CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

Similar documents
Chapter7. FET Biasing

Chapter 6: Field-Effect Transistors

Monolithic N-Channel JFET Duals

Lecture 11: J-FET and MOSFET

Monolithic N-Channel JFET Dual

Chapter 13 Small-Signal Modeling and Linear Amplification

2N5545/46/47/JANTX/JANTXV

Chapter 4 Field-Effect Transistors

J/SST111 Series. N-Channel JFETs. Vishay Siliconix J111 SST111 J112 SST112 J113 SST113

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

2SJ280(L), 2SJ280(S)

Monolithic N-Channel JFET Dual

N-Channel Enhancement-Mode Vertical DMOS FET

Monolithic N-Channel JFET Dual

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

2SJ332(L), 2SJ332(S)

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

2SJ182(L), 2SJ182(S)

PINNING - SOT404 PIN CONFIGURATION SYMBOL

Monolithic N-Channel JFET Dual

SIPMOS Small-Signal Transistor BSP 149

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

Matched N-Channel JFET Pairs

TO-247-3L Inner Circuit Product Summary I C) R DS(on)

Monolithic N-Channel JFET Dual

AOT404 N-Channel Enhancement Mode Field Effect Transistor

6.012 Electronic Devices and Circuits Spring 2005

N- & P-Channel Enhancement Mode Field Effect Transistor

AON4605 Complementary Enhancement Mode Field Effect Transistor

Matched N-Channel JFET Pairs

DATA SHEET. PMBFJ308; PMBFJ309; PMBFJ310 N-channel silicon field-effect transistors DISCRETE SEMICONDUCTORS

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 30 V V GS Gate-Source Voltage ±20 V

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSIII) 2SK2610

Lecture 3: CMOS Transistor Theory

500V N-Channel MOSFET

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

PINNING - SOT223 PIN CONFIGURATION SYMBOL

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

FEATURES SYMBOL QUICK REFERENCE DATA. V DSS = 55 V Very low on-state resistance Fast switching

ECE 342 Electronic Circuits. 3. MOS Transistors

P-Channel Enhancement Mode Mosfet

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

AO4620 Complementary Enhancement Mode Field Effect Transistor

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

AON V N-Channel MOSFET

AO7401 P-Channel Enhancement Mode Field Effect Transistor

AON V Common-Drain Dual N-Channel MOSFET

AO3411 P-Channel Enhancement Mode Field Effect Transistor

AOP606 Complementary Enhancement Mode Field Effect Transistor

P-Channel Enhancement Mode Mosfet

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

MMBF4391LT1, MMBF4392LT1, MMBF4393LT1. JFET Switching Transistors. N Channel. Pb Free Packages are Available.

1.2 kv 16 mω 1.8 mj. Package. Symbol Parameter Value Unit Test Conditions Notes 117 V GS = 20V, T C

FEATURES SYMBOL QUICK REFERENCE DATA

JFET Operating Characteristics: V GS = 0 V 14. JFET Operating Characteristics: V GS = 0 V 15

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

2N4856JAN/JANTX/JANTXV Series. N-Channel JFETs. Vishay Siliconix

N-Channel Enhancement-Mode Vertical DMOS FETs

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

P-Channel Enhancement Mode Field Effect Transistor PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS

AO4607, AO4607L(Lead-Free) Complementary Enhancement Mode Field Effect Transistor

Supertex inc. TN0104. N-Channel Enhancement-Mode Vertical DMOS FET. Features. General Description. Applications. Ordering Information.

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 600 V V GS Gate-Source Voltage ±30 V

N-channel TrenchMOS transistor

P-channel enhancement mode MOS transistor

Max Q1. Symbol V GS I DM 15 I DSM 7.8 I AS E AS V SPIKE P D 2.5 P DSM. Junction and Storage Temperature Range T J, T STG

AOD4184A 40V N-Channel MOSFET

AOD466 N-Channel Enhancement Mode Field Effect Transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK6A50D

N-Channel Depletion-Mode DMOS FET

DISCRETE SEMICONDUCTORS DATA SHEET. BLF245 VHF power MOS transistor

PINNING - TO220AB PIN CONFIGURATION SYMBOL

N-Channel Enhancement-Mode Vertical DMOS FET

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

TPC8116-H TPC8116-H. High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter Applications

PINNING - TO220AB PIN CONFIGURATION SYMBOL

PINNING - TO220AB PIN CONFIGURATION SYMBOL

AOP605 Complementary Enhancement Mode Field Effect Transistor

CPC3730CTR. 350V N-Channel Depletion-Mode FET (SOT-89) INTEGRATED CIRCUITS DIVISION

PINNING - SOT223 PIN CONFIGURATION SYMBOL

BSS84 P-Channel Enhancement Mode Field-Effect Transistor

Features. T A =25 o C unless otherwise noted

AO V Dual N-Channel MOSFET

PowerMOS transistor PINNING - SOT428 PIN CONFIGURATION SYMBOL. tab

AO V Dual P + N-Channel MOSFET

TOSHIBA Field-Effect Transistor Silicon P-Channel MOS Type SSM3J117TU. Characteristic Symbol Test Condition Min Typ. Max Unit

ECE315 / ECE515 Lecture 11 Date:

N-Channel Lateral DMOS FETs

N-Channel 30-V (D-S) MOSFET With Sense Terminal

Product Summary: BVDSS 30V RDSON (MAX.) 50mΩ 4.5A I D. Pb Free Lead Plating & Halogen Free EMB50P03J

TSP10N60M / TSF10N60M

IRF5851. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge.

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

TO220AB & SOT404 PIN CONFIGURATION SYMBOL

Type V DS I D R DS(on) Package Ordering Code BTS V 10 A 0.2 Ω TO-220AB C67078-A5008-A2

PINNING - TO220AB PIN CONFIGURATION SYMBOL

Biasing the CE Amplifier

DATA SHEET. BF245A; BF245B; BF245C N-channel silicon field-effect transistors DISCRETE SEMICONDUCTORS

Transcription:

1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012

Chapter 3: MOSFET 2 Introduction Classifications JFET D-FET (Depletion MOS) MOSFET (Enhancement E-FET) DC biasing Small signal analysis Equivalent small signal circuit

FET Introduction 3 High input impedance, nmω-n100mω Controlled by voltage ( BJT) Low power consumption Low noise, suitable for small signal Low impact of temperature Using as switch for low power application Small size and adapt for integrated circuit

Classification 4 JFET-Junction Field Effect Transistor N and P channels MOSFET-Metal Oxide Semiconductor FET Depletion MOS N and P channels Enhancement MOS N and P channels

Classification (cont d) 5 JFET D-FET E-FET (MOSFET)

JFET 6 Structure and Operation Characteristic Curve Compare with BJT Examples, datasheets

7 JFET Structure

JFET Operation 8 V GS = 0, V DS >0 increase gradually, I D increases and then saturates

JFET Operation 9 V GS = 0, V DS = V P, I D = I DSS V P : pinch off voltage (pinch-off) I D = I DSS (1 - V GS /V P ) 2

JFET Operation 10 V GS < 0, V DS > 0, Saturation current reduces when V GS V pinch-off V GS = V P, I D = 0

JFET Characteristic Curves 11 I D = f(v GS ) Shockley equation: I G 0A (gate current) I D = I DSS (1 - V GS /V P ) 2 I D = I S (I D drain current, I S source current)

JFET Characteristic Curves 12 N-channel, I DSS = 8mA, V P = - 4V P-channel, I DSS = 6mA, V P = 6V

13 JFET Symbol

JFET 14 2N5457

Datasheet-2N5457 15 Rating Symbol Value Unit Drain-Source voltage V DS 25 Vdc Drain-Gate voltage V DG 25 Vdc Reverse G-S voltage V GSR -25 Vdc Gate current I G 10 nadc Device dissipation 25 0 C Derate above 25 0 C P D 310 2.82 mw mw/ 0 C Junction temp range T J 125 0 C Storage channel temp range T stg -60 to +150 0 C

Datasheet-2N5457-characteristics 16 Characteristic Symbol Min Typ Max Unit V G-S breakdown V (BR)GSS -25 Vdc I gate reverse(vgs=-15, Vds=0) I GSS -1.0 nadc V G-S cutoff V GS(off) -0.5-1.0 Vdc V G-S V GS -2.5-6.0 Vdc I D-zero gate volage I DSS 1.0 3.0 5.0 madc C in C iss 4.5 7.0 pf C reverse transfer C rss 1.5 3.0 pf

MOSFET 17 Structures Operation Characteristic Curves

MOSFET Structure 18 N-channel Depletion DMOS N-channel Enhancement EMOS

MOSFET Operation 19 N-channel DMOS V GS = 0, V DS > 0 N-channel EMOS V GS > V TH, V DS > 0

DMOS Transfer characteristic curves 20 Similar to JFET, transfer characteristic curve I D = f(v GS ) follows Shockley equation: I D = I DSS (1 - V GS /V P ) 2 Can work at: V GS > 0, I D > 0

EMOS Transfer characteristic curve 21 Transfer characteristic curve: I D = k(v GS V T ) 2 with V T > 0 (for NMOS) and Vt< 0 for PMOS) When V GS < V T, I D = 0

MOSFET Transfer characteristic curve 22 P-channel depletion

MOSFET Transfer characteristic curve 23 P-channel enhancement

MOSFET Symbol 24 DMOS EMOS

25 EMOS 2N4351

Datasheet-2N4351-EMOS 26 Characteristic Symbol Min Max Unit V DS breakdown V (BR)DSX 25 Vdc I D-zero gate volage, Vds=10V,Vgs=0, 25C 150C I DSS 10 nadc 10 µadc I gate reverse(vgs=+-15, Vds=0) I GSS +-10 nadc V DS on Voltage V DS(on) 1.0 V C in(vds=10v,id=2ma,f=140khz) C iss 5.0 pf C DS(Vdsub=10V,f=140KHz) C rss 5.0 pf R DS(Vgs=10V,Id=0,f=1KHz) R ds(on) 300 ohms

VMOS 27 VMOS Vertical MOSFET, increase channel lenght Increase drain current thanks to large space of heat release High switching speed

CMOS 28 CMOS=Complementary MOSFET pmos và nmos: fabricated on same wafer Reduce size and power consumption, increase switching speed Analog/Digital IC design

29 Resume JFET DFET MOSFET

Biasing types 30 Fixed bias Self-biasing Voltage divider biasing Feedback biasing

Some noted 31 With all kinds of FET: I G = 0A I D = I S For JFET & D-MOSFET: I D = I DSS (1 V GS /V P ) 2 For E-MOSFET (MOSFET): I D = k(v GS V T ) 2 (saturation mode) Determine Q-point (DC operating point) and DC load line

Fix biasing (ex: JFET) 32 I G = 0A V S = 0 V GS = V G = - V GG I D = I DSS (1-V GS /V p ) 2 V G is fixed at V GG

Fix biasing 33 I D = I DSS (1-V GS /V P ) 2 Build transfer characteristic curve from this table: V GS I D 0 I DSS 0.3V P I DSS /2 0.5Vp I DSS /4 V P 0mA DC load line: V GS = - V GG Intersection between DC load line and trans. Charact. Curve Q point

Temperature effect 34 Leakage current I GSS increases when t0 increases cannot neglect RG at mentioned previously so: Q will move from : new Q-point V GS = V GG + I GSS *R G

Impact of temperature 35 Question: If V GG =-1V& R G =1 MΩ. I GSS =1nA at 25 C and increase double when temperature increases 10 o C. Determine V GS at 125 o C?

Impact of temperature 36 Question: If V GG =-1V& R G =1 MΩ. I GSS =1nA at 25 C and increase double when temperature increases 10 o C. Determine V GS at 125 o C? Answer: At 25 o C, I GSS R G =10-9 10 6 = 1mV, can be neglected when compare with V GG = - 1V (or new V GS = -999mV). new Q-point When Temp. increases to 125 o C, current I GSS increases to 2 10 times ( 10 3 ) I GSS = 10 3 1nA =1µA I GSS R G =1µA* 1MOhm = 1V New Q point: V GS = 0V & I D = I DSS Q point at 125 0 C is shifted to a new point and it is far from the initial Q point at room temperature

Self biasing 38 What is the main difference compared to fixed biasing? Role of R S? Remove R G to reduce impact of temperature?

Self-biasing 39 Loop at input: I G = 0 => V G = 0V V GS = - I S R S (1) I D = I DSS (1-V GS /V p ) 2 (2) To determine Q point: Sole the equation system: (1) + (2) Or by using curve method as shown in the paragraph (intersection point) Consider the impact of Temp.?

Voltage divider biasing (ex: JFET) 40 I G = 0, output current I D is controlled by V GS This biasing method is usually used for FET

Voltage divider biasing (ex: JFET) 41 V G = V DD R 2 /(R 1 +R 2 ) DC load line is: V GS = V G - I D R S (1) R S varies shift of Q point and DC load line Characteristic curve of FET I D = I DSS (1-V GS /V P ) 2, (2) To determine Q point: Sole the equation system: (1)+(2) Or by using curve method as shown in the paragraph (intersection point)

Voltage divider biasing (ex: DMOSFET) 42 V G = V DD * 10MΩ/(110MΩ+10MΩ) DC load line: V GS = V G I S *750Ω (1) I D current of DMOS: I D = I DSS (1-V GS /V P ) 2 (2) To determine Q point: Sole the equation system: (1) + (2) Or by using curve method as shown in the paragraph (intersection point)

Voltage divider biasing (ex: DMOSFET) 43 With DMOS: I D = I DSS (1-V GS /V P ) 2 V GS can be positive

Voltage divider biasing (E-MOSFET) 44 With EMOS: I D = k(v GS -V T ) 2 k=i Don /(V GSon -V T ) 2

Voltage divider biasing (ex: E-MOSFET) 45 With EMOS: I D = k(v GS -V T ) 2 where k = I D-on /(V GSon -V T ) 2 Draw transfer characteristic curve of E-MOSFET

Feedback biasing (ex: E-MOSFET) 46 At the node G: I G = 0 V G = V D

Feedback biasing (ex: E-MOSFET) 47 At the node G: I G = 0 => V G = V D DC load line V GS = V DS = V DD - R D I D (1) Transfer char. equation: I D = k(v GS - V T ) 2, (2) k = I Don /(V GSon -V T ) 2 Solve equ. Sys. (1,2) or use paragraph method

Example 48 Question: Determine Q (I D, V GS ) point Q of these circuits?

Example 49 Question: Determine Q (I D, V GS ) point Q of these circuits?

Example 50 Question: Determine V GS and V DS for the E-MOSFET circuit above. Given that this MOSFET has minimum values of I D(on) = 200 ma at V GS = 4V and V th = 2V. Question: Determine I D with V th = 3V.

51 Analyze the circuit for AC signal (small signal)

52 Small signal model

Transconductance 53 g m = I D / V GS = d(i D (V GS )) Derivation of current I D as function of V GS Slope of I D (V GS ) at Q point

Transconductance g m (JFET & DMOS) 54 For E-MOS; gm is defined from Shockley equation: g m 2I V DSS P 1 V V GS P When V GS = 0: g m determined at Q point: g g m m0 g 2I V m0 DSS P V 1 V GS P

Transconductance g m (E-MOSFET) 55 For JFET & DMOS, gm is defined from: g m determined at Q point:

AC equivalent circuit (EMOS) 56 Notes: V GS should be positive for NMOS and negative for PMOS g m = 2k(V GS V T )

3 types of MOSFET amplifier 57 CS CD - CG

58 EMOS CS with fixed bias voltage VDD Input at G terminal, output at D terminal Common Source RD Vout Fixed biasing (S grounded) Vin Cin RG Cout N-EMOS To draw AC equivalent circuit Short circuit all capacitors + V1 10V Short circuit power supply AC equivalent circuit

59 EMOS CS with fixed bias voltage Z i = R G Z o = r d //R D R D if r d > 10R D A V = - g m (r D //R D ) - g m R D if r d > 10R D Input and output voltage are out of phase

60 EMOS CS with voltage divider Input at G terminal, output at D terminal Common Source Voltage divider S terminal is connected to Rs and Cs in parralel Vin C1 1uF R1 G R2 D S VDD RD Vout Cout N-EMOS RS Cs AC equivalent circuit

61 EMOS CS with voltage divider Z i = R 1 // R 2 Z o = r d //R D R D nếu r d > 10R D A V = -g m (r D //R D ) g m R D nếu r d > 10R D Input and output voltage are out of phase

EMOS CS with voltage divider and wo. Cs 62 Input at G terminal, output at D terminal Common Source Voltage divider S terminal is connected to ONLY Rs and REMOVE bypass-capacitor C S Vin C1 1uF R1 G R2 D S VDD RD Cout N-EMOS RS X Vout Cs????? AC equivalent circuit

EMOS CS with voltage divider and wo. Cs 63 Input at G terminal, output at D terminal Common Source Voltage divider S terminal is connected to ONLY Rs and REMOVE bypass-capacitor C S Vin C1 1uF R1 G R2 D S VDD RD Vout Cout N-EMOS RS X Cs AC equivalent circuit

EMOS CS with voltage divider and wo. Cs 64 Z i = R G (or R1//R2) Z o = R D /[1+g m R S +(R D +R S )/r d ] A V = -g m R D /[1+g m R S +(R D +R S )/r d ] Input and output voltage are out of phase

EMOS CS with feedback bias 65 Input at G terminal, output at D terminal: Common Source Feedback biasing To draw AC equivalent circuit Short circuit all capacitors Short circuit power supply

EMOS CS with feedback bias 66 AC equivalent circuit Short circuit all capacitors Short circuit power supply

EMOS CS with feedback bias 67 Z i = (R F +r d //R D )/[1+g m (r d //R D )] R F /(1+g m R D ) with r d >10R D, R F >>r d //R D Z o = R F //r d //R D R D with r d >10R D, R F >>r d //R D A V = g m R F //r d //R D g m R D with r d >10R D, R F >>r d //R D Output and input voltage are out of phase

68 EMOS CS with feedback bias

69 EMOS CS with feedback bias

70 EMOS CS with feedback bias

JFET CD with fixed biasing 71 Input at G terminal, output at S terminal: Common Drain Fixed biasing

JFET CD with fixed biasing 72 Z i = R G Z o = r d //R S //(1/g m ) R S //(1/g m ) if r d > 10R S A V = -g m (r d //R S )/[1+g m (r d //R S )] g m R S /[1+g m R S )] if r d > 10R S 1 if g m R S >> 1

73 JFET CG with fixed biasing Input at S terminal, output at D terminal: Common GATE Fixed biasing

74 JFET CG with fixed biasing Z i = R s //[(r d +R D )/(1+g m r d )] R S //(1/g m ) nếu r d >10R D Z o = r d //R D R D nếu r d >10R D A V = [g m R D + (R D /r d )]/[1+ R D /r d ] g m R D nếu r d >10R D Input and output voltage are IN-PHASE

Equivalent circuit for DMOS 76 Similar to JFET and E-MOSFET For DMOS: V GS can be positive for Nchannel and negative for P channel g m can be higher than g m0

77 Resume

78 Resume

Exercises 79 Chapter 5: 3, 5, 6, 9, 26, 34, 37 Chapter 6: 1, 6, 12, 17, 19, 21, 23 Chapter 9: 1, 5, 12, 17, 19, 23, 27, 32, 33, 37, 38, 43, 44