Photonic Crystals and Metamaterials

Similar documents
Experiments on Optical Invisibility Cloaking

arxiv: v1 [physics.optics] 25 Jan 2010

arxiv: v1 [physics.optics] 28 May 2011

Photonic Wannier Functions: Generation and Usage

2 Transformation Optics

Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation

An efficient way to reduce losses of left-handed metamaterials

History of photonic crystals and metamaterials. However, many serious obstacles must be overcome before the impressive possibilities

Effect of nonlinearity on wave scattering and localization. Yuri S. Kivshar

A Dielectric Invisibility Carpet

To the use of Sellmeier formula


Optical and Infrared Helical Metamaterials

Theoretical study of left-handed behavior of composite metamaterials

SNOM Challenges and Solutions

Overview. 1. What range of ε eff, µ eff parameter space is accessible to simple metamaterial geometries? ``

limitations J. Zhou, E. N. Economou and C. M. Soukoulis

Polarization control of defect modes in threedimensional woodpile photonic crystals

EE 485 Introduction to Photonics Photon Optics and Photon Statistics

Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic Discontinuities

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Geometry & light:! the science of invisibility!! Ulf Leonhardt"! SCNU & Weizmann Institute!

Magneto- electric point sca0erers

Singular Nano-Photonics: hydrodynamics-inspired light trapping & routing Svetlana V. Boriskina

Three-Dimensional Nanostructures for Photonics

Progress In Electromagnetics Research M, Vol. 20, 81 94, 2011

Nanostructures fabricated by laser interference lithography and their potential applications

Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals

The Photonic Band Gap and Colloidal Crystals. Focus: Photonic Band Gap

arxiv: v1 [physics.optics] 17 Jan 2013

Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial

Quantum Walks and Phase Transitions in Quadratic Nonlinear Waveguide Arrays

Chapter 2 Physical Principle of Optical Tweezers

Gold helix photonic metamaterials: A numerical parameter study

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication

THz QCL sources based on intracavity difference-frequency mixing

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain

Cloaking The Road to Realization

Coherent control of Rydberg atoms

Towards optical left-handed metamaterials

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France

Rezonanse typu spin-orbit w meta-materiałowych elementach nanofotoniki Spin-orbit resonances in meta-material elements of nanophotonics

Transition between corrugated metal films and split-ring-resonator arrays

Tuning of 2-D Silicon Photonic Crystals

NONLINEAR TRANSITIONS IN SINGLE, DOUBLE, AND TRIPLE δ-doped GaAs STRUCTURES

Demonstration of Near-Infrared Negative-Index Materials

Theoretical Investigation of Transmission and Dispersion Properties of One Dimensional Photonic Crystal

Focusing of Light by a Nano-Hole Array

Two-Photon Fabrication of Three-Dimensional Metallic Nanostructures for Plasmonic Metamaterials

From optical graphene to topological insulator

Scanning Tunneling Microscopy

Photonic crystals. Semi-conductor crystals for light. The smallest dielectric lossless structures to control whereto and how fast light flows

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Workshop on New Materials for Renewable Energy

Electrical Resistance

Wakefield in Structures: GHz to THz

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

Finite Element Methods for Optical Device Design

Administrative details:

3D SUPER-RESOLUTION FLUORESCENCE MICROSC- OPY USING CYLINDRICAL VECTOR BEAMS

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

Super-Diffraction Limited Wide Field Imaging and Microfabrication Based on Plasmonics

Phononic Crystals: Towards the Full Control of Elastic Waves propagation OUTLINE

Dielectric Optical Cloak

Collective effects in second-harmonic generation from plasmonic oligomers

Comparative study of metallic and dielectric helix photonic metamaterial

a b c d e f g h Supplementary Information

Left-handed materials: Transfer matrix method studies

SUPPLEMENTARY INFORMATION

Basic Waves and Optics

Advanced Vitreous State The Physical Properties of Glass

Cork Institute of Technology Bachelor of Science (Honours) in Applied Physics and Instrumentation-Award - (NFQ Level 8)

Raman spectroscopy study of rotated double-layer graphene: misorientation angle dependence of electronic structure

Scattering-type near-field microscopy for nanoscale optical imaging

Experiments on second- and third-harmonic generation from magnetic metamaterials

Wave scattering and splitting by magnetic metamaterials

Mie resonators on silicon Fabrication and optical properties

Near Field Observation of a Refractive Index Grating and a Topographical Grating by an Optically Trapped Gold Particle

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

THz field strength larger than MV/cm generated in organic crystal

Electromagnetic Metamaterials

Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps

Positron annihilation on atomic core electrons + positive ions

Lecture 10: Surface Plasmon Excitation. 5 nm

Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

Focusing of elliptically polarized Gaussian beams through an annular high numerical aperture

Reversed Cherenkov Radiation in Left Handed Meta material Lecture, Nov 21, 2012 Prof. Min Chen

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19)

Spontaneous emission rate of an electric dipole in a general microcavity

Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays. Hatice Altug * and Jelena Vučković

EUV lithography and Source Technology

The ISIS Penning H - SPS and Diagnostic Developments at RAL

A tutorial on meta-materials and THz technology

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density

Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic Framework Microcrystals

Lecture 9: Introduction to Diffraction of Light

Transcription:

Photoic Crystals ad Metamaterials - Karlsruhe Istitute of Techology (KIT), Karlsruhe, Germay - DFG-Ceter for Fuctioal Naostructures (CFN), KIT - Istitut für Agewadte Physik (AP), KIT - Istitut für Naotechologie (INT), KIT - Karlsruhe School of Optics & Photoics (KSOP), KIT Dr. Mauel Decker (PHOME) Tolga Ergi (AP) Joachim Fischer (CFN) Dr. Isabelle Staude (CFN) Dr. Nicolas Steger (KSOP) Prof. Dr. Kurt Busch (KIT, Karlsruhe, Germay) Prof. Dr. Stefa Lide (Uiversität Bo, Germay) Prof. Dr. Joh B. Pedry (Imperial College, Lodo, U.K.) Prof. Dr. Costas M. Soukoulis (Heraklio, Greece) WavePro Symposium, Rethymo (Greece), Jue 8-11, 2011 The split-rig resoator J.B. Pedry et al., IEEE Tras. MTT 47, 2075 (1999) 1

Theory of waves i metamaterials L. Solymar, E. Shamoia, ad L. Solymar, Waves i Metamaterials, Oxford Uiversity Press, Oxford, 2009 Experimets o magetizatio waves i photoic metamaterials S. Lide et al., Sciece 306, 1351 (2004) G. Dollig et al., Appl. Phys. Lett. 89, 231118 (2006) N. Liu et al., Adv. Mater. 20, 4521 (2008) M. Decker et al., Phys. Rev. B 80, 193102 (2009) I. Sersic et al., Phys. Rev. Lett. 103, 213902 (2009) S. Lide et al., Sciece 306, 1351 (2004) Tight-bidig model (istataeous iteractio): m 2 ( m Ω m WΩ m 1 m 1) 2 Ω Ω m (t) m ( t 1 ) Re( ) Ω cos( ) Im( ) si( ) M. Decker et al., Phys. Rev. B 80, 193102 (2009) Tight-bidig model (istataeous iteractio): m 2 ( m Ω m WΩ m 1 m 1) Tight-bidig model (with retardatio): m 2 ( m Ω m WΩ m 1 m 1) 2 Ω Ω m (t) m ( t 1 ) 2 Ω Ω m (t) m ( t t ) W W exp(i ) ; Ωt 1 0 0 Re( ) Ω cos( ) Im( ) si( ) Re( ) Ω cos( ) Im( ) si( ) M. Decker et al., Phys. Rev. B 80, 193102 (2009) M. Decker et al., Phys. Rev. B 80, 193102 (2009) 2

Tight-bidig model (special example): m 2 ( m Ω m WΩ m 1 m 1) 2 Ω Ω m (t) m 1( t t ) W W exp(i ) ; Ωt 0 0 a=280 m Re( ) Ω cos( ) Im( ) si( ) 2 M. Decker et al., Phys. Rev. B 80, 193102 (2009) a=300 m a=325 m a=350 m a=400 m 3

a=500 m a=550 m a=600 m a=700 m Measured Spectra Experimetal Geometry 4

I-Plae Dispersio I-Plae Dispersio No Retardatio Retardatio & NN Retardatio & Three Dipoles 5

Dipole Chai Numerics 2D SRR Array Woodpile Structure C.M. Soukoulis et al., Solid State Commu. 89, 413 (1994) Woodpile Structure Woodpile Structure C.M. Soukoulis et al., Solid State Commu. 89, 413 (1994) C.M. Soukoulis et al., Solid State Commu. 89, 413 (1994) 6

Woodpile Structure Woodpile Structure fcc for (c/a) 2 =2, full gap for idex cotrast >1.9, 25% gap for holes i Si C.M. Soukoulis et al., Solid State Commu. 89, 413 (1994) C.M. Soukoulis et al., Solid State Commu. 89, 413 (1994) 3D Direct Laser Writig (DLW) 10 µm scheme ot to scale, actual NA=1.4, Tolga Ergi M. Deubel et al., Nature Mater. 3, 444 (2004) Complete 3D PBG @ 1.55 μm 10 µm M. Deubel et al., Nature Mater. 3, 444 (2004) I. Staude et al., Opt. Lett. 35, 1094 (2010) 7

3D Waveguide Architectures I. Staude et al., Opt. Lett. 36, 67 (2011) Staford Liear Accelerator (SLAC) Particle Accelerator o a Chip mirror plae termiatio Si B.M. Cowe, Phys. Rev. Spec. Top. Acell. Beams 11, 011301 (2008) 8

3D Carpet Cloak 2D Carpet Cloak 3D Carpet Cloak STED Microscopy T. Ergi et al., Sciece 328, 337 (2010) sigle NV ceter i diamod: E. Rittweger et al., Nature Photoics 3, 144 (2009) STED Microscopy Jabloski Diagram Stimulated Emissio Depletio (STED) microscopy S.W. Hell et al., Opt. Lett. 19, 78 (1994) S.W. Hell et al., Nature Methods 6, 24 (2009) E. Rittweger et al., Nature Photoics 3, 144 (2009) STED ispired DLW lithography L. Li et al., Sciece 324, 910 (2009) T.F. Scott et al., Sciece 324, 913 (2009) J. Fischer et al., Adv. Mater. 22, 3578 (2010) Joachim Fischer 9

Jabloski Diagram STED-DLW Photoresist Joachim Fischer 0.25% wt 7-diethylamio-3-theoylcoumari i petaerythritol tetraacrylate (+ quecher) Measured Foci Measured Foci DLW @ 810 m lateral STED @ 532 m z y z y x x x x 200 m 200 m 200 m 200 m scatterig off 100-m Au beads i moomer scatterig off 100-m Au beads i moomer Measured Foci Electro Micrograph z x axial STED @ 532 m 200 m y x crystal: woodpile rod spacig: 350 m bump width: 6 μm bump height: 0.5 μm cloak height: 5 μm cloak width: 50 μm Au thickess: 100 m DLW power: 10 mw STED power: 50 mw duty cycle: 3%; 4 khz 200 m mode: HDR scale bar: 10 μm scatterig off 100-m Au beads i moomer J. Fischer et al., Opt. Lett. 36, 2059 (2011) 10

Optical Micrographs Optical Micrographs Bottom View Top View Bottom View Top View 700-m illumiatio, NA=0.4, circular polarizatio 700-m illumiatio, NA=0.4, circular polarizatio Not-Seeig is Believig Direct Compariso Bottom View Top View Theory Experimet 700-m illumiatio, NA=0.4, circular polarizatio ray-tracig theory: T. Ergi et al., Opt. Express 18, 20535 (2010) Dark-Field Mode Theory Experimet 30-degree tilt of sample alog bump axis 11

Wave Cloak or Ray Cloak? No-Euclidia Ray Cloak www.howstuffworks.com & www.mamapop.com U. Leohardt ad T. Tyc, Sciece 323, 110 (2009) Sciece 306, 1351 (2004); submitted (2011) Sciece 328, 337 (2010) & 330, 1633 (2010) accelerator o a chip STED-DLW Opt. Lett. 36, 67 (2011); i preparatio (2011) Opt. Lett. 36, 2059 (2011); upublished (2011) 12