Wir schaffen Wissen heute für morgen

Similar documents
Thermal Design of Power Electronic Circuits

Application Note. Paralleling of EconoPACK TM + Date: Page

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

I C P tot 138 W

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology

2 nd Generation thinq! TM SiC Schottky Diode

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

EconoPACK TM + A package with enhanced characteristics

Double Thyristor Module For Phase Control MT A2

EVERLIGHT ELECTRONICS CO.,LTD. Technical Data Sheet High Power LED 1W (Preliminary)

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

2 nd Generation thinq! TM SiC Schottky Diode

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IDB30E120. Fast Switching Emitter Controlled Diode. Product Summary V RRM 1200 V I F 30 A V F 1.65 V T jmax 150 C

IKW40N120T2 TrenchStop 2 nd Generation Series

SGP30N60HS SGW30N60HS

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TLF80511TF. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511TFV50 TLF80511TFV33. Rev. 1.

TrenchStop Series. P t o t 270 W

10 23, 24 21, 22 19, , 14

3 rd Generation thinq! TM SiC Schottky Diode

Transient thermal measurements and thermal equivalent circuit models

IDB30E60. Fast Switching EmCon Diode. Product Summary V RRM 600 V I F 30 A V F 1.5 V T jmax 175 C

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Six-Pack XPT IGBT MIXA30W1200TED. V CES = 1200 V I C25 = 43 A V CE(sat) = 1.8 V. Part name (Marking on product) MIXA30W1200TED

5-V Low Drop Fixed Voltage Regulator TLE 4275

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Surge non repetitive forward current I FSM 78 I FRM 47. P tot Operating and storage temperature T j, T stg

IGW15T120. TrenchStop Series

Converter - Brake - Inverter Module (CBI 1) Trench IGBT

TLE Data Sheet. Automotive Power. Low Dropout Fixed Voltage Regulator TLE42644G. Rev. 1.1,

5-V Low Drop Voltage Regulator TLE 4290

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Maximum Ratings Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit

SPP11N60C2, SPB11N60C2 SPA11N60C2. Cool MOS Power Transistor. Operating and storage temperature T j, T stg C.

Converter - Brake - Inverter Module (CBI 1) NPT IGBT

Six-Pack XPT IGBT MIXA80W1200TEH V CES I C25 = 1200 V. Part name (Marking on product) MIXA80W1200TEH

CM200EXS-24S. Chopper IGBT NX-Series Module 200 Amperes/1200 Volts

CoolMOS Power Transistor

Converter - Brake - Inverter Module (CBI 1) NPT IGBT

Silicon Carbide Schottky Diode IDM05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

PG-TO I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

IGW25T120. TrenchStop Series

Super Bright LEDs, Inc.

Blocking Maximum rated values 1) Parameter Symbol Conditions Value Unit. f = 50 Hz, t p = 10 ms, T vj = C f = 5 Hz, t p = 10 ms,

SiC. Silicon Carbide Diode. 650V SiC Schottky Diode IDL04G65C5. Rev. 2.0,

STARPOWER IGBT GD600SGK120C2S. General Description. Features. Typical Applications. Equivalent Circuit Schematic SEMICONDUCTOR

Normalized Transient Thermal Impedance (Z th ) Using T C Reference Point Under Chip For 600V and 1200V A, NF, NFH and S-Series IGBT Modules

EVERLIGHT ELECTRONICS CO.,LTD.

Final data. Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

D1 D2 D3 T1 T2 T3 5 D4 D5 D6 T4 T5 T6 7

SPP04N60C3, SPB04N60C3 SPA04N60C3. Cool MOS Power Transistor V T jmax 650 V. Final data

Soft Switching Series I C I F I FSM

CoolMOS TM Power Transistor

PASSIVE COMPONENTS FOR A 3D ENVIRONMENT

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

3-1. Heat Dissipation Design Method. Power Dissipation Loss Calculation Usage of The Cooler with Water Jacket 3-7 Flange Adapter Kit 3-10

Heat Sinks and Component Temperature Control

IDP45E60. Fast Switching Diode. Product Summary V RRM 600 V I F 45 A V F 1.5 V T jmax 175 C. Features 600V Emitter Controlled technology

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1.

Preliminary data P-TO Marking 11N60C3 11N60C3 11N60C3 11N60C3 Maximum Ratings Parameter Symbol Value Unit

IDP30E120. Fast Switching Diode. Product Summary V RRM 1200 V I F 30 A V F 1.65 V T jmax 150 C

SMBBIR45A Broad band High Power Emitter. AnodeMark 5.2. heatsink

SPB07N60C3. Cool MOS Power Transistor V T jmax 650 V. Operating and storage temperature T j, T stg C 6) Feature

SKP10N60 SKB10N60, SKW10N60

SGP20N60 SGW20N60. Fast IGBT in NPT-technology

EM Simulations using the PEEC Method - Case Studies in Power Electronics

T C MEASURED POINT G1 E1 E2 G2 W - (4 PLACES) G2 E2 E1 G1

SPB03N60S5. Cool MOS Power Transistor V DS 600 V

SPP20N60C3, SPB20N60C3 SPA20N60C3. Cool MOS Power Transistor. Preliminary data

SiC. Silicon Carbide Diode. 650V SiC Schottky Diode IDW24G65C5B. Rev. 2.0,

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features

IGBT Module H Bridge MIXA81H1200EH. = 1200 V = 120 A V CE(sat) = 1.8 V V CES I C25. Part name (Marking on product) MIXA81H1200EH.

Soft Switching Series

Final data. Maximum Ratings, at T C = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current

SGP30N60, SGB30N60, SGW30N60

SPN03N60C3. Cool MOS Power Transistor V T jmax 650 V

IDD06E60. Fast Switching EmCon Diode. Product Summary V RRM 600 V I F 6 A V F 1.5 V T jmax 175 C

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

Boundary Condition Dependency

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Final data P-TO Maximum Ratings Parameter Symbol Value Unit I D

Final data. Marking 11N60C3 11N60C3 11N60C3 11N60C3 Maximum Ratings Parameter Symbol Value Unit SPP_B_I. SPA Continuous drain current I D

EVERLIGHT ELECTRONICS CO.,LTD. Technical Data Sheet High Power LED 1W

CoolMOS Power Transistor

EHP-A07/UB01-P01. Technical Data Sheet High Power LED 1W

Converter - Brake - Inverter Module XPT IGBT

CM400DY-24A. APPLICATION AC drive inverters & Servo controls, etc CM400DY-24A. IC...400A VCES V Insulated Type 2-elements in a pack

STARPOWER IGBT GD300HFY120C6S. General Description. Features. Typical Applications. Equivalent Circuit Schematic SEMICONDUCTOR

MAU200 Series. 1W, High Isolation SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features

Power semiconductor devices

SiC. Silicon Carbide Diode. 650V SiC Schottky Diode IDW 1 0 G 6 5 C 5. Rev. 2.0 < >

Transcription:

Wir schaffen Wissen heute für morgen Paul Scherrer Institut René Künzi Thermal Design of Power Electronic Circuits CERN Accelerator School 2014, Baden, Switzerland 12.5.2014

Motivation Statement in a meeting: The converter works as specified, there are just a couple of tests missing to check its thermal behavior. Statement in the follow-up meeting 2 weeks later: We could only test up to 50% of the rated power, otherwise the converter would have been burnt away. Lesson learnt: Take the losses and the heat dissipation issues into account from the very beginning! R. Künzi Thermal Design CAS 2014 12.05.2014 2

Heat Sources: Resistors Resistors Continuous load Sufficient heat transfer to ambient Temperature stable Pulsed load Cables Absorb energy during pulses sufficient active material Temperature stable Limited repetition rate Use sufficient cross section additional investment vs. loss costs Skin effect Skin depth in Cu @ 1kHz: 2.1mm @ 10kHz: 0.7mm R. Künzi Thermal Design CAS 2014 12.05.2014 3

Heat sources: Magnetic Components Core losses Eddy current losses Iron sheet cores f < 1kHz Powder cores f < 10kHz Ferrite cores f > 10kHz Hysteresis losses Proportional to the area of the hysteresis curve and the frequency Core losses in transformers Designed to have a minimized hysteresis curve area Losses increase with frequency Losses are also present at zero load DC-chokes Are built to store a lot of energy hysteresis curve spans a large area Core losses depend on amplitude and frequency of the ripple current R. Künzi Thermal Design CAS 2014 12.05.2014 4

Heat sources: Magnetic Components Winding losses Arise from the ohmic resistance of the winding Dissipated power is proportional to I 2 Winding resistance increases approx. 0.4% per K (for Cu) Keep losses and temperatures low because Higher tempeatures cause even higher losses Wasted energy Costs of the wasted energy Costs for recooling Lower temperatures increase the life time The investments will be returned R. Künzi Thermal Design CAS 2014 12.05.2014 5

Heat Sources: Semiconductors IGBT losses Conduction losses (Blocking losses) Switching losses (ON and OFF) Example: Diode losses Conduction losses (Blocking losses) Switching losses (Recovery losses) V DC = 250V I Out = 200A @ m = 0.8 f s = 20kHz FF600R06ME3 [1] R. Künzi Thermal Design CAS 2014 12.05.2014 6

Conduction losses IGBT: Heat Sources: IGBT losses Note: V CE depends on the junction temperature 0.8 200 1.1 176 R. Künzi Thermal Design CAS 2014 12.05.2014 7

Switching losses IGBT: with # & 1.3..1.4 Heat Sources: IGBT losses! " # $ and # $ 10.003# *+, -., / [2] In our example we assume T J 90 C # $ 10.003# *+ 90.125 # $ 0.895 20 2 000 *+ 58 10 *3 4 +.35 250 0.895 182 300 R. Künzi Thermal Design CAS 2014 12.05.2014 8

Heat Sources: IGBT losses A softer switching (higher gate resistance) increases the switching losses dramatically R. Künzi Thermal Design CAS 2014 12.05.2014 9

Conduction losses Diode Heat Sources: Diode losses 61.7 8 Note: Negative temperature coefficient! 61.0.87 200 1.15 46 R. Künzi Thermal Design CAS 2014 12.05.2014 10

Switching losses Diode 9 / : Heat Sources: Diode losses! " # $ with # & 0.6 and # $ 10.006# *+, -., / [2] In our example we assume T J 90 C # $ 10.006# *+ 90.125 # $ 0.79 20 2 000 *+ 5 10 *3 4 71 250 300 ;.< 0.79 R. Künzi Thermal Design CAS 2014 12.05.2014 11

Heat Sources: Diode losses In contrary to the IGBT, a softer switching (higher gate resistance) reduces the switching losses of the freewheeling diode remarkably. R. Künzi Thermal Design CAS 2014 12.05.2014 12

Summary losses IGBT losses Diode losses 176W182W 358W 46W71W 117W Total losses per module 358W117W 475W R. Künzi Thermal Design CAS 2014 12.05.2014 13

Heat transfer: Packages Isolated module package Isolated Cu Base 1 heat sink for several devices Heat sink on ground potential Solder contacts Cooling from one side only Open circuit after failure Parallel connection Press pack devices Cooling via power terminals Individual heat sinks for all devices Heat sink on high voltage Presspack contacts Cooling from both sides Short circuit after failure Series connection R. Künzi Thermal Design CAS 2014 12.05.2014 14

Heat transfer: Temperatures 119ºC 358W 117W 105ºC T=117W*0.15K/W=18K T=358W*0.09K/W=32K 0.09K/W 0.15K/W 87ºC T=(358+117)W*0.009K/W=4K 0.009K/W 83ºC T=(358+117)W*0.1K/W=48K 0.1K/W Maximum ambient temperature Get thermal resistances from module data sheet Get thermal resistance from heat sink supplier IGBT- and diode-losses from calculation Calculate heatsink temperature Calculate base plate temperature Calculate diode and IGBT chip temperatures There should be a safety margin of min. 25K! 35ºC R. Künzi Thermal Design CAS 2014 12.05.2014 15

Transient thermal impedance Continued fraction circuit (Cauer model) R. Künzi Thermal Design CAS 2014 12.05.2014 16

Transient thermal impedance Partial fraction circuit (Foster model) R. Künzi Thermal Design CAS 2014 12.05.2014 17

Stacking of different materials R. Künzi Thermal Design CAS 2014 12.05.2014 18

Temperature variations Power Cycling Temperature variations of the silicon chips (fast) Causes mechanical stress to bond wires Bond wires lift off V CE increases Losses increase Larger temperature variations Device fails Thermal Cycling Temperature variations of the base plate (slow) Causes mechanical stress to soldering joint Aging of soldering joint R th increases Larger temperature variations Device fails R. Künzi Thermal Design CAS 2014 12.05.2014 19

LESIT Project Power Cycling of standard modules from various manufacturers (~1995) R. Künzi Thermal Design CAS 2014 12.05.2014 20

Practical Experience (1) SLS Booster Dipole Power Supply in Topup Mode Junction temperature variations IGBT failures after 3.5a of operation R. Künzi Thermal Design CAS 2014 12.05.2014 21

Practical Experience (2) 3Hz Oscillations: 68 82 C T j = 14K, Tm = 75 C 40 weeks/a, continuous 80*10 6 cy/a 6a to failure 40 weeks/a, 16cy every 100s 15*10 6 cy/a 33a to failure Extreme extrapolation: Result valid??? 500*10 6 cy R. Künzi Thermal Design CAS 2014 12.05.2014 22

Practical Experience (3) 100s Oscillations: 30 86 C T j = 56K, Tm = 58 C 40 weeks/a, 1cy every 100s 0.25*10 6 cy/a 4a to failure that is, what we have experienced! 1*10 6 cycles R. Künzi Thermal Design CAS 2014 12.05.2014 23

Thermal Design of a PCB 10A H-bridge on a PCB 100mm 160mm R. Künzi Thermal Design CAS 2014 12.05.2014 24

First prototype Infrared image at full load R. Künzi Thermal Design CAS 2014 12.05.2014 25

Replace DC/DC converter 24V/15V New: SMD DC/DCconverter in a metallic case Protoype 1: THT DC/DCconverter in a plastic case R. Künzi Thermal Design CAS 2014 12.05.2014 26

Replace DC/DC converters 15V/5V New: Switched mode converter 15V / 5V Prototype 1: Linear converter 15V / 5V R. Künzi Thermal Design CAS 2014 12.05.2014 27

Replace filter chokes Neu: Four chokes of 3.9uH/12A each Prototype 1: Two chokes of 8.2uH/13A each R. Künzi Thermal Design CAS 2014 12.05.2014 28

Replace snubber resistors New: 2W snubberresistors Prototype 1: 100mW snubberresistors R. Künzi Thermal Design CAS 2014 12.05.2014 29

Improve heat flow Thermal conductivity of different materials λ [W/K m] Gold 318 Silver 429 Copper 401 Aluminum 237 Steel 50 Heat transfer foil 2 PCB core material (FR-4) 0.3 Air 0.025 R. Künzi Thermal Design CAS 2014 12.05.2014 30

Heat path through the PCB Improve heat flow Mounting area of semiconductors A = 2cm x 2cm = 4cm 2 Distance from top to bottom layer l = 1.6mm Thermal conductivity PCB core (FR-4) λ = 0.3 W/K m Total losses in the semiconductors P 10W Thermal resistance: l 1.6mm m K R th = = = 13. 3 λ 2 A 0.3W 4cm K W Temp. difference Top - Bottom K T = Rth P = 13.3 10W = 133K W R. Künzi Thermal Design CAS 2014 12.05.2014 31

Improve heat flow Additional heat path through vias Outside radius ra = 0.175mm Inside radius ri = 0.15 mm Via heigth l = 1.6 mm Thermal conductivity of Cu λ = 400 W/K m A = π π = 2 2 2 2 2 ( ra ri ) = ((0.175mm) (0.15mm) ) 0.0255mm l 1.6mm m K R th = = 156. 8 2 A 400W 0.0255mm = λ K W On 4 cm 2 there is space for 8 x 8 = 64 vias Thermal resistance of 64 vias: R th = 2.45K / W Temperature difference Top - Bottom T = P R 1 th LP 1 + R 1 th Via 1 = 10W 1 W + 13.3K 1 W 2.45K = 20.7K R. Künzi Thermal Design CAS 2014 12.05.2014 32

Improve heat flow Original design Improved design R. Künzi Thermal Design CAS 2014 12.05.2014 33

Heat transfer to ambient Heat sink Heat transfer foil MOSFETs PCB Al bars Cover R. Künzi Thermal Design CAS 2014 12.05.2014 34

Comparison Prototype 1 and 2 Better heat spreading Lower temperatures Good correlation with calcualtions R. Künzi Thermal Design CAS 2014 12.05.2014 35

References [1] Infineon, Datasheet FF600R06ME3 Rev. 3.1 [2] Semikron, Applikationshandbuch Leistungshalbleiter, VSL Verlag 2010 [3] Infineon, Thermal equivalent circuit models, AN2008-03 [4] Infineon, Technical Information IGBT modules, Use of Power Cycling curves for IGBT4, AN2010-02 R. Künzi Thermal Design CAS 2014 12.05.2014 36