1Lb5-3/9/7 Lecture D1Lb5- Advanced SAR - Polarimetry Eric POTTIER 1 $y RADAR POLARIMETRY $x r Ezt (, ) $z Radar Polarimetry (Polar : polarisation

More information

DUAL FREQUENCY POLARIMETRIC SAR DATA CLASSIFICATION AND ANALYSIS

DUAL FREQUENCY POLARIMETRIC SAR DATA CLASSIFICATION AND ANALYSIS Progress In Electromagnetics Research, PIER 31, 247 272, 2001 DUAL FREQUENCY POLARIMETRIC SAR DATA CLASSIFICATION AND ANALYSIS L. Ferro-Famil Ecole Polytechnique de l Université de Nantes IRESTE, Laboratoire

More information

A Family of Distribution-Entropy MAP Speckle Filters for Polarimetric SAR Data, and for Single or Multi-Channel Detected and Complex SAR Images

A Family of Distribution-Entropy MAP Speckle Filters for Polarimetric SAR Data, and for Single or Multi-Channel Detected and Complex SAR Images A Family of Distribution-Entropy MAP Specle Filters for Polarimetric SAR Data, and for Single or Multi-Channel Detected and Complex SAR Images Edmond NEZRY and Francis YAKAM-SIMEN PRIVATEERS N.V., Private

More information

A better way to bootstrap pairs

A better way to bootstrap pairs A better way to bootstrap pairs Emmanuel Flachaire GREQAM - Université de la Méditerranée CORE - Université Catholique de Louvain April 999 Abstract In this paper we are interested in heteroskedastic regression

More information

SIMPLIFIED MAP DESPECKLING BASED ON LAPLACIAN-GAUSSIAN MODELING OF UNDECIMATED WAVELET COEFFICIENTS

SIMPLIFIED MAP DESPECKLING BASED ON LAPLACIAN-GAUSSIAN MODELING OF UNDECIMATED WAVELET COEFFICIENTS 9th European Signal Processing Conference (EUSIPCO 0) Barcelona, Spain, August 9 - September, 0 SIMPLIFIED MAP DESPECKLING BASED ON LAPLACIAN-GAUSSIAN MODELING OF UNDECIMATED WAVELET COEFFICIENTS Fabrizio

More information

THE OBJECTIVE of the incoherent target decomposition

THE OBJECTIVE of the incoherent target decomposition IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 1, JANUARY 2007 73 Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters Ridha Touzi, Member, IEEE Abstract The Kennaugh

More information

Comparison between Multitemporal and Polarimetric SAR Data for Land Cover Classification

Comparison between Multitemporal and Polarimetric SAR Data for Land Cover Classification Downloaded from orbit.dtu.dk on: Sep 19, 2018 Comparison between Multitemporal and Polarimetric SAR Data for Land Cover Classification Skriver, Henning Published in: Geoscience and Remote Sensing Symposium,

More information

EE/Ge 157 b. Week 2. Polarimetric Synthetic Aperture Radar (2)

EE/Ge 157 b. Week 2. Polarimetric Synthetic Aperture Radar (2) EE/Ge 157 b Week 2 Polarimetric Synthetic Aperture Radar (2) COORDINATE SYSTEMS All matrices and vectors shown in this package are measured using the backscatter alignment coordinate system. This system

More information

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap Patrick Breheny December 6 Patrick Breheny BST 764: Applied Statistical Modeling 1/21 The empirical distribution function Suppose X F, where F (x) = Pr(X x) is a distribution function, and we wish to estimate

More information

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model Thai Journal of Mathematics : 45 58 Special Issue: Annual Meeting in Mathematics 207 http://thaijmath.in.cmu.ac.th ISSN 686-0209 The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for

More information

Inferring biological dynamics Iterated filtering (IF)

Inferring biological dynamics Iterated filtering (IF) Inferring biological dynamics 101 3. Iterated filtering (IF) IF originated in 2006 [6]. For plug-and-play likelihood-based inference on POMP models, there are not many alternatives. Directly estimating

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures

Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures STIAN NORMANN ANFINSEN ROBERT JENSSEN TORBJØRN ELTOFT COMPUTATIONAL EARTH OBSERVATION AND MACHINE LEARNING LABORATORY

More information

Making a case for full-polarimetric radar remote sensing

Making a case for full-polarimetric radar remote sensing Making a case for full-polarimetric radar remote sensing Jeremy Nicoll Alaska Satellite Facility, University of Alaska Fairbanks 1 Polarization States of a Coherent Plane Wave electric field vector vertically

More information

Polarimetric Calibration of the Ingara Bistatic SAR

Polarimetric Calibration of the Ingara Bistatic SAR Polarimetric Calibration of the Ingara Bistatic SAR Alvin Goh, 1,2 Mark Preiss, 1 Nick Stacy, 1 Doug Gray 2 1. Imaging Radar Systems Group Defence Science and Technology Organisation 2. School of Electrical

More information

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling 140 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 2, FEBRUARY 2014 Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling Cheng Qian, Lei Huang, and H. C. So Abstract A novel pseudo-noise

More information

POLARIMETRIC SAR MODEL FOR SOIL MOISTURE ESTIMATION OVER VINEYARDS AT C-BAND

POLARIMETRIC SAR MODEL FOR SOIL MOISTURE ESTIMATION OVER VINEYARDS AT C-BAND Progress In Electromagnetics Research, Vol. 142, 639 665, 213 POLARIMETRIC SAR MODEL FOR SOIL MOISTURE ESTIMATION OVER VINEYARDS AT C-BAND J. David Ballester-Berman *, Fernando Vicente-Guijalba, and Juan

More information

COMPARISON OF GMM WITH SECOND-ORDER LEAST SQUARES ESTIMATION IN NONLINEAR MODELS. Abstract

COMPARISON OF GMM WITH SECOND-ORDER LEAST SQUARES ESTIMATION IN NONLINEAR MODELS. Abstract Far East J. Theo. Stat. 0() (006), 179-196 COMPARISON OF GMM WITH SECOND-ORDER LEAST SQUARES ESTIMATION IN NONLINEAR MODELS Department of Statistics University of Manitoba Winnipeg, Manitoba, Canada R3T

More information

POLARIMETRIC SPECKLE FILTERING

POLARIMETRIC SPECKLE FILTERING $y $x r Ezt (, ) $z POLARIMETRIC SPECKLE FILTERING E. Pottier, L. Ferro-Famil (/) SPECKLE FILTERING SPECKLE PHENOMENON E. Pottier, L. Ferro-Famil (/) SPECKLE FILTERING OBSERVATION POINT SURFACE ROUGHNESS

More information

Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures

Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures PIERS ONLINE, VOL. 4, NO. 5, 2008 536 Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures S. J. S. Sant Anna 1, 2, J. C. da S. Lacava 2, and D. Fernandes 2 1 Instituto

More information

The exact bootstrap method shown on the example of the mean and variance estimation

The exact bootstrap method shown on the example of the mean and variance estimation Comput Stat (2013) 28:1061 1077 DOI 10.1007/s00180-012-0350-0 ORIGINAL PAPER The exact bootstrap method shown on the example of the mean and variance estimation Joanna Kisielinska Received: 21 May 2011

More information

Nonparametric Methods II

Nonparametric Methods II Nonparametric Methods II Henry Horng-Shing Lu Institute of Statistics National Chiao Tung University hslu@stat.nctu.edu.tw http://tigpbp.iis.sinica.edu.tw/courses.htm 1 PART 3: Statistical Inference by

More information

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator by Emmanuel Flachaire Eurequa, University Paris I Panthéon-Sorbonne December 2001 Abstract Recent results of Cribari-Neto and Zarkos

More information

BUILDING HEIGHT ESTIMATION USING MULTIBASELINE L-BAND SAR DATA AND POLARIMETRIC WEIGHTED SUBSPACE FITTING METHODS

BUILDING HEIGHT ESTIMATION USING MULTIBASELINE L-BAND SAR DATA AND POLARIMETRIC WEIGHTED SUBSPACE FITTING METHODS BUILDING HEIGHT ESTIMATION USING MULTIBASELINE L-BAND SAR DATA AND POLARIMETRIC WEIGHTED SUBSPACE FITTING METHODS Yue Huang, Laurent Ferro-Famil University of Rennes 1, Institute of Telecommunication and

More information

Recursive Generalized Eigendecomposition for Independent Component Analysis

Recursive Generalized Eigendecomposition for Independent Component Analysis Recursive Generalized Eigendecomposition for Independent Component Analysis Umut Ozertem 1, Deniz Erdogmus 1,, ian Lan 1 CSEE Department, OGI, Oregon Health & Science University, Portland, OR, USA. {ozertemu,deniz}@csee.ogi.edu

More information

Characterizing Forecast Uncertainty Prediction Intervals. The estimated AR (and VAR) models generate point forecasts of y t+s, y ˆ

Characterizing Forecast Uncertainty Prediction Intervals. The estimated AR (and VAR) models generate point forecasts of y t+s, y ˆ Characterizing Forecast Uncertainty Prediction Intervals The estimated AR (and VAR) models generate point forecasts of y t+s, y ˆ t + s, t. Under our assumptions the point forecasts are asymtotically unbiased

More information

EBEM: An Entropy-based EM Algorithm for Gaussian Mixture Models

EBEM: An Entropy-based EM Algorithm for Gaussian Mixture Models EBEM: An Entropy-based EM Algorithm for Gaussian Mixture Models Antonio Peñalver Benavent, Francisco Escolano Ruiz and Juan M. Sáez Martínez Robot Vision Group Alicante University 03690 Alicante, Spain

More information

Polarimetry-based land cover classification with Sentinel-1 data

Polarimetry-based land cover classification with Sentinel-1 data Polarimetry-based land cover classification with Sentinel-1 data Banqué, Xavier (1); Lopez-Sanchez, Juan M (2); Monells, Daniel (1); Ballester, David (2); Duro, Javier (1); Koudogbo, Fifame (1) 1. Altamira-Information

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods Chapter 4 Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods 4.1 Introduction It is now explicable that ridge regression estimator (here we take ordinary ridge estimator (ORE)

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Unsupervised Wishart Classifications of Sea-Ice using Entropy, Alpha and Anisotropy decompositions

Unsupervised Wishart Classifications of Sea-Ice using Entropy, Alpha and Anisotropy decompositions Unsupervised Wishart Classifications of Sea-Ice using Entropy, Alpha and Anisotropy decompositions A. Rodrigues (1), D. Corr (1), K. Partington (2), E. Pottier (3), L. Ferro-Famil (3) (1) QinetiQ Ltd,

More information

A New Subspace Identification Method for Open and Closed Loop Data

A New Subspace Identification Method for Open and Closed Loop Data A New Subspace Identification Method for Open and Closed Loop Data Magnus Jansson July 2005 IR S3 SB 0524 IFAC World Congress 2005 ROYAL INSTITUTE OF TECHNOLOGY Department of Signals, Sensors & Systems

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations What are Monte Carlo Simulations and why ones them? Pseudo Random Number generators Creating a realization of a general PDF The Bootstrap approach A real life example: LOFAR simulations

More information

THE PYLA 2001 EXPERIMENT : EVALUATION OF POLARIMETRIC RADAR CAPABILITIES OVER A FORESTED AREA

THE PYLA 2001 EXPERIMENT : EVALUATION OF POLARIMETRIC RADAR CAPABILITIES OVER A FORESTED AREA THE PYLA 2001 EXPERIMENT : EVALUATION OF POLARIMETRIC RADAR CAPABILITIES OVER A FORESTED AREA M. Dechambre 1, S. Le Hégarat 1, S. Cavelier 1, P. Dreuillet 2, I. Champion 3 1 CETP IPSL (CNRS / Université

More information

MODEL ORDER ESTIMATION FOR ADAPTIVE RADAR CLUTTER CANCELLATION. Kelly Hall, 4 East Alumni Ave. Kingston, RI 02881

MODEL ORDER ESTIMATION FOR ADAPTIVE RADAR CLUTTER CANCELLATION. Kelly Hall, 4 East Alumni Ave. Kingston, RI 02881 MODEL ORDER ESTIMATION FOR ADAPTIVE RADAR CLUTTER CANCELLATION Muralidhar Rangaswamy 1, Steven Kay 2, Cuichun Xu 2, and Freeman C. Lin 3 1 Air Force Research Laboratory, Sensors Directorate, 80 Scott Drive,

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

Bootstrap Approach to Comparison of Alternative Methods of Parameter Estimation of a Simultaneous Equation Model

Bootstrap Approach to Comparison of Alternative Methods of Parameter Estimation of a Simultaneous Equation Model Bootstrap Approach to Comparison of Alternative Methods of Parameter Estimation of a Simultaneous Equation Model Olubusoye, O. E., J. O. Olaomi, and O. O. Odetunde Abstract A bootstrap simulation approach

More information

Bootstrapping, Randomization, 2B-PLS

Bootstrapping, Randomization, 2B-PLS Bootstrapping, Randomization, 2B-PLS Statistics, Tests, and Bootstrapping Statistic a measure that summarizes some feature of a set of data (e.g., mean, standard deviation, skew, coefficient of variation,

More information

Log-Cumulants of the Finite Mixture Model and Their Application to Statistical Analysis of Fully Polarimetric UAVSAR Data

Log-Cumulants of the Finite Mixture Model and Their Application to Statistical Analysis of Fully Polarimetric UAVSAR Data Log-Cumulants of the Finite Mixture Model and Their Application to Statistical Analysis of Fully Polarimetric UAVSAR Data Xinping Deng a, Jinsong Chen a, Hongzhong Li a, Pengpeng Han a, and Wen Yang b

More information

Intégration de connaissance experte

Intégration de connaissance experte Intégration de connaissance experte dans des systèmes de fusion d informationsd Florentin BUJOR, Gabriel VASILE, Lionel VALET Emmanuel TROUVÉ, Gilles MAURIS et Philippe BOLON emmanuel.trouve@univ-savoie.fr

More information

Double Bootstrap Confidence Intervals in the Two Stage DEA approach. Essex Business School University of Essex

Double Bootstrap Confidence Intervals in the Two Stage DEA approach. Essex Business School University of Essex Double Bootstrap Confidence Intervals in the Two Stage DEA approach D.K. Chronopoulos, C. Girardone and J.C. Nankervis Essex Business School University of Essex 1 Determinants of efficiency DEA can be

More information

Selection Criteria Based on Monte Carlo Simulation and Cross Validation in Mixed Models

Selection Criteria Based on Monte Carlo Simulation and Cross Validation in Mixed Models Selection Criteria Based on Monte Carlo Simulation and Cross Validation in Mixed Models Junfeng Shang Bowling Green State University, USA Abstract In the mixed modeling framework, Monte Carlo simulation

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

11. Bootstrap Methods

11. Bootstrap Methods 11. Bootstrap Methods c A. Colin Cameron & Pravin K. Trivedi 2006 These transparencies were prepared in 20043. They can be used as an adjunct to Chapter 11 of our subsequent book Microeconometrics: Methods

More information

Nonlinear State Estimation! Particle, Sigma-Points Filters!

Nonlinear State Estimation! Particle, Sigma-Points Filters! Nonlinear State Estimation! Particle, Sigma-Points Filters! Robert Stengel! Optimal Control and Estimation, MAE 546! Princeton University, 2017!! Particle filter!! Sigma-Points Unscented Kalman ) filter!!

More information

MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING. Kaitlyn Beaudet and Douglas Cochran

MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING. Kaitlyn Beaudet and Douglas Cochran MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING Kaitlyn Beaudet and Douglas Cochran School of Electrical, Computer and Energy Engineering Arizona State University, Tempe AZ 85287-576 USA ABSTRACT The problem

More information

Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna

Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna Kwan Hyeong Lee Dept. Electriacal Electronic & Communicaton, Daejin University, 1007 Ho Guk ro, Pochen,Gyeonggi,

More information

On the Accuracy of Bootstrap Confidence Intervals for Efficiency Levels in Stochastic Frontier Models with Panel Data

On the Accuracy of Bootstrap Confidence Intervals for Efficiency Levels in Stochastic Frontier Models with Panel Data On the Accuracy of Bootstrap Confidence Intervals for Efficiency Levels in Stochastic Frontier Models with Panel Data Myungsup Kim University of North Texas Yangseon Kim East-West Center Peter Schmidt

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Point and Interval Estimation for Gaussian Distribution, Based on Progressively Type-II Censored Samples

Point and Interval Estimation for Gaussian Distribution, Based on Progressively Type-II Censored Samples 90 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 1, MARCH 2003 Point and Interval Estimation for Gaussian Distribution, Based on Progressively Type-II Censored Samples N. Balakrishnan, N. Kannan, C. T.

More information

Supplemental material to accompany Preacher and Hayes (2008)

Supplemental material to accompany Preacher and Hayes (2008) Supplemental material to accompany Preacher and Hayes (2008) Kristopher J. Preacher University of Kansas Andrew F. Hayes The Ohio State University The multivariate delta method for deriving the asymptotic

More information

[POLS 8500] Review of Linear Algebra, Probability and Information Theory

[POLS 8500] Review of Linear Algebra, Probability and Information Theory [POLS 8500] Review of Linear Algebra, Probability and Information Theory Professor Jason Anastasopoulos ljanastas@uga.edu January 12, 2017 For today... Basic linear algebra. Basic probability. Programming

More information

Whitening and Coloring Transformations for Multivariate Gaussian Data. A Slecture for ECE 662 by Maliha Hossain

Whitening and Coloring Transformations for Multivariate Gaussian Data. A Slecture for ECE 662 by Maliha Hossain Whitening and Coloring Transformations for Multivariate Gaussian Data A Slecture for ECE 662 by Maliha Hossain Introduction This slecture discusses how to whiten data that is normally distributed. Data

More information

A note on multiple imputation for general purpose estimation

A note on multiple imputation for general purpose estimation A note on multiple imputation for general purpose estimation Shu Yang Jae Kwang Kim SSC meeting June 16, 2015 Shu Yang, Jae Kwang Kim Multiple Imputation June 16, 2015 1 / 32 Introduction Basic Setup Assume

More information

Bayesian Methods in Positioning Applications

Bayesian Methods in Positioning Applications Bayesian Methods in Positioning Applications Vedran Dizdarević v.dizdarevic@tugraz.at Graz University of Technology, Austria 24. May 2006 Bayesian Methods in Positioning Applications p.1/21 Outline Problem

More information

The comparative studies on reliability for Rayleigh models

The comparative studies on reliability for Rayleigh models Journal of the Korean Data & Information Science Society 018, 9, 533 545 http://dx.doi.org/10.7465/jkdi.018.9..533 한국데이터정보과학회지 The comparative studies on reliability for Rayleigh models Ji Eun Oh 1 Joong

More information

Some Theoretical Properties and Parameter Estimation for the Two-Sided Length Biased Inverse Gaussian Distribution

Some Theoretical Properties and Parameter Estimation for the Two-Sided Length Biased Inverse Gaussian Distribution Journal of Probability and Statistical Science 14(), 11-4, Aug 016 Some Theoretical Properties and Parameter Estimation for the Two-Sided Length Biased Inverse Gaussian Distribution Teerawat Simmachan

More information

Model Assisted Survey Sampling

Model Assisted Survey Sampling Carl-Erik Sarndal Jan Wretman Bengt Swensson Model Assisted Survey Sampling Springer Preface v PARTI Principles of Estimation for Finite Populations and Important Sampling Designs CHAPTER 1 Survey Sampling

More information

Better Bootstrap Confidence Intervals

Better Bootstrap Confidence Intervals by Bradley Efron University of Washington, Department of Statistics April 12, 2012 An example Suppose we wish to make inference on some parameter θ T (F ) (e.g. θ = E F X ), based on data We might suppose

More information

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM Tadeu N. Ferreira, Sergio L. Netto, and Paulo S. R. Diniz Electrical Engineering Program COPPE/DEL-Poli/Federal University of Rio de Janeiro P.O.

More information

Monte Carlo Study on the Successive Difference Replication Method for Non-Linear Statistics

Monte Carlo Study on the Successive Difference Replication Method for Non-Linear Statistics Monte Carlo Study on the Successive Difference Replication Method for Non-Linear Statistics Amang S. Sukasih, Mathematica Policy Research, Inc. Donsig Jang, Mathematica Policy Research, Inc. Amang S. Sukasih,

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Linear Algebra and Matrices

Linear Algebra and Matrices Linear Algebra and Matrices 4 Overview In this chapter we studying true matrix operations, not element operations as was done in earlier chapters. Working with MAT- LAB functions should now be fairly routine.

More information

Knowledge-based sea ice classification by polarimetric SAR

Knowledge-based sea ice classification by polarimetric SAR Downloaded from orbit.dtu.dk on: Dec 17, 217 Knowledge-based sea ice classification by polarimetric SAR Skriver, Henning; Dierking, Wolfgang Published in: IEEE International Geoscience Remote Sensing Symposium,

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Principal Component Analysis (PCA) of AIRS Data

Principal Component Analysis (PCA) of AIRS Data Principal Component Analysis (PCA) of AIRS Data Mitchell D. Goldberg 1, Lihang Zhou 2, Walter Wolf 2 and Chris Barnet 1 NOAA/NESDIS/Office of Research and Applications, Camp Springs, MD 1 QSS Group Inc.

More information

Archimer

Archimer Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site Ieee

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Learning Static Parameters in Stochastic Processes

Learning Static Parameters in Stochastic Processes Learning Static Parameters in Stochastic Processes Bharath Ramsundar December 14, 2012 1 Introduction Consider a Markovian stochastic process X T evolving (perhaps nonlinearly) over time variable T. We

More information

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Jeremy S. Conner and Dale E. Seborg Department of Chemical Engineering University of California, Santa Barbara, CA

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Aalborg Universitet Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Christensen, Mads Græsbøll; Nielsen, Jesper Kjær Published in: I E E E / S P Workshop

More information

Dry Snow Analysis in Alpine Regions using RADARSAT-2 Full Polarimetry Data. Comparison With In Situ Measurements

Dry Snow Analysis in Alpine Regions using RADARSAT-2 Full Polarimetry Data. Comparison With In Situ Measurements Dry Snow Analysis in Alpine Regions using RADARSAT-2 Full Polarimetry Data. Comparison With In Situ Measurements Jean-Pierre Dedieu, Nikola Besic, Gabriel Vasile, J. Mathieu, Yves Durand, F. Gottardi To

More information

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Intelligent Data Analysis and Probabilistic Inference Lecture

More information

Basic Sampling Methods

Basic Sampling Methods Basic Sampling Methods Sargur Srihari srihari@cedar.buffalo.edu 1 1. Motivation Topics Intractability in ML How sampling can help 2. Ancestral Sampling Using BNs 3. Transforming a Uniform Distribution

More information

Land Cover Feature recognition by fusion of PolSAR, PolInSAR and optical data

Land Cover Feature recognition by fusion of PolSAR, PolInSAR and optical data Land Cover Feature recognition by fusion of PolSAR, PolInSAR and optical data Shimoni, M., Borghys, D., Heremans, R., Milisavljević, N., Pernel, C. Derauw, D., Orban, A. PolInSAR Conference, ESRIN, 22-26

More information

PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS. Yngve Selén and Erik G. Larsson

PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS. Yngve Selén and Erik G. Larsson PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS Yngve Selén and Eri G Larsson Dept of Information Technology Uppsala University, PO Box 337 SE-71 Uppsala, Sweden email: yngveselen@ituuse

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

Section 8.1: Interval Estimation

Section 8.1: Interval Estimation Section 8.1: Interval Estimation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 8.1: Interval Estimation 1/ 35 Section

More information

A New Approach to Estimate Forest Parameters Using Dual-Baseline POL-InSAR Data

A New Approach to Estimate Forest Parameters Using Dual-Baseline POL-InSAR Data Jan 26-30, 2009 Frascati, Italy A New Approach to Estimate Forest Parameters Using Dual-Baseline POL-InSAR Data Lu Bai, Wen ong, Fang Cao, Yongsheng Zhou bailu8@gmail.com fcao@mail.ie.ac.cn National Key

More information

PUBLICATIONS. Radio Science. Impact of cross-polarization isolation on polarimetric target decomposition and target detection

PUBLICATIONS. Radio Science. Impact of cross-polarization isolation on polarimetric target decomposition and target detection PUBLICATIONS RESEARCH ARTICLE Key Points: Prior studies are on calibration; we evaluate its impact from users perspective Impact on polarimetric target decomposition is analyzed, and 25 db is concluded

More information

Online Appendix to Correcting Estimation Bias in Dynamic Term Structure Models

Online Appendix to Correcting Estimation Bias in Dynamic Term Structure Models Online Appendix to Correcting Estimation Bias in Dynamic Term Structure Models Michael D. Bauer, Glenn D. Rudebusch, Jing Cynthia Wu May 4, 2012 A Bootstrap bias correction The bootstrap has become a common

More information

EXTENDED GLRT DETECTORS OF CORRELATION AND SPHERICITY: THE UNDERSAMPLED REGIME. Xavier Mestre 1, Pascal Vallet 2

EXTENDED GLRT DETECTORS OF CORRELATION AND SPHERICITY: THE UNDERSAMPLED REGIME. Xavier Mestre 1, Pascal Vallet 2 EXTENDED GLRT DETECTORS OF CORRELATION AND SPHERICITY: THE UNDERSAMPLED REGIME Xavier Mestre, Pascal Vallet 2 Centre Tecnològic de Telecomunicacions de Catalunya, Castelldefels, Barcelona (Spain) 2 Institut

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information