ECE606: Solid State Devices Lecture 20. Heterojunction Bipolar Transistor

Similar documents
ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design

Lecture 29: BJT Design (II)

Lecture 5: HBT DC Properties. Basic operation of a (Heterojunction) Bipolar Transistor

Bipolar Junction Transistors

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below.

Introduction to Microelectronics

Heterojunctions. Heterojunctions

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is:

1. pn junction under bias 2. I-Vcharacteristics

Lecture 27: Introduction to Bipolar Transistors

Semiconductors a brief introduction

Semiconductor Electronic Devices

FYS Vår 2016 (Kondenserte fasers fysikk)

Lecture 10: P-N Diodes. Announcements

ECE606: Solid State Devices Lecture 14 Electrostatics of p-n junctions

Quiz #3 Practice Problem Set

Schottky diodes: I-V characteristics

Introduction to Solid State Physics

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

ECE-305: Spring 2018 Final Exam Review

Chapter 2 Motion and Recombination of Electrons and Holes

Monolithic semiconductor technology

Chapter 2 Motion and Recombination of Electrons and Holes

Digital Integrated Circuit Design

Compact Modeling of Noise in the MOS Transistor

Doped semiconductors: donor impurities

Overview of Silicon p-n Junctions

Summary of pn-junction (Lec )

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19

Solid State Device Fundamentals

2.CMOS Transistor Theory

Solar Photovoltaic Technologies

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5.

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

Metal Gate. Insulator Semiconductor

Electrical Resistance

Basic Physics of Semiconductors

CMOS. Dynamic Logic Circuits. Chapter 9. Digital Integrated Circuits Analysis and Design

Basic Physics of Semiconductors

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Diode in electronic circuits. (+) (-) i D

EE 505. Lecture 29. ADC Design. Oversampled

EE105 - Fall 2006 Microelectronic Devices and Circuits

Digital Integrated Circuits. Inverter. YuZhuo Fu. Digital IC. Introduction

Mixed Signal IC Design Notes set 7: Electrical device noise models.

YuZhuo Fu Office location:417 room WeiDianZi building,no 800 DongChuan road,minhang Campus

Intrinsic Carrier Concentration

Transistors - CPE213 - [4] Bipolar Junction Transistors. Bipolar Junction Transistors (BJTs) Modes of Operation

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Crash course part 2. Frequency compensation

Digital Integrated Circuits

Analog Integrated Circuit Design (Analog CMOS Circuit Design)

EECS130 Integrated Circuit Devices

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Modulation Doping HEMT/HFET/MODFET

Consider the circuit below. We have seen this one already. As before, assume that the BJT is on and in forward active operation.

Nanostructured solar cell

ECE 145B / 218B, notes set 3: Electrical device noise models.

Lecture 9. NMOS Field Effect Transistor (NMOSFET or NFET)

Semiconductors. PN junction. n- type

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells

Lecture 1: Semiconductor Physics I. Fermi surface of a cubic semiconductor

Semiconductor Statistical Mechanics (Read Kittel Ch. 8)

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

6.003 Homework #12 Solutions

BJT - Mode of Operations

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors

Bipolar Junction Transistors: Solving Ebers-Moll Problems

BLUE PRINT FOR MODEL QUESTION PAPER 3

Lecture 3-7 Semiconductor Lasers.

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D

ECE 442. Spring, Lecture - 4

Recent Experimental Results in ADITYA Tokamak

6.003 Homework #12 Solutions

Antenna Engineering Lecture 8: Antenna Arrays

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Chapter 4 : Laplace Transform

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io

Photodetectors; Receivers

Photodiodes. 1. Current and Voltage in an Illuminated Junction 2. Solar Cells

EE 505 Lecture 9. Statistical Circuit Modeling

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

Solid State Device Fundamentals

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write:

CHAPTER 4: P-N P N JUNCTION Part 2. M.N.A. Halif & S.N. Sabki

Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices

Chapter 5 Carrier transport phenomena

ELECTRICAL PROPEORTIES OF SOLIDS

EE105 - Fall 2006 Microelectronic Devices and Circuits

Semiconductor Device Modeling and Characterization EE5342, Lecture 21 -Sp 2002

Semiconductor Physics Problems 2015

Semiconductor Junctions

Time-Domain Representations of LTI Systems

Nanomaterials for Photovoltaics (v11) 6. Homojunctions

Nonequilibrium Excess Carriers in Semiconductors

Transcription:

C606: Solid State Devices Lecture 0 Heterojuctio ipolar Trasistor Gerhard Klimeck gekco@purdue.edu 1 Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary 5. Abrupt juctio HTs 6. Graded juctio HTs 7. Graded base HTs 8. Double heterojuctio HTs 9. Coclusios Heterostructure Fudametals, by Mark Ludstrom, Purdue Uiversity, 1995. Herbert Kroemer, Heterostructure bipolar trasistors ad itegrated circuits, Proc. I, 70, pp. 13-5, 198.

How to make a better Trasistor β i, N poly, ballistic i, N υth υ s Graded ase trasport Polysilico mitter Heterojuctio bipolar trasistor g, NC, NV, e ( g, g, ) = e g, β N N e i, i,,, mitter badgap > ase adgap β β 3 Heterojuctio ipolar Trasistors i) Wide gap mitter HT emitter G1 > G p+ base G collector + G ii) Double Heterojuctio ipolar Trasistor emitter G1 > G p+ base G collector + G3 > G 4

Mesa HTs emitter G1 > G p+ base G collector + G3 > G Mesa HT p+ base -collector + semi-isulatig substrate Itetioal traps, Fermi level pied Low coductace Low capacitace High speed 5 Applicatios 1) Optical fiber commuicatios -40Gb/s.160Gb/s ) Widebad, high-resolutio DA/AD coverters ad digital frequecy sythesizers -military radar ad commuicatios 3) Moolithic, millimeter-wave IC s (MMIC s) -frot eds for receivers ad trasmitters future eed for trasistors with 1 THz power-gai cutoff freq. 6

ackgroud A heterojuctio bipolar trasistor Kroemer Schokley realized that HT is possible, but Kroemer really provided the foudatio of the field ad worked out the details. 7 Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary 5. Abrupt juctio HTs 6. Graded juctio HTs 7. Graded base HTs 8. Double heterojuctio HTs 9. Coclusios Heterostructure Fudametals, by Mark Ludstrom, Purdue Uiversity, 1995. Herbert Kroemer, Heterostructure bipolar trasistors ad itegrated circuits, Proc. I, 70, pp. 13-5, 198. 8

Topic Map Diode quilibrium DC Small sigal Large Sigal Circuits Schottky JT/HT MOS 9 adgaps ad Lattice Matchig 10

ad Diagram at quilibrium + ( D A ) D = q p + N N 1 = J r + g t q p 1 = J r + g t q J N N N J = qµ + qd N N N P P P = qpµ qd p P P P quilibrium DC d/dt=0 Small sigal d/dt ~ jωt Trasiet --- Charge cotrol model 11 N-Al 0.3 Ga 0.7 As: p-gaas (Type-I Heterojuctio) N D N A Vacuum Level χ F G 1.80 ev χ 1 G 1.4 ev Abrupt juctio HT 1

uilt-i Potetial: oudary Coditio @Ifiity + χ + qv = + χ 1 1 bi g, qv bi χ χ 1 F 1 g, qv = + χ χ bi g, 1 1 N N = k T l + N N e A D g, / kt V, C, 1 ( χ χ ) 1 13 Iterface oudary Coditios -field 1 D κ ε x x p + ( 0 ) = D( 0 ) + ( 0 ) = κε ( 0 ) 0 0 dv κ1ε 0 dx 0 dv = κε 0 dx + 0 Positio Displacemet is cotiuous D is ot cotiuous if there is a surface charge 14

Aalytical Solutio for Heterojuctios Charg e -field x x p x x ( 0 ) + ( 0 ) qn Dx = k ε s, 0 qn Axp = k ε s, 0 NDx = N Axp Charge cotiuity (idepedet of k) Potetial x s, 0 + ( 0 ) ( 0 ) x x Vbi = + qndx qn Axp = + k ε k ε s, 0 p 15 ase mitter Depletio Regio N D x N A x p V N x bi, p, qn x, qnx = + κ ε κ ε s, = N x p, 0 s, 0 x x = p = ε 0 s, s, κ κ N ( κ s, + κ s, ) q N N N ε 0 s, s, κ κ N V ( κ s, + κ s, ) q N N N bi V bi 16

Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary 5. Abrupt juctio HTs 6. Graded juctio HTs 7. Graded base HTs 8. Double heterojuctio HTs 9. Coclusios Heterostructure Fudametals, by Mark Ludstrom, Purdue Uiversity, 1995. Herbert Kroemer, Heterostructure bipolar trasistors ad itegrated circuits, Proc. I, 70, pp. 13-5, 198. 17 N-Al 0.3 Ga 0.7 As: p-gaas (Type-I Heterojuctio) N D N A Vacuum Level χ F G 1.80 ev χ 1 G 1.4 ev Abrupt juctio HT 18

P-Al 0.3 Ga 0.7 As : -GaAs (Type I juctios) 0 Vacuum level χ 1 qv (x) qv I l V jp G 1.80 ev χ V j F G 1.4 ev Depletio layer Depletio layer Alam C-606 S09 19 N-p vs P- of Type I Heterostructure 0

(AlIAs/IP) Type II Juctios N D N A Vacuum level χ χ 1 F 1 N-Al 0.3 Ga 0.7 As : -GaAs Juctios Isotype Heterojuctio V G 1.4 ev G 1.80 ev Depletio Layer Accumulatio Layer Metal-Metal juctios have similar features differet workfuctios => differet bad lieups thermoelectric coolers, electros travelig from oe side to the other ca gai ad lose eergy

P-GaSb : -IAs (Type III) 0 Field-free vacuum level χ 1 G 0.7 ev χ FP F G 0.36 ev 3 P-GaSb : -IAs (Type III) = 0.87 ev G 0.7 ev F G 0.36 ev Accumulatio Layer! Accumulatio Layer! 4

Coclusio 1. Heterojuctio trasistors offer a solutio to the limitatios of poly-si bipolar trasistors.. quilibrium solutios for HTs are very similar to those of ormal JTs. 3. Depedig o the aligmet, there could be differet types of heterojuctios. ach has differet usage. 4. We will discuss curret trasport i HTs i the ext sectio. 5 Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary 5. Abrupt juctio HTs 6. Graded juctio HTs 7. Graded base HTs 8. Double heterojuctio HTs 9. Coclusios Heterostructure Fudametals, by Mark Ludstrom, Purdue Uiversity, 1995. Herbert Kroemer, Heterostructure bipolar trasistors ad itegrated circuits, Proc. I, 70, pp. 13-5, 198. 6

Abrupt Juctio HTs i C / kt J, = q υrpe = J ( V = 0) N J F J J p i = q υ e N D i = q N W ( ) C / kt qv / kt Rp p qv / k T N υrp i C / kt β = e N D p W i e e J p Gai i abrupt p JT defied oly by valece bad discotiuity! g, NC, NV, e ( g, g, ) = e g, β N N e i, i,,, β = N D N A β υ Rp /kt ( D p W ) e V 7 β but we are hopig for eve better gai N N β N D W N D W i, υth υth ~ i, p / p / ( g ) e β β = N υ N D W R, p / k T ( ) p e V Abrupt juctio HT For full gai, we eed graded juctio HT 8

Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary 5. Abrupt juctio HTs 6. Graded juctio HTs 7. Graded base HTs 8. Double heterojuctio HTs 9. Coclusios Heterostructure Fudametals, by Mark Ludstrom, Purdue Uiversity, 1995. Herbert Kroemer, Heterostructure bipolar trasistors ad itegrated circuits, Proc. I, 70, pp. 13-5, 198. 9 Abrupt Juctio V (x) x N x P x V jn V jp G 1.4 ev G 1.80 ev χ(x) (x) = 0 χ(x) qv ( x) (x) = (x) G (x) x N x P x 30

Graded ase-mitter Juctio V (x) x N x P x G 1.4 ev G 1.80 ev χ(x) (x) = 0 χ(x) qv ( x) (x) = (x) G (x) x N x P x 31 Curret Gai No expoetial Suppressio! J G > G F J i qv / kt = q N A W e D J q D i p = ND W e p qv / k T J p β = N D N A D D p W i W i x i = N C N V e G /k T β N D N A D D p W W e G /k T 3

Advatages of HT: Iverted ase Dopig β DC N N D W e D W D A p G / kt 1) Thi ase for high speed ) Very heavily doped ase to prevet Puch Through, reduce arly effect, ad to lower R ex 3) Moderately doped mitter (lower C j, ) iverted base dopig N A >> N D 33 Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary 5. Abrupt juctio HTs 6. Graded juctio HTs 7. Graded base HTs 8. Double heterojuctio HTs 9. Coclusios Heterostructure Fudametals, by Mark Ludstrom, Purdue Uiversity, 1995. Herbert Kroemer, Heterostructure bipolar trasistors ad itegrated circuits, Proc. I, 70, pp. 13-5, 198. 34

How to make a better Trasistor β N D W i, poly, ballistic i, N υs Heterojuctio bipolar trasistor Graded ase trasport Polysilico mitter g, i, NC, NV, e ( g, g, ) = e g, β N N e i,,, β β 35 Graded ases AC χ(x) G (x) F G (x) Itrisic compositioally graded Uiformly p-doped compositioally graded 36

Graded ase HTs J i D J = q e N W qv / kt D = e W F i J p q N p qv / k T N D W β DC = N i Dp W i J p x W W τ b = << µ D eff eff G q = W 37 Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary 5. Abrupt juctio HTs 6. Graded juctio HTs 7. Graded base HTs 8. Double heterojuctio HTs 9. Coclusios Heterostructure Fudametals, by Mark Ludstrom, Purdue Uiversity, 1995. Herbert Kroemer, Heterostructure bipolar trasistors ad itegrated circuits, Proc. I, 70, pp. 13-5, 198. 38

Double HJT Symmetrical operatio (simplify circuiots) J G > G F GC > G No charge storage whe the b-c juctio is forward biased (i is smaller) J p x Reduced collector offset voltage Higher collector breakdow voltage (higher gap) 39 Offset Voltage I C C I C I I V V C does I C = 0 at V C = 0? 40

Offset Voltage J 1 J i D ( )/ J1 = q e F N A W i D ( )/ J = q e N A W D ic p ( )/ J3 = q e N DC WC q V V kt q V VC kt q V VC kt J 3 x JC = J J J 1 3 set J C = 0, assume V = 0, solve for V C =V OS 41 Offset Voltage Result V OS = k T q l ( 1+ 1 γ R) J ( i N A )( D W ) γ R = = (Reverse mitter ijectio efficiecy) J3 ( ic NDC )( Dp WC ) Wat a large γ R for small V os. Wide badgap collector helps. 4

Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary 5. Abrupt juctio HTs 6. Graded juctio HTs 7. Graded base HTs 8. Double heterojuctio HTs 9. Coclusios moder desig Heterostructure Fudametals, by Mark Ludstrom, Purdue Uiversity, 1995. Herbert Kroemer, Heterostructure bipolar trasistors ad itegrated circuits, Proc. I, 70, pp. 13-5, 198. 43 Puttig the Terms Together log10 f T Kirk Curret ase trasit time Collector trasit time 1 W W C = + + π ft D υ sat I K log10 I C kt C j, C C j, qi + C juctio chargig time Quatios: Why does HTs have such high performace? 44

pitaxial Layer Desig (II) DHT: Abrupt IP emitter, IGaAs base, IAlGaAs C/ grades 45 pitaxial Layer Desig (III) 46

Summary 1) The use of a wide badgap emitter has two beefits: -allows heavy base dopig -allows moderate emitter dopig ) The use of a wide badgap collector has beefits: -symmetrical device -reduced charge storage i saturatio -reduced collector offset voltage -higher collector breakdow voltage 3) adgap egieerig has potetial beefits: -heterojuctio lauchig ramps -compositioally graded bases -elimiatio of bad spikes 4) HTs have the potetial for THz cutoff frequecies. However, it has yield issues ad heatig ad cotact R problems. 4 7 Outlie from previous lecture 1) Curret gai i JTs ) Cosideratios for base dopig 3) Cosideratios for collector dopig 4) Itermediate Summary 5) Problems of classical trasistor 6) Poly-Si emitter 7) Short base trasport 8) High frequecy respose 9) Coclusios RF: SDF, Chapter 10 48

Topic Map Diode quilibrium DC Small sigal Large Sigal Circuits Schottky JT/HT MOS 49 Small Sigal Respose log 10 β C I V (i) P+ N P IC VC (out) 1 ω β( ω) β β DC ω log 10 f f β f T 1 W W C kt = + + C j, C + C j, π ft D sat qi υ C Desire high f T High IC Low capacitaces Low widths 50

Frequecy Respose The gai of a amplifier is affected by the capacitace associated with its circuit. This capacitace reduces the gai i both the low ad high frequecy rages of operatio. The reductio of gai i the low frequecy bad is due to the couplig ad bypass capacitors selected. They are essetially short circuits i the mid ad high bads. The reductio of gai i the high frequecy bad is due to the iteral capacitace of the amplifyig device, e.g., JT, FT, etc. This capacitace is represeted by capacitors i the small sigal equivalet circuit for these devices. They are essetially ope circuits i the low ad mid bads. 51 Small Sigal Respose (Commo mitter) From bers Moll Model DC Circuit C µ => AC small sigal Circuit C I reverse bias, I R =0 I V (i) P+ N P IC C V C (out) I ( α ) 1 F IF C π IR α I I α I F F R R r π C π C µ g m V I C F qv / kt ( ) I = I e F 0 1 ( 1 α ) 1 di d F IF qi = = = r dv dv k T π g δ m d( α F IF ) qic = = dv k T ( α I ) F F m m = g δv = g υ = β 1 qic DC k T I 5

Short Circuit Curret Gai C µ C i gmυ + jωc C µ υc β ( f ) = = i 1 υ + jωcπ υ + jωcµ υ rπ r π C π gmυ gm jωt Cµ gm β ( ft ) 1 = 1 jωt C + C + jωt Cπ + jωcµ rπ ( π µ ) 1 1 Cπ + Cµ kt k T = = + + + ω π f g qi qi T T ( C j, C C j, ) ( Cd, C Cd, ) m C C k T C dq qi di dv di d, C Cd, C = = C C 53 Short Circuit Curret Gai C µ C r π C π gmυ gm jωt Cµ gm β ( ft ) 1 = 1 jωt C + C + jωt Cπ + jωcµ rπ ( π µ ) 1 1 Cπ + Cµ kt k T = = + + + ω π f g qi qi T T ( C j, C C j, ) ( Cd, C Cd, ) m C C k T C dq qi di dv di d, C Cd, C = = C C 54

Short Circuit Curret Gai C µ C r π C π gmυ 1 1 Cπ + Cµ kt k T = = + + + ω π f g qi qi T T ( C j, C C j, ) ( Cd, C Cd, ) m C C k T C dq qi di dv di d, C Cd, C = = C C 55 ase Trasit Time 1 Ref. Charge cotrol model N + P dq di C Q = I C 1 q W = 1 = 1 q W W D ase trasit time 56

Collector Trasit Time lectros ijected ito collector depletio regio very high fields more tha diffusio => drift => acceleratio of carriers Charge imaged i collector N + P τ = W υ C sat? i τ t τ q τ W = = = C eff, C i υ sat 1 i τ = q 57 Puttig the Terms Together Collector trasit time log10 f T Kirk Curret ase trasit time 1 W W C = + + π ft D υ sat I K log10 I C kt C j, C C j, qi + C Juctio chargig time Do you see the motivatio to reduce W ad W C as much as possible? What problem would you face if you push this too far? Icreasig I C too high reduces W C ad icreases the overall capacitace => frequecy rolls off. 58

High Frequecy Metrics (curret-gai cutoff frequecy, f T ) 1 τ = π f = D + υ + I + W WC kt q C C Rex c C cb T sat C (power-gai cutoff frequecy, f max ) ( j, + j, C ) + ( R ) f max = f T 8π R bb C cbi 59 Summary We have discussed various modificatios of the classical JTs ad explaied why improvemet of performace has become so difficult i recet years. The small sigal aalysis illustrates the importace of reduced juctio capacitace, resistaces, ad trasit times. Classical homojuctios JTs ca oly go so far, further improvemet is possible with heterojuctio bipolar trasistors. 60