PIETRYTINÉS BALTIJOS JÚROS RELJEFO KAITOS MODELIAVIMAS

Similar documents
Sea level changes and coastal evolution in the south-eastern Baltic Sea

Rare earth elements of Holocene sediments in the South- Eastern Baltic Region (Nida VI borehole, Lithuania)

Cross-border cooperation state of- art, Lithuanian approach

Baltica 16 (2003) The Curonian Lagoon bottom sediments in the Lithuanian water area. Egidijus Trimonis, Saulius Gulbinskas, Modestas Kuzavinis

Due to the especially interesting geological structure ~280 km 2 territory of Druskininkai area is covered by detail complex geological and

BALTICA Volume 23 Number 2 December 2010 :

ÛEMÉS PAVIRÖIAUS POKYÆIAI IR SVYRAVIMAI

BALTICA Volume 23 Number 2 December 2010 : 71-76

Holocene dune reactivation along the northern Curonian Spit: geological, paleoecological, and archaeological implications

BALTICA Volume 24 Special Issue 2011 : 23-30

Relative sea level in inner Nordfjord at 8150 cal. a BP

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years

CALCULATION OF ELECTROMAGNETIC WAVE ATTENUATION DUE TO RAIN USING RAINFALL DATA OF LONG AND SHORT DURATION

PSI analysis of ground deformations along the south-western coast of the Gulf of Gdansk (Poland)

P228 Geological Storage of CO2 Prospects in the Baltic States

Variability and trends in daily minimum and maximum temperatures and in diurnal temperature range in Lithuania, Latvia and Estonia

Keywords: Wind resources assessment, Wind maps, Baltic Sea, GIS

Temporal and spatial scales of the features and processes forming the Polish Baltic Sea coast

Mineralogical Anomalies in Sands: Implications for Vertebrate Ichnology

ON THE EVOLUTION OF A HOLOCENE BARRIER COAST

Reconstructing the Groundwater Flow in the Baltic Basin During the Last Glaciation

S. Tamošiūnas a,b, M. Žilinskas b,c, A. Nekrošius b, and M. Tamošiūnienė d

BALTICA Volume 24 Number 2 December 2011 :

STABLE ISOTOPES AS RECORD OF CLIMATIC CHANGES OF DANIGLACIAL IN LITHUANIA

Reconstruction of the Vistula ice stream lobe during LGM: preliminary results of the research project

Lab 12 Coastal Geology

DRAFT. In preparing this WCRP Workshop program some key questions identified were:

2SEA. Requirements Report SOILS2SEA DELIVERABLE NO. 1.2

Plio-Pleistocene Geology

Last Time. Submarine Canyons and Fans. Turbidites. MAS 603: Geological Oceanography. Lecture 16: Greenhouse vs. Icehouse Earths

Late glacial to early Holocene development of southern Kattegat Bendixen, Carina; Jensen, Jørn Bo; Bennike, Ole; Boldreel, Lars Ole

Ice Sheets and Sea Level -- Concerns at the Coast (Teachers Guide)

Tomas Saks, ĢZZF. ESF projekts Starpnozaru zinātnieku grupas un modeļu sistēmas izveide pazemes ūdeņu pētījumiem

Moosehead Lake and the Tale of Two Rivers

since 1961 BALTICA Volume 28 Number 1 June 2015: doi: /baltica

Recent Climate History - The Instrumental Era.

Final Report on Development of Deep Aquifer Database and Preliminary Deep Aquifer Map

Developed in Consultation with Florida Educators

CHANGING LANDSCAPES AND CHANGING PLACES SAMPLE ASSESSMENT MATERIALS

DANCORE-Day. Master s Thesis

Climate change in the Baltic Sea Basin

Terrain Units PALEOGEOGRAPHY: LANDFORM CREATION. Present Geology of NYS. Detailed Geologic Map of NYS

PALEOGEOGRAPHY of NYS. Definitions GEOLOGIC PROCESSES. Faulting. Folding 9/6/2012. TOPOGRAPHIC RELIEF MAP of NYS GRADATIONAL TECTONIC

3D TYRIMÙ GEORADARU TAIKYMAS ARCHEOLOGINIAMS, GEOLOGINIAMS IR INÛINERINIAMS UÛDAVINIAMS SPRÈSTI

since 1961 BALTICA Volume 28 Number 2 December 2015: doi: /baltica

Algebraic and spectral analysis of local magnetic field intensity

The Geology of Sebago Lake State Park

A. Žukauskaitė a, R. Plukienė a, A. Plukis a, and D. Ridikas b

Supplement of Scenario-based numerical modelling and the palaeo-historic record of tsunamis in Wallis and Futuna, Southwest Pacific

Late Quaternary Relative Sea-level Changes in Mid-latitudes

Landforms in Canada. Canada is made up of three dis;nct types of landforms: Canadian Shield Highlands Lowlands

The Coast: Beaches and Shoreline Processes

A new fauna intercalibration typology

THE PROGNOSIS OF CURONIAN SPIT DUNES EVOLUTION AND THEIR PROTECT STRATEGIES BECAUSE OF CLIMATE CHANGE

Climate Alert Seas Falling, Glaciers Growing... By Viv Forbes, July 2018

The Coast: Beaches and Shoreline Processes Trujillo & Thurman, Chapter 10

DATA REPOSITORY MATERIAL: PALEOCHANNEL GROUP MAPPING DESCRIPTIONS

The results of integrated investigations of the Lithuanian coast of the Baltic Sea: geology, geomorphology, dynamics and human impact

The Tswaing Impact Crater, South Africa: derivation of a long terrestrial rainfall record for the southern mid-latitudes

Baltica

Regional temperature, precipitation and runoff series in the Baltic countries

KLIMATO KAITA: FAKTAI IR PROGNOZÉS

LIETUVOS UGNINIS LANKAS

Lietuvos seismologinis monitoringas metais

Prognosis of radionuclides dispersion and radiological measurements in Lithuania after the accident at Fukushima Daiichi nuclear

GSC 107 Lab # 3 Calculating sea level changes

Tony Pratt, DNREC to The Center for the Inland Bays Scientific and Technical Advisory Committee. August 21, 2009

Journal of Earth Sciences and Geotechnical Engineering, vol. 4, no. 1, 2014, ISSN: (print), (online) Scienpress Ltd, 2014

THE EARTH S RELIEF SOCIAL SCIENCES 1º ESO

v. Dvareckas, A. Gaigalas, B. Viliinaite

2008 SIVECO Romania. All Rights Reserved. Geography. AeL econtent Catalogue

Torben Königk Rossby Centre/ SMHI

Geol 117 Lecture 18 Beaches & Coastlines. I. Types of Coastlines A. Definition:

Supplementary Fig. 1. Locations of thinning transects and photos of example samples. Mt Suess/Gondola Ridge transects extended metres above

Byblos & the Sea - an HFF funded project Summary report: Sea Survey Mission 7 - Sept. 2016

Wednesday, November 15, 2017

The World of Geography Pre-Test/Study Guide Chapter 1 Test

Paper presented in the Annual Meeting of Association of American Geographers, Las Vegas, USA, March 2009 ABSTRACT

TRAINING SCHOOL: PALAEO- COASTLINES OF THE BALTIC SEA AND STONE AGE COASTAL SETTLEMENTS

Coastal records of rapid changes in the eastern Baltic area

High-resolution Geophysical Mapping of Submarine Glacial Landforms

Geography. Programmes of study for Key Stages 1-3

Range of Opportunities

MECHANISMS OF GROUNDWATER RECHARGE IN THE BALTIC ARTESIAN BASIN

The Science of Sea Level Rise and the Impact of the Gulf Stream

MARINE GEOLOGY & GEOGRAPHY

Donald K. Stauble and Bill Birkemeier Coastal and Hydraulics Laboratory US Army Corps of Engineers

Next steps for verifying European CO2 storage capacity Perspectives from the Baltic Region

Global Climate Systems

Name Roy G Biv Page 1

Paleogeography and shore displacement of Eastern Gotland between 9.5 and 2.8 ka cal BP

SUPPLEMENTARY INFORMATION

A method for estimating coastline recession due to sea level rise by assuming stationary wind-wave climate

Construction of Subsurface Geological Structures Using a Drilling Database: A Case Study for an Intra-Arc Basin, the Osaka Plain, Southwest Japan

Today s Climate in Perspective: Hendrick Avercamp ( ) ~1608; Rijksmuseum, Amsterdam

Facies Reconstruction of a Late Pleistocene Cypress Forest Discovered on the Northern Gulf of Mexico Continental Shelf

On variations of volumetric activity of 90 Sr and 137 Cs in the Baltic Sea coastal waters near the shore of Lithuania in

MISSISSIPPI RIVER DELTA OVERVIEW

I. PRACTICAL GEOGRAPHY A. Maps. B. Scale and measurement. C. Map reading and interpretation; D. Interpretation of statistical data;

Saulius Šliaupa, Rasa Šliaupienė (NRC, Lithuania) Uldis Nulle, Inara Nulle (LEGMC, Latvia) Alla Shogenov, Kazbulat Shogenov (IGTUT, Estonia)

Transcription:

GEOLOGIJOS PAÞANGA 27 Jonas Ðeèkus, Geologijos ir geografijos institutas PIETRYTINÉS BALTIJOS JÚROS RELJEFO KAITOS MODELIAVIMAS Anotacija Ðeèkus J. Pietrytinës baltijos jûros reljefo kaitos modeliavimas // Geologijos akiraèiai. ISSN 1392 0006. 2007, Nr. 3, p. 27-33. Pirmà kartà Lietuvoje, atkuriant Baltijos jûros holoceno paleogeografines sàlygas, buvo panaudoti kompiuterinio modeliavimo metodai. Pagal skirtingø autoriø duomenis (jûriniø kolonëliø bei græþiniø, seismoakustiniø, santykinio vandens lygio svyravimo kreives) buvo atkurta visø Baltijos jûros vystymosi faziø (Joldijos jûros, Ancyliaus eþero, Litorinos bei Postlitorinos jûrø) reljefo raida. Remiantis naujausiais pasaulinio vandenyno vandens lygio kilimo bei regiono tektonikos duomenimis buvo sukurti trys ateities reljefo raidos scenarijai. Keywords: Baltic Sea, Holocene, palaeogeography, modelling. Received 12 July 2007, accepted 16 August 2007 Institute of Geology and Geography, T.Ðevèenkos 13, LT 03223. Vilnius. Tel. +370 65026449; e-mail: jonas.seckus@geo.lt Abstract Ðeèkus J. Modelling of South-Eastern Baltic Sea Topography Changes // Geologijos akiraèiai. ISSN 1392 0006. 2007, No. 3, p. 27 33. Computer modelling method has been applied for the first time in Lithuania to restore the palaeogeographic conditions of the Baltic Sea Holocene. Data of various authors (sea sediment core, drilling and seismoacoustic data, as well as water level fluctuation curves) enabled to restore the topography development history for all phases of the Baltic Sea (Yoldia, Ancylus, Litorina and Postlitorina). The latest data about the World Ocean level rise and regional tectonics were used to construct three scenarios of the topography development in the future. Ávadas Holoceno paleogeografiniai tyrimai Lietuvos pajûryje bei Baltijos jûroje vykdomi jau daugiau nei ðimtà metø. Skirtingi autoriai paleogeografines schemas sudarinëjo remdamiesi jûriniø kolonëliø, sausumoje iðgræþtø græþiniø ir geofiziniø tyrimø duomenimis, taikydami ávairiausius tyrimø metodus paleobotaninius, palinologinius, geomorfologinius, seismoakustinius, sedimentologinius, radioaktyviosios anglies, OSL datavimus ir kt. Per paskutiniuosius deðimt metø, tobulëjant kompiuterinei bei programinei árangai, regiono paleogeografijai tirti buvo pradëti taikyti geografiniø informaciniø sistemø bei kompiuterinio modeliavimo metodai. Sedimentaciniai procesai ir geodinaminës sàlygos pietrytinëje Baltijos jûros dalyje yra þinomos, taèiau labai maþai tyrinëtos taikant ðiuolaikinius kompiuterinio modeliavimo metodus, kad bûtø tiksliau ávertinti jø formavimosi ypatumai. Praëjusá deðimtmetá, vykdant ávairius projektus (geologinis kartografavimas 1:50 000 masteliu; Lietuvos-Ðvedijos geologiniai geofiziniai tyrimai 1993-1995 m.; EU INCO-COPERNICUS projektas 1996-1999 m.; EU Baltic Sea Study (BASYS) 1996-2000 m. ir kt.), buvo sukaupta nemaþai naujos faktinës medþiagos. Naudojantis ðiais duomenimis, buvo sukurtas Baltijos jûros pietrytinës dalies holoceno laikotarpio 4D kompiuterinis geologinis modelis, leidþiantis efektyviai pavaizduoti senøjø holoceno baseinø transgresyvius-regresyvius kranto linijø pokyèius bei jø deformacijas, atkurti reljefo raidà tirtame regione (1 pav.). Naujausi duomenys apie nuosëdø dinamikà bei sedimentacijø greièius, vandens lygio kilimà (Bindoff et al. 2007) bei neotektoninius judesius (Rosentau et al. 2007) leidþia atkurti ne tik kranto linijos raidà praeityje, bet ir sudaryti prognozinius ateities scenarijus. Tai ypaè aktualu rajonams, kur kranto linijos kaita glaudþiai susijusi su þmogaus veikla. Norint sukurti ilgalaikius pakrantës planavimo projektus, bûtø pravartu þinoti krantø bei reljefo vystymosi prognozinius scenarijus, kurie padëtø numatyti socialinæ bei ekonominæ rajono raidà. Duomenys bei tyrimø metodika Kuriant Baltijos jûros pietrytinës dalies raidos modelá, buvo naudojami anksèiau atliktø geologiniø bei geofiziniø tyrimø rezultatai (Bitinas et al. 2001, 2002, 2004; Gelumbauskaitë 2002, Gelumbauskaitë et al. 2005). Duomenø

28 GEOLOGIJOS PAÞANGA 1 pav. Tyrimø plotas. Taðkai: sausumoje græþiniai, jûroje kolonëlës. interpoliacijai buvo pasirinkta daugiau nei 600 taðkø, ið kuriø didþiàjà dalá sudarë græþiniai, iðgræþti geologinio kartografavimo 1:50 000 masteliu Kretingos ir Ðilutës plotuose, jûrinës kolonëlës, surinktos vykdant ávairias geologinio kartografavimo programas, interpretuoti seismoakustiniai profiliai Klaipëdos (Gelumbauskaitë et al. 2005a) bei Nidos platumose (þr. 1 pav.). Visuose taðkuose pagal Baltijos raidos vystymosi fazes iðskirti sluoksniai buvo pririðti prie E. Andren 1999 m. sudarytos geochronologinës skalës. Reljefo raidos geologiná modelá (2 pav.) sudaro trys pagrindinës dalys (Meyer 2003, Meyer et al. 2005): struktûrinis modelis, nusakantis ðiuolaikinæ Baltijos jûros dubens batimetrijà, kranto linijos padëtá bei pajûrio hipsometrijà; jûros lygio svyravimo eustatiniai (jiems átakos turi pasaulinio vandenyno vandens lygio kilimas) ir izostatiniai (jiems átakos turi tektoniniai judesiai) komponentai bei nuosëdø geodinamika, apibûdinanti sedimentacijos/erozijos procesà tiek jûroje, tiek krante. Fig. 1. Investigation area. Points show onland boreholes and cores in the sea. 2 pav. Geologinio modeliavimo schema (pagal M. Meyer). Fig. 2. Geological modelling scheme (after M. Meyer).

GEOLOGIJOS PAÞANGA Modelis buvo sukurtas naudojant minimum curvature interpoliacijos metodà, iðgaunant 200 m horizontalià bei 0,1-0,5 m vertikalià skiriamàjà gebà (rezoliucijà). Paleoreljefas Atkuriant holoceno reljefà, regioninës santykinio vandens lygio svyravimo kreivës bei geologiniai sluoksniai buvo geochronologiðkai suskaidyti á trumpas laiko atkarpas naudojant programà Diagrammer 2, kurià sukûrë Baltijos jûros tyrimø instituto (Varnemiundë, Vokietija) geologas dr. M. Meyer. Ði programa leidþia suskaidyti nubraiþytas santykinio vandens lygio svyravimo kreives á matricas, kuriose gautos reikðmës atspindi, kokiame absoliuèiame aukðtyje, lyginant su dabartiniu, buvo tuometinis vandens lygio pavirðius. Kuo regioniniø kreiviø daugiau, tuo tiksliau atspindimas to laikmeèio vaizdas. Norint 29 atskirti eustatinius komponentus nuo izostatiniø, programa Diagrammer 2 buvo áskaitmeninta eustatinë vandens lygio svyravimo kreivë Baltijos jûroje (Mörner, 1980) bei gauti duomenys atimti ið pradiniø, áskaitmeninus regionines santykinio vandens lygio svyravimø kreives. Kuriant modelá buvo panaudota 12 kreiviø ið skirtingø regionø Suomijos (1), Rusijos (1), Estijos (4), Lietuvos (2), Lenkijos (1), Vokietijos (1), Ðvedijos (2) (3 pav., 1 lentelë). Ðios kreivës buvo pasirinktos neatsitiktinai, nes norëjome rekonstruoti kuo ilgesnio laikotarpio reljefà. Kadangi Baltijos ledyninio eþero fazës tektoninë raida rekonstruota nepakankamai tiksliai, jos buvo nutarta atsisakyti, apsiribojant tik holoceno reljefo rekonstrukcija. Tokiu bûdu buvo sukurtas izostatinio komponento modelis, apimantis pastarøjø 10 500 metø laikotarpá, t.y. atspindintis Joldijos jûros, Ancyliaus eþero, Litorinos bei Postlitorinos vystymosi stadijas. Rekonstruojant paleoreljefà, reikëjo atsiþvelgti ir á sedimentacijos/erozijos procesus. Jie buvo modeliuojami naudojant græþiniø ir jûriniø kolonëliø bei seismoakustiniø profiliø duomenis. Kiekvienai Baltijos jûros vystymosi stadijai buvo sukurti nuosëdø storiø bei kiekvienos fazës pavirðiaus modeliai. Nustaèius vidurkiná sedimentacijos greitá ir duomenis perinterpretavus kartu su izostatiniu bei eustatiniu komponentais, buvo gauti paleoreljefo modeliai laiko atkarpoms kas 10 metø (4 pav.). 3 pav. Santykinio vandens lygio svyravimø kreiviø, naudotø kuriant paleoreljefo modelá, iðsidëstymas (kreiviø numerius þr. tekste, lentelëje). Fig. 3. Distribution of relative water level oscillation curves used to model the palaeorelief (for curve numbers see text and tables). Santykinio Baltijos jûros vandens lygiø svyravimø matavimo taðkø vietos ir numeriai Reljefo ateities vystymosi scenarijai Reljefo raida ateityje modeliuojama atsiþvelgiant tiek á pasaulinio vandenyno vandens lygio kilimà, tiek á neotektoninius judesius. Ðie duomenys gauti naudojant Pasaulinës klimato kaitos tyrimø grupës rezultatus, paskelbtus 2007 m. (Bindoff et al. 2007), bei tektoniná modelá, kuris buvo sukurtas bendradarbiaujant Baltijos jûros tyrimø instituto (IOW, Vokietija) bei Tartu universiteto specialistams (Rosentau et al. 2007). Mes sukûrëme tris pietrytinës Baltijos jûros dalies reljefo vystymosi ateityje modelius, remdamiesi optimistiðkiausiu, pesimistiðkiausiu bei vidurkiniu vandens lygio kilimo scenarijais. Optimistiðkiausiame scenarijuje

30 A B C D E GEOLOGIJOS PAÞANGA z, m 4 pav. Holoceno laikotarpio paleoreljefo rekonstrukcija: A prieð 100 metø (Baltijos jûra); B prieð 2000 metø (Postlitorinos jûra); C prieð 6 000 metø (Litorinos jûra); D prieð 9 000 metø (Ancyliaus eþeras); E prieð 10 000 metø (Joldijos jûra) (hipsometrinës kreivës iðvestos kas 5 m, raudona linija þymi dabartinæ kranto linijà). Fig. 4. Holocene palaeorelief reconstruction: A 100 years ago (Baltic Sea); B 2000 BP (Postlitorina Sea); C 6000 BP (Litorina Sea); D 9000 BP (Ancylus Lake); and E 10.000 BP (Yoldia Sea) (hypsometric curves drawn at every 5 m; the red line shows the presentday shoreline).

GEOLOGIJOS A PAÞANGA C 31 B z, m 5 pav. Prognozinë reljefo raida: A pesimistinis scenarijus (pasaulinio vandenyno vandens lygis po 100 metø pakils 0,98 m); B optimistinis scenarijus (pasaulinio vandenyno vandens lygis po 100 metø pakils 0,1 m; C vidurkinis scenarijus (vandenyno vandens lygis po 100 metø pakils 0,5 m) (hipsometrinës kreivës iðvestos kas 5 m, raudona linija þymi dabartinæ kranto linijà). Fig. 5. Forecasted relief development: A pessimistic scenario (in 100 years World Ocean level will rise by 0.98 m); B optimistic scenario (in 100 years World Ocean level will rise by 0.1 m); C average scenario (in 100 years World Ocean level will rise 0.5 m) (hypsometric curves drawn at every 5 m; the red line shows the present-day shoreline). pasaulinio vandenyno vandens lygis pakyla 10 cm, toks vandens lygio kilimas bûtø pasiektas radikaliai sumaþinus iðmetamø CO2 dujø kieká ir jei bûtø laikomasi Kijoto protokolo reikalavimø. Pesimistiðkiausias scenarijus sukurtas manant, kad Kijoto protokolo nebus laikomasi CO2 kiekis ne tik nebus sumaþintas, bet ir padidës dël didþiøjø pasaulio valstybiø (Kinijos ar Indijos) ekonomikos vystymosi. Vandens lygis, tirpstant ðiaurinio Þemës pusrutulio ledynams, kils ir po ðimto metø sieks 0,98 m. Vidurkinis scenarijus sudarytas remiantis prielaidomis, kad Kijoto protokolo laikysis ðiuo metu já pasiraðiusios ðalys, iðmetamo CO2 kiekis bus sumaþintas, ne taip sparèiai tirps ledynai ir pasaulinio vandenyno vandens lygis pakils apie 0,5 m. Mûsø nuomone, realiausias yra vidurkinis scenarijus. Todël planuojant teritorijø panaudojimà tikslingiausia bûtø atsiþvelgti á ðio reljefo raidos scenarijaus rezultatus. Visi ateities reljefo modeliai sukurti ðimtui metø (5 pav.). Diskusija Tyrimai, reikalingi reljefui rekonstruoti Lietuvoje tik pradedami. Mûsø modelis sukurtas naudojant tyrimø, atliktø dar nesinaudojant visuotine padëties nustatymo sistema (GPS), duomenimis, sukauptais skirtingu metu (tarp duomenø jûroje ir sausumoje yra apie 20 metø skirtumai), netaikant ðiuolaikiniø tyrimø metodø (absoliutaus amþiaus nustatymo, sunkiøjø mineralø analizës ir kt.). Dël ðiø prieþasèiø modelis nëra tikslus, taèiau tai yra pirmasis þingsnis atkuriant paleoreljefà.

32 GEOLOGIJOS PAÞANGA Norint gauti atkurto reljefo nepriekaiðtingus rezultatus, bûtini tikslingi tyrimai, apimantys visà kompleksà ámanomø metodø: palinologinius-paleobotaninius, absoliutaus datavimo, sedimentologinius, geofizinius, mineraloginius, geodezinius, archeologinius, hirdrologinius ir kt. Tik kryptingai dirbant bei bendradarbiaujant ávairiø srièiø specialistams ámanoma gana tiksli reljefà ir jo raidà atkurianti prognozë. Tokie tyrimai padëtø spræsti ne tik fundamentalius geologinius uþdavinius, bet ir bûtø naudingi priimant praktinius sprendimus. Kaip tik ðiuo metu Lietuvoje itin aktualus smëlio paëmimo ið jûros Lietuvos pliaþams papildyti klausimas, taèiau tiksli poveikio aplinkai analizë nëra padaryta. Tokià analizæ bûtø labai paprasta atlikti sukûrus nuosëdø transporto, reljefo vystymosi bei teritorijos planavimo modelius. Mûsø nuomone, priekrantës reljefo bei sedimentø srauto monitoringà reikëtø atlikti bent kas 5 metus. Ðiuolaikinës GIS technologijos bei kompiuterinis modeliavimas bûtø puikus árankis ðiems klausimams spræsti, tuo labiau, kad tokio modeliavimo rezultatai suprantami ne tik specialistams, bet ir þmonëms, kurie þemëlapius regëjo tik mokyklos suole. Literatûra Berglund, M. Holocene shore displacement and chronology in Ångermanland, eastern Sweden, the Scandinavian glacio-isostatic uplift center // Boreas, 33. 2004. P. 48-60. Berglund, B.E, Sandgren, P., Barnekow, L., Hannon, G., Jiang, H., Skog, G., Yu, S.Y. Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden // Quaternary International, 145-130. 2005. P. 111-139. Bindoff, N., Willebrand, J. Observations: Oceanic climate change and sea level. 2007. Internete: http://ipccwg1.ucar.edu/wg1/report/ar4wg1_pub_ch05.pdf. Bitinas, A., Damuðytë, A., Hütt, G., Jaek, I., Kabailienë, M. Application of the OSL dating for stratigraphic correlation of Late Weichselian and Holocene sediments in the Lithuanian Maritime Region // Quaternary Science Reviews, 20. 2001. P. 767-772. Bitinas, A., Damuðytë, A., Stanèikaitë, M., Aleksa, P. Geological development of the Nemunas River Delta and adjacent areas, West Lithuania // Geological Quarterly, 46(4). 2002. P. 375-389. Bitinas A., Damuðytë, A. The Litorina Sea at the Lithuanian Maritime region // Polish Geological Institute Special Papers, 11. 2004. P. 37-46. Dolukhanov, P., M. The Quaternary history of the Baltic. Leningrad och Soviet Carelia // The Quaternary history of the Baltic / eds. V. Gudelis, Konigsson, L.-K. -Uppsala., 1979. P. 115-125. Eronen, M., Glückert, G., Hatakka, L., van de Plassche, O., van der Plicht, J., Rantala, P. Rates of Holocene isostatic uplift and relative sea-level lowering of the Baltic in SW Finland based on studies of isolation contacts // Boreas, 30. 2001. P. 17-30. Gelumbauskaitë L.-Þ. Holocene history on the northern part of the Kurðiø Marios (Curonian) Lagoon // Baltica, 15. 2002. P. 3-12. Gelumbauskaitë, L.-Þ. On the morphogenesis and morphodynamics of the shallow zone of the Kurðiø Nerija (Curonian Spit) // Baltica, 16. 2003, P. 37-42. Gelumbauskaitë, L.-Þ., Ðeèkus, J. Late Quaternary Shore Formations of the Baltic Basins in the Lithuanian Sector // Geologija, 52. 2005. P. 34-45. Gelumbauskaitë, L. Þ., Ðeèkus, J. Late-Glacial Holocene history in Curonian Lagoon (Lithuanian sector) // Baltica, 18, No. 2. 2005b P. 77-82. Heinsalu, A., Veski, S., Vassiljev, J. Palaeoenvironment and shoreline displacement on Suursaari island, the Gulf of Finland // Bulletin of the Geological Society of Finland, 72. 2000. P. 21-46. Kabailienë, M. Lietuvos holocenas // Mokslas. 1990. P. 175. Kabailienë, M. Gamtinës aplinkos raida Lietuvoje per 14000 metø // Vilniaus Universiteto leidykla. 2007. P. 471. Kessel, H., Raukas, A. The Quaternary history of the Baltic. Estonia // The Quaternary history of the Baltic / eds. V. Gudelis, Konigsson, L.-K. Uppsala, 1979. P. 127-146. Kliewe, H. The Quaternary history of the Baltic. The German Democratic Republic // The Quaternary history of the Baltic / eds. V. Gudelis, Konigsson, L.-K. Uppsala, 1979. P. 185-193. Meyer, M. Modelling Prognostic Coastline Scenarios for the Southern Baltic Sea // Baltica, 16. 2003. P. 21-30. Meyer, M., Harff, J. Modelling Palaeo Coastline Changes of the Baltic Sea // Journal of Coastal Research, 21(3). 2005. P. 598-609. Mörner N.-A. 1980. Late Quaternary sea-level changes in the north-western Europe: a synthesis // Geologiska Föreningens i Stockholm Förhandlingar, 100. 1980. P. 381-400. Rosentau, A., Meyer, M., Harff, J., Dietrich, R., Richter, A. Relative Sea Level Change in the Baltic Sea since the Littorina Transgression. (in press). 2007. 20 p.

GEOLOGIJOS PAÞANGA 33 Saarnisto, M., Grönlund, T. Shoreline displacement of Lake Ladoga new data from Kilpolansaari // Hydrobiologia 322(1-3). Veski, S., Heinsalu, A., Klassen, V., Kriiska, A., Lougas, L., Poska, A., Saluäär, U. Early Holocene coastal settlements and palaeoenvironment on the shore of the Baltic Sea at Pärnu, southwestern Estonia // Quaternary International, 130. 2005. P. 75-85. Uúcinowicz, S. A relative sea-level curve for the Polish Southern Baltic Sea // Quaternary International, 145-146. 2006. P. 86-105. Summary Modelling of South-Eastern Baltic Sea Topography Changes This paper describes the application of the methodological tools, which had never been used for scientific interpretation of the geological processes in the south-eastern Baltic. Numerous authors have been studied geological evolution of the south-eastern Baltic more than 100 years. Therefore, the newest data have been obtained on this area during the last decade when several national, bilateral and international projects were performed. All this data had never been compiled using recent modelling methods. Modelling of the coastal evolution in the south-eastern part of the Baltic Sea has a special interest in the last years. New data occurred after interpretation of geoseismic profiles in Klaipëda Drëverna and latitude of Nida (southern Curonian Lagoon) areas. These data allowed reconstructing the relative sea level changes in Late Pleistocene Holocene time (Gelumbauskaitë et al. 2005). Regional relative sea level curves, geophysical data and cores (offshore and onshore) were used as background for the reconstruction of the palaeorelief in Holocene time. Twelve curves of the relative sea level changes were digitised and tables with two variables T (time) and elevation (Z) were obtained. All these data using minimum curvature method in Surfer program were interpolated and the grids of eustatic/isostatic compensation from nowadays were created for every 10 years. Compilation of the three main components (eustatic/isostatic, sedimentation and digital elevation model) allowed us to reconstruct 4-D (space/time) palaeorelief model for the southeastern part of the Baltic Sea (Gdansk Deep, Klaipëda Bank, Curonian Lagoon, Lithuanian Mainland). Data set of more than 600 points was used for the modelling processing. Timescale from 10,500 years to the recent days was taken for modelling of the development of the south-eastern Baltic Sea. The reason was that the most of the curves compiled for different regions were adjusted for the above-mentioned time interval. The model describes 4 different phases of the Baltic Sea: the Yoldia Sea, the Ancylus Lake, the Litorina Sea and the Postlitorina Sea. Not only palaeoreconstructions but also the future scenarios of the Baltic Sea development were taken into account of our project. The newest tendencies of climate changes and its influence on the sea level rise (Bindoff et al. 2007) and neotectonic movements were modelled and the influence on the relief of the southeastern Baltic Sea was shown. Three models of the future development were created based on the optimistic, pessimistic and average sea level rise scenarios created by IPCC. The optimistic scenario shows the relief development when the sea level rise will grow 10 cm in 100 years. This value of the sea level rise would be reached if CO 2 emission into the atmosphere would be radically decreased, and requirements of the Kyoto protocol would be strongly followed. The pessimistic scenario is created based on the opinion that requirements of the Kyoto protocol will be ignored, the CO 2 emission to the atmosphere will be increased because of the economical growing of the biggest countries (such as India, China etc.) and the sea level will rise because of melting of the Ice Shield in the Northern hemisphere and will reach 0.98 cm in 100 years. The average scenario is created based on the theory that the requirements of Kyoto protocol will be followed by the countries which have signed it by now, CO 2 emission to the atmosphere will be decreased, but the Ice Shield in the Northern Hemisphere will melt anyway, because of inertia of the natural processes, but not so intensive as it is in the pessimistic scenario. The global water level will rise 0.5 cm in 100 years. In our opinion, the average scenario seems to be most realistic, and it would be most useful for the coastal planning works.