Status of Sterile Neutrinos Carlo Giunti

Similar documents
Status of Light Sterile Neutrinos Carlo Giunti

Sterile Neutrinos in July 2010

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti

Sterile Neutrinos. Carlo Giunti

C. Giunti Sterile Neutrino Mixing NOW Sep /25

Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

Two hot issues in neutrino physics

Status of the Sterile Neutrino(s) Carlo Giunti

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

Critical Review on Neutrino Anomalies. Carlo Giunti

Impact of light sterile!s in LBL experiments "

Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos. Carlo Giunti

Sterile neutrino oscillations

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

Stefano Gariazzo. Light sterile neutrino: the 2018 status. IFIC, Valencia (ES) CSIC Universitat de Valencia

NEUTRINO OSCILLATIONS AND STERILE NEUTRINO C. Giunti

Analysis of Neutrino Oscillation experiments

Sterile neutrinos: to be or not to be?

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

On Minimal Models with Light Sterile Neutrinos

On indications for sterile neutrinos at the ev scale. Invisibles 14 workshop, July 2014, Paris Thomas Schwetz

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Neutrino Anomalies & CEνNS

Overview of Reactor Neutrino

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Short-Baseline Neutrino Anomalies Carlo Giunti. Selected Puzzles in Particle Physics Laboratori Nazionali di Frascati December 2016

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Neutrinos in Supernova Evolution and Nucleosynthesis

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

arxiv: v2 [hep-ph] 7 May 2013

How many neutrino species are there?

Phenomenological Status of Neutrino Mixing

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Sterile neutrinos at future long-baseline experiments

Particle Physics: Neutrinos part II

NOW Conca Specchiulla, September 9-16, 2012

Status and prospects of neutrino oscillations

Neutrino Physics: Lecture 12

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino

ev-scale Sterile Neutrinos

Solar and atmospheric ν s

The Reactor Antineutrino Anomaly

The Hunt for Sterile Neutrinos. H. Ray, University of Florida

Searching for Physics Beyond the Standard Model with Accelerator ν Experiments W.C Louis, LANL. MiniBooNE Status FNAL ORNL

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Future prospects of neutrino oscillation study Osamu Yasuda Tokyo Metropolitan University April 27, IPMU

Is nonstandard interaction a solution to the three neutrino tensions?

Particle Physics: Neutrinos part II

The Daya Bay and T2K results on sin 2 2θ 13 and Non-Standard Neutrino Interactions (NSI)

Searching for non-standard interactions at the future long baseline experiments

Neutrino oscillation phenomenology

The Effect of Cancellation in Neutrinoless Double Beta Decay

Dark Radiation and Inflationary Freedom

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

The future of neutrino physics (at accelerators)

Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, Guangdong, , China

Cosmological constraints on the Sessaw Scale

Neutrino physics. Evgeny Akhmedov. Max-Planck-Institut für Kernphysik, Heidelberg & Kurchatov Institute, Moscow

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

Updating the Status of Neutrino Physics

Neutrino Oscillations And Sterile Neutrinos

Non oscillation flavor physics at future neutrino oscillation facilities

Sterile Neutrinos from the Top Down

Updated three-neutrino oscillation parameters from global fits

Neutrino Physics. Carlo Giunti

Neutrino properties: nature, mass & CP violation


Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

Long baseline experiments

New interactions: past and future experiments

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006

Searching for Physics Beyond Standard Model with Neutrinos. R.G. Van de Water Los Alamos National Laboratory

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Implications of cosmological observables for particle physics: an overview

Damping signatures in future neutrino oscillation experiments

Largeθ 13 Challenge and Opportunity

NEUTRINO AND CPT THEOREM

Neutrino Physics Theory and Phenomenology

Test of Non-Standard Interactions at Super-K

Reactor Anomaly an Overview. Petr Vogel, Caltech INT Seattle 11/6/2013

Sinergie fra ricerche con neutrini da acceleratore e atmosferici

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007

The Short Baseline Neutrino Program at Fermilab

PoS(ICRC2017)1024. First Result of NEOS Experiment. Kim Siyeon. Affiliation:Chung-Ang University. On behalf of NEOS Collaboration

Transcription:

Status of Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it NOW 0, Neutrino Oscillation Workshop 9-6 September 0, Conca Specchiulla, Otranto, Italy C. Giunti Status of Sterile Neutrinos 5 Sep 0 /3

Beyond Three-Neutrino Mixing ν τ ν s ν µ ν e ν ν 3 ν 4 ν 5 ν m 3 m m m 4 m 5 logm ν s m SOL 3ν-mixing m ATM m SBL C. Giunti Status of Sterile Neutrinos 5 Sep 0 /3

Sterile Neutrinos from Physics Beyond the SM Neutrinos are special in the Standard Model: the only neutral fermions In extensions of SM neutrinos can mix with non-sm fermions ( ) ( ) ( ) νl φ SM: L L = Φ = iσ l Φ 0 Symmetry v/ = L φ Breaking 0 SM singlet L L Φ can couple to new singlet chiral fermion field fr related to physics beyond the SM Known examples: light ν R from see-saw [Lindner @ NOW0], SUSY (axino, modulino,...), extra dimensions (KK modes), mirror world [Berezhiani @ NOW0],... Dirac mass term L L ΦfR Majorana mass term f C R f R f R is often called Right-Handed Neutrino: f R ν R C. Giunti Status of Sterile Neutrinos 5 Sep 0 3/3

Sterile Neutrinos Light anti-ν R are called sterile neutrinos ν c R ν sl (left-handed) Sterile means no standard model interactions Active neutrinos (ν e,ν µ,ν τ ) can oscillate into sterile neutrinos (ν s ) Observables: Disappearance of active neutrinos (neutral current deficit) Indirect evidence through combined fit of data (current indication) Short-baseline anomalies 3ν-mixing: m m 3 m 4... ν ν ν 3 ν 4... ν e ν µ ν τ ν s... C. Giunti Status of Sterile Neutrinos 5 Sep 0 4/3

In this talk I consider sterile neutrinos with mass scale ev in light of short-baseline LSND, MiniBooNE, Reactor Anomaly, Gallium Anomaly. Other possibilities (not incompatible): Very light sterile neutrinos with mass scale ev: important for solar neutrino phenomenology [Das, Pulido, Picariello, PRD 79 (009) 0730] [de Holanda, Smirnov, PRD 83 (0) 30] Heavy sterile neutrinos with mass scale ev: could be Warm Dark Matter [Kusenko, Phys. Rept. 48 (009) ] [Boyarsky, Ruchayskiy, Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59 (009) 9] [Lindner @ NOW0] C. Giunti Status of Sterile Neutrinos 5 Sep 0 5/3

Effective SBL Oscillation Probabilities in 3 Schemes ( ) m P να ν β = sin ϑ αβ sin 4 L 4E ( ) m P να ν α = sin ϑ αα sin 4 L 4E Perturbation of 3ν Mixing sin ϑ αβ = 4 U α4 U β4 No CP Violation! sin ϑ αα = 4 U α4 ( U α4 ) U e4, U µ4, U τ4, U s4 U e U e U e3 U e4 sin ϑ αα U = U µ U τ U µ U τ U µ3 U τ3 U µ4 U τ4 U s U s U s3 U s4 SBL U α4 sin ϑ αα 4 C. Giunti Status of Sterile Neutrinos 5 Sep 0 6/3

Effective SBL Oscillation Probabilities in 3 Schemes φ kj = m kj L/4E η = arg[u e4u µ4 U e5 U µ5] P ( ) ν µ ( ) ν e = 4 U e4 U µ4 sin φ 4 4 U e5 U µ5 sin φ 5 () 8 U µ4 U e4 U µ5 U e5 sinφ 4 sinφ 5 cos(φ 54 η) P ( ) ν α ( ) ν α = 4( U α4 U α5 )( U α4 sin φ 4 U α5 sin φ 5 ) 4 U α4 U α5 sin φ 54 [Sorel, Conrad, Shaevitz, PRD 70 (004) 073004; Maltoni, Schwetz, PRD 76 (007) 093005; Karagiorgi et al, PRD 80 (009) 07300; Kopp, Maltoni, Schwetz, PRL 7 (0) 0980; Giunti, Laveder, PRD 84 (0) 073008; Donini et al, arxiv:5.530; Conrad, Ignarra, Karagiorgi, Shaevitz, Spitz, arxiv:7.4765] [Ignarra @ NOW0] More parameters: 7 (vs 3 in 3) CP violation 33? [Xing @ NOW0] C. Giunti Status of Sterile Neutrinos 5 Sep 0 7/3

LSND [PRL 75 (995) 650; PRC 54 (996) 685; PRL 77 (996) 308; PRD 64 (00) 07] ν µ ν e L 30m 0MeV E 00MeV Beam Excess 7.5 5.5 7.5 5.5 Beam Excess p(ν _ µ ν_ e,e )n p(ν _ e,e )n other - 0 0.4 0.6 0.8..4 - L/E ν (meters/mev) m (ev /c 4 ) Karmen Bugey 90% (L max -L <.3) 99% (L max -L < 4.6) CCFR NOMAD -3 - - sin θ 3.8σ excess m LSND 0.eV ( m A m S ) C. Giunti Status of Sterile Neutrinos 5 Sep 0 8/3

MiniBooNE Neutrinos [PRL 98 (007) 380; PRL (009) 80] ν µ ν e L 54m 00MeV E 3GeV Events / MeV 3.5.5 Data ν e from µ ν e from K 0 ν e from K π 0 misid Nγ dirt other Total Background 0.5 0. 0.4 0.6 0.8..4.5.6 3. QE E ν (GeV) no ν µ ν e signal corresponding to LSND ν µ ν e signal (E > 475MeV) low-energy anomaly C. Giunti Status of Sterile Neutrinos 5 Sep 0 9/3

MiniBooNE Antineutrinos - 009-0 [PRL 3 (009) 80; PRL 5 (0) 880] ν µ ν e L 54m 00MeV E 3GeV agreement with LSND ν µ ν e signal (E > 475MeV) similar L/E but different L and E = oscillations C. Giunti Status of Sterile Neutrinos 5 Sep 0 /3

MiniBooNE ν - Neutrino 0-6 June agreement with LSND signal is sadly vanishing C. Giunti Status of Sterile Neutrinos 5 Sep 0 /3

MiniBooNE ν and ν - arxiv:7.4809 [ev ] m 4 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] MB LOW 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) 4 3 sin ϑ eµ reactors Fit of low-energy excess is marginal It requires m4 0.4eV * <P νµ νe > 0.000 0.005 0.0 0.05 00 400 600 800 00 0 400 3000 E [MeV] MiniBooNE ν e exp (,0.04): best fit (0.06,0.7) (0.0,0.4) (0.003,0.7) (0.003,4) Neutrino energy reconstruction problem? [Martini, Ericson, Chanfray, arxiv:.4745] C. Giunti Status of Sterile Neutrinos 5 Sep 0 /3

ICARUS [arxiv:9.0] [C.Rubbia @ NOW0] νµ νe L = 730 km < E < 30 GeV 3 3 < observed νe events 3.7 background νe events (CNGS) E < 9 3 ev L C. Giunti Status of Sterile Neutrinos 5 Sep 0 3/3

Reactor Electron Antineutrino Anomaly [Mention et al, PRD 83 (0) 073006] [update in White Paper, arxiv:4.5379 new reactor ν e fluxes [Mueller et al, PRC 83 (0) 05465] [Huber, PRC 84 (0) 0467] R = 0.930±0.04 R 0.7 0.8 0.9.0.. Reactor Rates Bugey3 5 Bugey3 40 Bugey3 95 Bugey4 ROVNO Gosgen 38 Gosgen 45 Gosgen 65 ILL Krasno 33 Krasno 9 Krasno 57 Average Rate [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] 0 0 40 60 80 0 L [m] C. Giunti Status of Sterile Neutrinos 5 Sep 0 4/3

Gallium Anomaly Gallium Radioactive Source Experiments Tests of the solar neutrino detectors GALLEX (Cr, Cr) and SAGE (Cr, Ar) Detection Process: ν e 7 Ga 7 Gee ν e Sources: e 5 Cr 5 Vν e e 37 Ar 37 Clν e p(measured)/p(predicted)..0 0.9 0.8 0.7 GALLEX Cr SAGE Cr GALLEX Cr SAGE Ar E 0.7MeV L GALLEX =.9m L SAGE = 0.6m R B = 0.86±0.05 [SAGE, PRC 73 (006) 045805, nucl-ex/054] C. Giunti Status of Sterile Neutrinos 5 Sep 0 5/3

Deficit could be due to overestimate of σ(ν e 7 Ga 7 Gee ) Calculation: Bahcall, PRC 56 (997) 339 3/ 0.500 MeV 3/ 7 Ga 5/ 0.75 MeV / 7 Ge 0.33 MeV σ G.S. from T / ( 7 Ge) =.43±0.03days [Hampel, Remsberg, PRC 3 (985) 666] σ G.S. ( 5 Cr) = 55.3 46 cm (±0.004) 3σ ( σ( 5 Cr) = σ G.S. ( 5 Cr).669 BGT 75 0.0 BGT ) 500 BGT G.S. BGT G.S. Contribution of Excited States only 5%! C. Giunti Status of Sterile Neutrinos 5 Sep 0 6/3

BGT 75 BGT G.S. BGT 500 BGT G.S. Krofcheck et al. PRL 55 (985) 5 Haxton PLB 43 (998) Frekers et al. PLB 706 (0) 34 7 Ga(p,n) 7 Ge < 0.056 0.6±0.03 Shell Model 0.9 ± 0.8 7 Ga( 3 He, 3 H) 7 Ge 0.039±0.030 0.0±0.06 Haxton: [Haxton, PLB 43 (998) ] a sophisticated shell model calculation is performed... for the transition to the first excited state in 7 Ge. The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements Does Haxton argument apply also to ( 3 He, 3 H) measurements?.7σ discrepancy of BGT 500 /BGT G.S. measurements! Anyhow, new 7 Ga( 3 He, 3 H) 7 Ge data support Gallium Anomaly! C. Giunti Status of Sterile Neutrinos 5 Sep 0 7/3

SUN&KamLAND ϑ 3 bound on U e4 [Giunti, YF Li, PRD 80 (009) 3007; Palazzo, PRD 83 (0) 303, Palazzo, PRD 85 (0) 07730] [Palazzo @ NOW0] 3 with simplifying assumptions: U µ4 = U τ4 = 0, no CP violation U e = c c 3 c 4 U e = s c 3 c 4 U e3 = s 3 c 4 U e4 = s 4 U s = c c 3 s 4 U s = s c 3 s 4 U s3 = s 3 s 4 U s4 = c 4 P νe ν e ( s3 )( ) s 4 P ν ν e ν e P νe ν s s4 ( ) P ν ν e ν s V = c 3 c 4 V CC c 3 s 4 V NC = ( U e U e )V CC ( U s U s )V NC C. Giunti Status of Sterile Neutrinos 5 Sep 0 8/3

red band: SUN and KL blue band: TK and MINOS before Daya Bay and RENO [Palazzo, PRD 85 (0) 07730] ( 4) 8 6 With DYBRENO Without [Giunti, Laveder, Li, Liu, Long, Sep 0] 4 95.45% C.L.( ) 90.00% C.L. 68.7% C.L.( ) 0-3.0 -.5 -.0 -.5 -.0 log(sin 4) C. Giunti Status of Sterile Neutrinos 5 Sep 0 9/3

Global ν e and ν e Disappearance m 4 [ev ] [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] m 4 [ev ] [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] 95% C.L. Gallium Reactors ν e C Sun Combined sin ϑ ee GALREAν ecsun 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) sin ϑ ee ν e C N g.s. e KARMEN LSND [Conrad, Shaevitz, PRD 85 (0) 0307] [Giunti, Laveder, PLB 706 (0) 00] C. Giunti Status of Sterile Neutrinos 5 Sep 0 0/3

Testable Implications: β Decay [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] [(Q T) K(T)] / (Q T) 3 4 5 4 3 0 T Q [ev] (sin ϑ ee, m 4 [ev ]) ( 0., 7.59 ) ( 0., ) ( 0.07, 0.9 ) ( 0.05, 0.46 ) relative deviation of Kurie plot (Q T) K(T) Q T [ev ] m 4 sin ϑ ee GALREAν ecsun [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) KATRIN: [Drexlin @ NOW0] C. Giunti Status of Sterile Neutrinos 5 Sep 0 /3

Testable Implications: (ββ) 0ν Decay χ 0 4 6 8 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] 99.73% EXO 99% 95.45% 90% 68.7% GALREAνeCSUN KK 3 (4) m ββ [ev] m ββ = k U ek m k m (4) ββ = U e4 m 4 caveat: possible cancellation with m (3ν IH) ββ [Rodejohann @ NOW0] C. Giunti Status of Sterile Neutrinos 5 Sep 0 /3

Global 3 Fit: Disappearance Constraints ν e disappearance experiments: sin ϑ ee = 4 U e4 ( U e4 ) 4 U e4 ν µ disappearance experiments: sin ϑ µµ = 4 U µ4 ( U µ4 ) 4 U µ4 ν µ ν e experiments: sin ϑ eµ = 4 U e4 U µ4 4 sin ϑ ee sin ϑ µµ Upper bounds on sin ϑ ee and sin ϑ µµ = strong limit on sin ϑ eµ [Okada, Yasuda, Int. J. Mod. Phys. A (997) 3669-3694] [Bilenky, Giunti, Grimus, Eur. Phys. J. C (998) 47] C. Giunti Status of Sterile Neutrinos 5 Sep 0 3/3

ν e and ν e Disappearance [ev ] m 4 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] 99% C.L. Bugey3 Bugey4Rovno GosgenILL Krasnoyarsk ν e C Gallium SUN 3 New Reactor ν e Fluxes [Mueller et al., PRC 83 (0) 05465] [Mention et al., PRD 83 (0) 073006] [Huber, PRC 84 (0) 0467] KARMEN LSND ν e C N g.s. e [Conrad, Shaevitz, PRD 85 (0) 0307] [Giunti, Laveder, PLB 706 (0) 00] SUN&KamLAND ϑ 3 [Giunti, YF Li, PRD 80 (009) 3007] [Palazzo, PRD 83 (0) 303] [Palazzo, PRD 85 (0) 07730] [Giunti, Laveder, Li, Liu, Long, Sep 0] sin ϑ ee C. Giunti Status of Sterile Neutrinos 5 Sep 0 4/3

ν µ and ν µ Disappearance [ev ] m 4 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] 99% C.L. CDHSW (984): ν µ ATM: ν µ ν µ MINOS (0): ν µ sin ϑ µµ ATM constraint on U µ4 [Maltoni, Schwetz, PRD 76 (007) 093005] MINOS constraint on U µ4 [Giunti, Laveder, PRD 84 (0) 093006] To be included: MiniBooNE/SciBooNE limit on SBL ν µ disappearance [arxiv:8.03] To be included: AMANDA/Ice Cube limit on SBL ν µ and ν µ disappearance [Esmaili, Halzen, Peres, arxiv:6.6903] [Halzen @ NOW0] C. Giunti Status of Sterile Neutrinos 5 Sep 0 5/3

3 3 3σ ν e Dis ν µ Dis Dis App 0 MiniBooNE data [ev ] m 4 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] GoF = 9.3% PGoF = 0.00% missing new ICARUS constraint (added later) 4 3 sin ϑ eµ 3 & 3: Appearance-Disappearance tension Tension reduced in 3NSI [Akhmedov, Schwetz, JHEP (0) 5] No tension in 3CPTV [Barger, Marfatia, Whisnant, PLB 576 (003) 303] [Giunti, Laveder, PRD 8 (0) 09306, PRD 83 (0) 053006] C. Giunti Status of Sterile Neutrinos 5 Sep 0 6/3

3 3 is preferred to 3 only if there is CP-violating difference of ν µ ν e and ν µ ν e transitions 0 MiniBooNE antineutrino data indicated neutrino-antineutrino difference in 0 it was reasonable and useful to consider 3 neutrino-antineutrino difference almost disappeared with 0 MiniBooNE antineutrino data in 0 3 is reduced to 3 by Okkam razor shaving C. Giunti Status of Sterile Neutrinos 5 Sep 0 7/3

3 Global Fit without ICARUS 3 GLO LOW 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) 3 GLO HIG 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) [ev ] m 4 DIS APP 4 3 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] [ev ] m 4 DIS APP 4 3 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] sin ϑ eµ No Osc. GoF = 0.07% 3 GoF = 9.3% PGoF = 0.00% sin ϑ eµ No Osc. GoF = 0.75% 3 GoF = 30% PGoF = 0.6% C. Giunti Status of Sterile Neutrinos 5 Sep 0 8/3

3 Global Fit with ICARUS 3 GLO LOWICARUS 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) 3 GLO HIGICARUS 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) [ev ] m 4 DIS APP 4 3 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] [ev ] m 4 DIS APP 4 3 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] sin ϑ eµ No Osc. GoF = 0.0% 3 GoF = 9.9% PGoF = 0.0% sin ϑ eµ No Osc. GoF = 0.87% 3 GoF = 3% PGoF = 0.7% C. Giunti Status of Sterile Neutrinos 5 Sep 0 9/3

Cosmology N s = number of thermalized sterile neutrinos (not necessarily integer) [Melchiorri, Tamborra, Saviano @ NOW0] CMB and LSS in ΛCDM: N s =.3±0.9 m s < 0.66eV (95% C.L.) [Hamann, Hannestad, Raffelt, Tamborra, Wong, PRL 5 (0) 830] N s =.6±0.9 m s < 0.70eV (95% C.L.) [Giusarma, Corsi, Archidiacono, de Putter, Melchiorri, Mena, Pandolfi, PRD 83 (0) 503] N s = 0.±0.59 [Cyburt, Fields, Olive, Skillman, AP 3 (005) 33] BBN: N s = 0.64 0.40 [Izotov, Thuan, ApJL 7 (0) L67] 0.35 N s at 95% C.L. [Mangano, Serpico, PLB 70 (0) 96] CMBLSSBBN: N s = 0.85 0.39 0.56 (95% C.L.) [Hamann, Hannestad, Raffelt, Wong, JCAP 9 (0) 034] Standard ΛCDM: 3 allowed, 3 disfavored C. Giunti Status of Sterile Neutrinos 5 Sep 0 30/3

Combined Oscillation and Cosmology Fit [Archidiacono, Fornengo, Giunti, Melchiorri, arxiv:7.655] 5 P( m4 [ev ]) 4 3 [ev ]) P( m 4 8 6 4 0 0. m4 [ev ] Mass Hierarchy: m 4 m 3,m,m = m 4 Cosmology: m 4 < 0.73eV (95% Bayesian CL) 0 0. m [ev ] 4 m 4 Oscillation Cosmology: 0.85 < m 4 <.8eV (95% Bayesian CL) C. Giunti Status of Sterile Neutrinos 5 Sep 0 3/3

Conclusions Short-baseline neutrino oscillation anomalies = sterile neutrinos Short-Baseline ν µ ν e Signal is not feeling well: MiniBooNE 0 antineutrino data are similar to neutrino data (LSND signal diminished and low-energy anomaly appeared) Probably there is no CP violation = no need of 3 The decrease of MiniBooNE-LSND agreement is discouraging Better experiments are needed to clarify situation [C.Rubbia @ NOW0] Short-Baseline ν e and ν e Disappearance is in good health: Reactor νe anomaly is alive and exciting Gallium νe anomaly strengthened by new cross-section measurements Many promising projects to test short-baseline νe and ν e disappearance in a few years with reactors, radioactive sources and accelerators [Ianni, Link, Gaffiot @ NOW0] Independent tests through effects of m4 in β-decay and (ββ) 0ν -decay C. Giunti Status of Sterile Neutrinos 5 Sep 0 3/3

Backup Slides C. Giunti Status of Sterile Neutrinos 5 Sep 0 33/3

Reactor ν e Disappearance [ev ] m 4 [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] REA 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) sin ϑ ee C. Giunti Status of Sterile Neutrinos 5 Sep 0 34/3

m 4 [ev ] [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] Gallium ν e Disappearance m 4 [ev ] [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] GAL Haxton 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) 3 sin ϑ ee GAL Frekers et al. 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) 3 sin ϑ ee No Osc. χ min 4.8 NDF 4 GoF 0.5 % 3 χ min 4.8 NDF GoF 9. % m4 [ev ].4 sin ϑ ee 0.50 No Osc. χ min 7. NDF 4 GoF 0. % 3 χ min 7.9 NDF GoF.9 % m4 [ev ].09 sin ϑ ee 0.30 C. Giunti Status of Sterile Neutrinos 5 Sep 0 35/3

m 4 [ev ] Reactor ν e and Gallium ν e Disappearance [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] m 4 [ev ] [Giunti, Laveder, YF Li, QY Liu, HW Long, Sep 0] REA GAL Haxton 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) sin ϑ ee REA GAL Frekers et al. 68.7% C.L. (σ) 90.00% C.L. 95.45% C.L. (σ) 99.00% C.L. 99.73% C.L. (3σ) sin ϑ ee No Osc. χ min 45.6 NDF 4 GoF 3.3 % 3 χ min 30.8 NDF 40 GoF 85 % m4 [ev ].95 sin ϑ ee 0.6 No Osc. χ min 48.9 NDF 4 GoF.5 % 3 χ min 3. NDF 40 GoF 80 % m4 [ev ].95 sin ϑ ee 0.6 C. Giunti Status of Sterile Neutrinos 5 Sep 0 36/3