Active Filters an Introduction

Similar documents
Active Filters an Introduction

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function

CHAPTER 13 FILTERS AND TUNED AMPLIFIERS

EE40 Lec 13. Prof. Nathan Cheung 10/13/2009. Reading: Hambley Chapter Chapter 14.10,14.5

ELECTRONIC FILTERS. Celso José Faria de Araújo, M.Sc.

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

Analog Circuits and Systems

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

Question 1 Equivalent Circuits

Lecture 10 Filtering: Applied Concepts

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

Design of Digital Filters

OPERATIONAL AMPLIFIER APPLICATIONS

Follow The Leader Architecture

ECEN620: Network Theory Broadband Circuit Design Fall 2018

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA

EE247 Lecture 10. Switched-Capacitor Integrator C

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

5.5 Application of Frequency Response: Signal Filters

Texas A&M University Department of Electrical and Computer Engineering

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).

Biquad Filter. by Kenneth A. Kuhn March 8, 2013

Lecture #9 Continuous time filter

Digital Signal Processing

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

HIGHER-ORDER FILTERS. Cascade of Biquad Filters. Follow the Leader Feedback Filters (FLF) ELEN 622 (ESS)

Start with the transfer function for a second-order high-pass. s 2. ω o. Q P s + ω2 o. = G o V i

Lecture 6: Resonance II. Announcements

Op-Amp Circuits: Part 3

MAE140 Linear Circuits Fall 2012 Final, December 13th

Sophomore Physics Laboratory (PH005/105)

ECE Linear Circuit Analysis II

Lecture 28. Passive HP Filter Design

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

Electronic Circuits EE359A

Symbolic SPICE TM Circuit Analyzer and Approximator

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia

EE100Su08 Lecture #9 (July 16 th 2008)

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

Digital Control System

Electronic Circuits EE359A

EE-202 Exam III April 6, 2017

EE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits

ECE3050 Assignment 7

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve

Deliyannis, Theodore L. et al "Two Integrator Loop OTA-C Filters" Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999

EE Control Systems LECTURE 6

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

ESE319 Introduction to Microelectronics. Feedback Basics

Use of a Notch Filter in a Tuned Mode for LISA.

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG

Massachusetts Institute of Technology Dynamics and Control II

Lecture 8 - SISO Loop Design

Analog and Digital Filter Design

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

Chapter 17 Amplifier Frequency Response

Lecture 5 Introduction to control

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

Designing Circuits Synthesis - Lego

ESE319 Introduction to Microelectronics. Feedback Basics

55:041 Electronic Circuits

Appendix A Butterworth Filtering Transfer Function

State Space: Observer Design Lecture 11

Summary of last lecture

Section 5 Dynamics and Control of DC-DC Converters

Operational transconductance amplifier based voltage-mode universal filter

Reference:W:\Lib\MathCAD\Default\defaults.mcd

The Operational Amplifier

Frequency Response. We now know how to analyze and design ccts via s- domain methods which yield dynamical information

ECEN 325 Electronics

HOMEWORK ASSIGNMENT #2

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.

D is the voltage difference = (V + - V - ).

( ) ( ) ω = X x t e dt

EE40 Midterm Review Prof. Nathan Cheung

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

EE-202 Exam III April 13, 2015

Input and Output Impedances with Feedback

Homework Assignment No. 3 - Solutions

EE Control Systems LECTURE 14

Lecture 4: Feedback and Op-Amps

1. /25 2. /30 3. /25 4. /20 Total /100

Adjoint networks and other elements of circuit theory. E416 4.Adjoint networks

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

RaneNote BESSEL FILTER CROSSOVER

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms

EE482: Digital Signal Processing Applications

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

Unit 8: Part 2: PD, PID, and Feedback Compensation

Electronic Circuits Summary

EE 508 Lecture 31. Switched Current Filters

Transcription:

Active Filter an Introduction + Vin() - Filter circuit G() + Vout() - Active Filter. Continuou-time or Sampled-data. Employ active element (e.g. tranitor, amplifier, op-amp) a. inductor-le (continuou-time) b. inductor-le & reitor-le (ample-data) c. gain in paband 8 Kenneth R. Laker updated 7Dec9 KRL

Active Filter an Introduction + Vin() - Filter circuit G() + Vout() - G = a M M a M M... a a N b N N... b b a M z z... z M G = p p... p N M N 8 Kenneth R. Laker updated 7Dec9 KRL Filter Order = N

Ideal Filter Repone Characteritic G G Paband Stop-band Stop-band Paband P High-pa (HP) Low-pa (LP) G G Paband Lower Stop-band P PL Stop-band Upper Stop-band PH Upper Paband Lower Paband SL SH Bandtop (BS) V j G = G j = out V in j Bandpa (BP) 8 Kenneth R. Laker updated 7Dec9 KRL 3

Practical Lowpa Filter Specification S electivity factor = P G (db) Tranition band Amax Amin Stop-band Paband P S Key pec:. f B = P /. Amax 3. f S =S / 4. Amin Filter cot increae!. Amax -> lower. Amin -> larger 3. P -> larger 4. S / P -> z 8 Kenneth R. Laker updated 7Dec9 KRL z 4

Filter Approximation Deign G() G a M z z... z M => G = p p... p N MatLab i a good tool for thi tak. 8 Kenneth R. Laker updated 7Dec9 KRL 5

Practical Bandpa Filter Specification G (db) Selectivity factor SL SU PL PU Tranition band Amax Symmetric bandpa filter SL SU = PL PU Amin Lower Stop-band Paband Upper Stop-band PU PL Q= PU SU SL PL SL PL 8 Kenneth R. Laker updated 7Dec9 KRL 6

Cacade Filter Deign If N = odd G = a M M a M M... a a N b N N... b b (N- )/ (N- )/ a a a i ai ai = = G i b i = bi bi i = If N = even a M M a M M... a a N/ a i ai ai N/ G = N = = G i N b N... b b i = bi b i i = Vin G() Vo G() Vo G3() Vo3 Vo(N-)/... GN/() Vout N = odd => G() t order N = even => G() nd order 8 Kenneth R. Laker updated 7Dec9 KRL 7

Filter Type -plane zero/pole order low-pa (LP) a Q a G j = G = nd order high-pa (LP) a G = Q G j =a X a Q a Q G j = j G z = z = o O max j G z = z = O X Q 8 Kenneth R. Laker updated 7Dec9 KRL 4Q max max = Q a Q / a Gmax X Q X a X Q X a Q Gmax G z = z = nd order bandpa (LP) G = G j nd max = / 4Q Q a Q / Gmax a Q /.77 Gmax / Q = 8

Filter Type -plane zero/pole order Notch (N) O nd X Q O nd order LP Notch (LPN) N G =a Q N nd order HP Notch (HPN) G a X j N G =a Q N O G a = a j G Q a N max N O j X O X N N QO 8 Kenneth R. Laker updated 7Dec9 KRL G a G j = a N a G j = a a max N N Gmax N Gmax X N X N G j = a N G j = a 9

nd order All-Pa (AP) Q G =a Q G j = G j = a G a j X O X Q Q O Ideal tranmiion: j t v O t =K v I t t d T j = T j e Group Delay 8 Kenneth R. Laker updated 7Dec9 KRL T j =K d = j = t d d j =t d d

Delay Equalization Concept delay ditorted data Cable or Filter equalized data Delay Equalizer Total Equalized Delay tot = C DE Delay Equalizer DE Cable or Filter tot = C DE 8 Kenneth R. Laker updated 7Dec9 KRL

OP Amp Building Block Inverting Integrator t v O t = v I t dt CR Summer v v V o = = int V i CR int = R f R3 Rf V = V V. R R R3 R R Rf V 3 R R3 R CR 8 Kenneth R. Laker updated 7Dec9 KRL

Two-Integrator-Feedback-Loop Active Filter V hp int = = CR Vi V hp - => V hp V hp V hp =K V i Q => K K V hp = V i = V i Q Q V hp = V hp V hp K V i Q V hp hp V V hp V hp V hp Vi /Q Q K V hp 8 Kenneth R. Laker updated 7Dec9 KRL V hp K V hp=v lp V hp=v bp 3

Feedback Equation V hp = V hp K V i Q V hp G hp = = Vi K K = Q Q 8 Kenneth R. Laker updated 7Dec9 KRL 4

Feedback Equation II High Pa Output: Bandpa Output: Lowpa Output: 8 Kenneth R. Laker updated 7Dec9 KRL V hp = Vi K = K Q Q V bp V hp = = Vi Vi V lp V bp = = Vi Vi K Q K Q 5

8 Kenneth R. Laker updated 7Dec9 KRL 6

Implementation R Rf Vi C R R R Inverting Integrator C V lp V hp V bp R3 V hp = V hp V hp K V i Q Summing Amp V hp=v bp V hp=v lp R f R Rf R3 Rf V hp = V hp V hp Vi R R R 3 R R R 3 R 8 Kenneth R. Laker updated 7Dec9 KRL 7

Implementation II R f R Rf R3 Rf V hp = V hp V hp Vi R R R 3 R R R 3 R R f = R Set: V hp = R R3 V hp V hp V R R3 R R3 i V hp = And compare term: V hp V hp K V i Q R R3 R3 Q= Q= R R 8 Kenneth R. Laker updated 7Dec9 KRL => circuit ymbolic Eq. pec/numerical Eq. R3 = Q R 8

K Q Dependence From previou lide: R3 = Q R R3 K= R R 3 R3 R3 R Q K= = = = R3 R R 3 Q Q R Only Q or K can be the independent variable! 8 Kenneth R. Laker updated 7Dec9 KRL 9

Deign Equation RC = R f = R Given = f, chooe C, calculate R Chooe Rf, Calculate R or vice-vera. R3 =Q Given Q, chooe R, calculate R3 or vice-vera. R R3 KQ= =Q K = R Q K i fixed by choice of Q. We have two independent parameter ( and Q, or K) and three independent component (C, Rf (or R), and R(or R3)). 8 Kenneth R. Laker updated 7Dec9 KRL

Retriction Since K = Q / Q When Q = /: V hp K K = = V i We have real and equal pole. For Q > /, we are retricted to complex conjugate pole. 8 Kenneth R. Laker updated 7Dec9 KRL

Adding Finite Zero (Notche) To be able to create notche in the repone, we need another umming amplifier: V hp V bp V lp Vo Where the weighted input come from the highpa, bandpa, and lowpa output of the feedback circuit. 8 Kenneth R. Laker updated 7Dec9 KRL

Notch Creation All the output point tranfer function contain the ame denominator, o only the numerator term will be affected: V hp V bp V lp RH RF RB RL G = K RF RF RF V o G = V hp V bp V lp RH RB RL R F / R H R F / R B R F / R L /Q For a notch at = N, no connection i made to Vbp, i.e. R B = 8 Kenneth R. Laker updated 7Dec9 KRL 3

8 Kenneth R. Laker updated 7Dec9 KRL 4

Big Picture Filter Deign Tak. Deign G() from filter pec.. Determine filter tructure (block diagram) to realize G(). 3. Determine filter circuit() to implement tructure. 4. Determine component value. Filter Deign CAD Tool on the Market. MatLab - Mathwork. FILTER PRO Texa Intrument 3. Aktiv Filter New Wave Intrument 4. Filter Lab Microchip 5. Filter Wiz Pro Schematica 6. FilterCAD Linear Technology 8 Kenneth R. Laker updated 7Dec9 KRL 5

8 Kenneth R. Laker updated 7Dec9 KRL 6

8 Kenneth R. Laker updated 7Dec9 KRL 7

8 Kenneth R. Laker updated 7Dec9 KRL 8

R n =R fn =Rn = 8 Kenneth R. Laker updated 7Dec9 KRL 9

8 Kenneth R. Laker updated 7Dec9 KRL 3

8 Kenneth R. Laker updated 7Dec9 KRL 3

(MFM) 8 Kenneth R. Laker updated 7Dec9 KRL 3