Requirements for the Star Tracker Parallel Science Programme

Similar documents
Kepler photometric accuracy with degraded attitude control

arxiv:astro-ph/ v1 17 Mar 2000

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology

Rømer Science Mission Plan

Spacecraft Bus / Platform

arxiv:astro-ph/ v1 19 Oct 2001

Asteroseismology with the Kepler mission

Diffusion and helioseismology

Spacecraft Bus / Platform

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

1 A photometric probe for Pan-STARRS

Plato, Euclid and the New Hard X-Ray mission

Lightweight, Low-Power Coarse Star Tracker

Auto-guiding System for CQUEAN

A Stellar Gyroscope for CubeSat Attitude Determination

The MOST data pipeline: Lessons for Kepler? Jaymie M. Matthews University of British Columbia Vancouver, Canada

Astronomical Experiments for the Chang E-2 Project

Space astrometry with the Joint Milliarcsecond Astrometry Pathfinder

ADCSS 2017: Sodern presentation

Small Satellite Laser Comm Pointing

Stellar Observations Network Group

Final Presentation of Assessment Star Tracker for Asteroid Search. By Peter Davidsen

Southern African Large Telescope. Prime Focus Imaging Spectrograph. Instrument Acceptance Testing Plan

Do red giants have short mode lifetimes?

Jim Hagerman 4/12/99

The Kepler Exoplanet Survey: Instrumentation, Performance and Results

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets

The Joint Milli-Arcsecond Pathfinder Survey: Introduction and Applications

Focal plane instrumentation for the Wide-Field X-ray Telescope

Status and Calibration of the erosita X ray Telescope

Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission

The J-MAPS Mission: Improvements to Orientation Infrastructure and Support for Space Situational Awareness

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission

PLAnetary Transits and Oscillations of stars

Dark Energy & GEST: the Galactic Exoplanet Survey Telescope

Chandra was launched aboard Space Shuttle Columbia on July 23, 1999!!!

THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING

Impressions: First Light Images from UVIT in Orbit

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission

arxiv: v1 [astro-ph] 3 Jul 2008

An Agile Multi-Use Nano Star Camera for Constellation Applications

3.3 ANALYSIS. H2RG CHARACTERISATION METHODS Bogna Kubik, analyst. NISP, NI-SCS Test Readiness Review IPNL, October 2016

BRITE One Year in Orbit

Spitzer Space Telescope

Webster Cash University of Colorado. X-ray Interferometry

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G.

Why Go To Space? Leon Golub, SAO BACC, 27 March 2006

The Dark Energy Survey Public Data Release 1

Wide and Fast: A new Era of EMCCD and CMOS?

UVIT IN ORBIT CALIBRATIONS AND CALIBRATION TOOLS. Annapurni Subramaniam IIA (On behalf of the UVIT team)

Steeve Kowaltschek (ESA/ESTEC TEC-SAA) 17/10/ ADCSS. ESA UNCLASSIFIED - For Official Use

Detection and characterization of exoplanets from space

The High Definition X-ray Imager (HDXI) Instrument on the Lynx X-Ray Surveyor

MIRIS. Korean Compact Infrared Space Telescope, MIRIS

GAIA: THE SATELLITE AND PAYLOAD. Oscar Pace European Space Agency, ESA-ESTEC, Keplerlaan 1, 2200AG Noordwijk, The Netherlands

Fundamental limits to the precision in astrometry and photometry using array detectors through the Cramér-Rao minimum variance bound

Observing the dark Universe with Euclid

Grand Canyon 8-m Telescope 1929

cheops Assemble your own planet watcher cheops Paper Model Scale 1:15

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

X-ray burst science with Astrosat

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

WHAT PHOTOMETRIC PRECISION CAN I ACHIEVE? DAVID BOYD

Fundamentals of Exoplanet Observing

Fundamentals of Exoplanet Observing

Helioseismology: GONG/BiSON/SoHO

SALT s Venture into Near Infrared Astronomy with RSS NIR

Accurate Determination of the Solar Photospheric Radius

Atmospheric Extinction

Attitude Determination and. Attitude Control

arxiv: v1 [astro-ph.sr] 20 Oct 2016

Theoretical Examination

An Accurate and Efficient Gaussian Fit Centroiding Algorithm for. Star Trackers

JWST Fine Guidance Sensor Calibration

EXPOSURE TIME ESTIMATION

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

AS750 Observational Astronomy

TESS and Galactic Science

Multi-aperture miniaturized star sensors, modular building blocks for small satellite AOCS systems

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch

Naoteru Gouda(NAOJ) Taihei Yano (NAOJ) Nano-JASMINE project team

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin

WFC3 TV3 Testing: Orbital Cycling Effects on IR Images

Lab 1: Introduction to the sky and making telescopic observations with the CCD camera. AST 152M Lab Instructor: Greg Doppmann Due: Feb 11, 2000

R. Alonso, 11th CoRoT Week, La Laguna, 22 Mars The. CHEOPS Mission

An Astrophysics Mission of Opportunity on the International Space Station

Webster Cash University of Colorado. X-ray Interferometry

GCOM-C SGLI calibration and characterization. Hiroshi Murakami JAXA/EORC Satellite instrument pre- and post-launch calibration

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago

Breathing, Position Drift, and PSF Variations on the UVIS Detector

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart

DISTRIBUTION LIST. Others original copies Name amount. Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD

Gaia: Mapping the Milky Way

Upgraded Photometric System of The 85-cm Telescope at Xinglong Station

TROPOMI. Sentinel 5 Precursor instrument for air quality and climate observations. R. Voors Dutch Space. ICSO, 11 October 2012

High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla

Quasars: Imaging the Visible Edge of the Universe. David Haworth Copyright 2010

PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team

A Random Walk Through Astrometry

Earth Flats. 1. Introduction. Instrument Science Report ACS R. C. Bohlin, J. Mack, G. Hartig, & M. Sirianni October 25, 2005

Transcription:

Requirements for the Star Tracker Parallel Science Programme Rømer System Definition Phase 2000/2001 Document no.: MONS/IFA/PL/RS/0003(1) Date: 22.04.2001 Prepared by: Hans Kjeldsen and Tim Bedding Checked by: Jørgen Christensen-Dalsgaard Authorized by: Jørgen Christensen-Dalsgaard Classification: Open: The document is unclassified and there are no restrictions in circulation.

Requirements for the Star Tracker Parallel Science Programme Teoretisk Astrofysik Center, Institut for Fysik og Astronomi, Aarhus Universitet This document may only be reproduced with permission of TAC/IFA, except within the Rømer project where any type of reproduction is allowed. MONS/IFA/PL/RS/0003(1) 2

DISTRIBUTION This document is for internal use by the Rømer project. All Rømer key persons will be able to access the document via the DSRI webpage: http://www.dsri.dk/roemer/pro. MONS/IFA/PL/RS/0003(1) 3

Contents 1. SCOPE 5 2. APPLICABLE DOCUMENTS 6 3. STAR TRACKER PARALLEL SCIENCE REQUIREMENTS 7 3.1 Assumed detector properties 7 3.2 Assumed read-out electronics 8 3.3 Assumed optical system 8 3.4 Required readout procedure for parallel science 9 3.5 Output data produced 10 3.5.1 Data volume and rate 12 MONS/IFA/PL/RS/0003(1) 4

1. SCOPE This document specifies the requirements for the Parallel Science Programme on the Rømer Star Trackers. The document has been prepared by the Theoretical Astrophysics Center and the Institute of Physics and Astronomy at Aarhus University as a contribution to the Rømer System Definition Phase (The Danish Small Satellite Programme). MONS/IFA/PL/RS/0003(1) 5

2. APPLICABLE DOCUMENTS AD1: Rømer Science Mission Specification MONS/IFA/MIS/RS/0001(1) AD2: MONS Payload Requirements Specification MONS/IFA/PL/RS/0001(2) AD3: MONS Field Monitor Requirements Specification and Parallel Science MONS/IFA/PL/RS/0002(1) AD4: MONS Payload Electronics Requirement Specification TERMA # 255503 DT AD5: MONS Field Monitor System Definition Phase Design Report MONS/AUS/PL/RP/0002(1) MONS/IFA/PL/RS/0003(1) 6

3. STAR TRACKER PARALLEL SCIENCE REQUIREMENTS The Attitude Control Subsystem on the Rømer platform will include two Star Trackers in order to provide the needed attitude information for calibrating the ACS. The ACS update frequency will be 1 mhz. In order to increase the science output of the Rømer mission, we are planning a parallel science programme aiming at surveying the field of view for variable stars. We also plan to collect integrated images of the whole field of view in order to allow more general programmes in cosmology, solar system work and stellar physics. The baseline for the Star Tracker parallel science programme is a standard TERMA Star Tracker, which consists of the following major parts: Optics Mounting interface to the spacecraft Baffle Radiator for cooling the detector CCD Detector Unit Read-out Electronics Unit Data Processing Unit (Rømer main computer - CDH) 3.1 Assumed detector properties CCD chip: Image: Image Area Size: Frame transfer Operation: Pixel Size: CCD Operating Temperature: CCD Temperature Stability: CCD Temperature Measurement Accuracy (Telemetry): Marconi Applied Technologies CCD 47-20 Front Illuminated (AIMO CCD Sensor) 1024 x 1024 pixels 13.3 x 13.3 mm2 1024 x 1024 pixels Storage area 13 um square -10 degc 5 degc (RMS) 1 degc (RMS) MONS/IFA/PL/RS/0003(1) 7

3.2 Assumed read-out electronics Saturation Level: 30.000 e/pix A/D-Conversion: 8 bits or better Conversion factor: 35 e/adu (soft saturation: 8960 e) Readout noise: 20 e/pix Readout Frequency 1 MHz Integration Time: 25 msec - 2 sec programmable Accuracy of Integration time: 1 usec (RMS) Read-out Modes: Full frame and window read-out Read-out time: 1 usec/pix (1 MHz) Full frame: 1049 msec Vertical shift time: 6.0 usec (0.166 MHz) Horizontal shift time: 380 nsec/pix (2.6 MHz) Full frame: 398 msec Read-out per field: 7 x 13 x 13 pixels: 42 msec 28 x 13 x 13 pixels: 149 msec 64 x 13 x 13 pixels: 332 msec 630 x 630 pixels: 494 msec 1024 x 1024 pixels: 1049 msec 3.3 Assumed optical system Lens Aperture, D 24 mm Focal Length, f 35 mm f-ratio f/1.46 Image scale at detector: 0.61 mm/deg Field of view: 22 deg x 22 deg Pixel-Size: 77 arcsec/pix FWHM (star) 2.5 arcmin (2 pix) Transmission Efficiency: 50 % (no filter) incl. CCD: 20 % Optical Bandpass: 400 nm - 800 nm (no filter) No. of photons V=5 36,000 e/sec Saturation V=5: exp=1 sec Saturation 43 msec: V = 1.6 150 msec: V = 2.9 332 msec: V = 3.8 336 msec: V = 3.8 497 msec: V = 4.2 MONS/IFA/PL/RS/0003(1) 8

3.4 Required readout procedure for parallel science 5 sec procedure: Time: (msec) EXPOSURE: READ OUT: 0000-0149 150 msec (STR1) 42 msec - 7 stars (43 msec exp) 0150-0156 7 msec transfer 0157-0488 332 msec (1) 332 msec - 64 stars (150 msec exp) 0489-0495 7 msec transfer 0496-0992 497 msec (2) 494 msec - 630 x 630 pix (332 msec exp) 0993-0999 7 msec transfer 1000-1149 150 msec (STR2) 149 msec - 28 stars (497 msec exp) 1150-1156 7 msec transfer 1157-1488 332 msec (3) 332 msec - 64 stars (150 msec exp) 1489-1495 7 msec transfer 1496-1992 497 msec (4) 494 msec - 630 x 630 pix (332 msec exp) 1993-1999 7 msec transfer 2000-2149 150 msec (STR3) 149 msec - 28 stars (497 msec exp) 2150-2156 7 msec transfer 2157-2488 332 msec (5) 332 msec - 64 stars (150 msec exp) 2489-2495 7 msec transfer 2496-2992 497 msec (6) 494 msec - 630 x 630 pix (332 msec exp) 2993-2999 7 msec transfer 3000-3149 150 msec (STR4) 149 msec - 28 stars (497 msec exp) 3150-3156 7 msec transfer 3157-3492 336 msec (7) 332 msec - 64 stars (150 msec exp) 3493-3499 7 msec transfer 3500-3542 43 msec (8) 42 msec 7 stars (336 msec exp) 3543-3549 7 msec transfer 3550-3999 9 x 43 msec (9-17) + 9 x 7 msec transfer 9 x 42 msec 9 x 7 stars (9 x 43 msec exp) 4000-4149 150 msec (STR5) 42 msec - 7 stars (43 msec exp) 4150-4156 7 msec transfer 4157-4492 336 msec (18) 332 msec - 64 stars (150 msec exp) 4493-4499 7 msec transfer 4500-4542 43 msec (19) 42 msec 7 stars (336 msec exp) 4543-4549 7 msec transfer 4550-4999 9 x 43 msec (20-28) + 9 x 7 msec transfer 9 x 42 msec 9 x 7 stars (9 x 43 msec exp) MONS/IFA/PL/RS/0003(1) 9

3.5 Output data produced 5 sec. procedure: 5 x 150 msec: STR-frames: 64 stars (NO SCIENCE) 3 x 332 msec: 630 x 630 pix IMAGE: 235 stars (V > 3.8) 3 x 497 msec: 28 stars: (V > 4.3) 2 x 336 msec: 7 stars: (V > 3.8) 20 x 43 msec: 7 stars: (V > 1.6) 33 exposures Stellar classes: Magnitude limit Exposures: Number of stars: Class-I: V > 1.6 20 x 43 msec 7 Class-II V > 3.8 2 x 336 + 3 x 332 msec 7 Class-III V > 4.3 3 x 497 + 3 x 332 msec 28 Class-IV V > 3.8 3 x 332 msec 200 Photometric precision per minute for the star trackers used for parallel science. Curves for the four different stellar classes are show. Saturation for class I is at V=1.6, for class II and IV at V=3.8 and for class III at V=4.3. In order to estimate amplitudes for coherent oscillations that can be detected at S/N=4 using the Star Tracker, one should multiply the scatter by 0.037. We will therefore be able to detect oscillations with amplitudes below 30 ppm for the brightest candidate stars. MONS/IFA/PL/RS/0003(1) 10

The following table shows the noise for stars of different magnitude observed using the four different exposure times. Stellar magnitude 20 x 43 msec 3 x 332 msec 2 x 336 msec 3 x 497 msec V = 1.6 0.00159 V = 2.0 0.00209 V = 3.0 0.00446 V = 3.8 0.00868 0.00406 0.00493 V = 4.0 0.00464 0.00563 V = 4.3 0.00573 0.00695 0.00423 V = 5.0 0.00968 0.0117 0.00693 V = 6.0 0.0220 0.0237 0.0152 V = 7.0 0.0529 0.0640 0.0359 V = 8.0 0.130 0.158 0.0876 V = 9.0 0.325 0.393 0.218 V = 10.0 0.813 0.984 0.544 Based on this table we can estimate the noise per min for the four different types of exposure sequences (stellar classes). Stellar magnitude Class I (7 stars) Class II (7 stars) Class III (28 stars) Class IV (200 stars) V = 1.6 0.00046 V = 2.0 0.00060 V = 3.0 0.00129 V = 3.8 0.0025 0.00090 0.00117 V = 4.0 0.00103 0.00134 V = 4.3 0.00128 0.00098 0.00165 V = 5.0 0.0022 0.00163 0.0028 V = 6.0 0.0047 0.0036 0.0064 V = 7.0 0.0118 0.0086 0.0153 V = 8.0 0.029 0.021 0.038 V = 9.0 0.072 0.052 0.094 V = 10.0 0.181 0.131 0.23 Finally we may estimate the amplitude of modes that can be detected by the Star Tracker after 30 days of observing (duty cycle = 85 %). The table below indicate amplitudes that can be detected at S/N=4. Stellar magnitude Class I (7 stars) Class II (7 stars) Class III (28 stars) Class IV (200 stars) V = 1.6 17 ppm V = 2.0 22 ppm V = 3.0 48 ppm V = 3.8 92 ppm 33 ppm 43 ppm V = 4.0 38 ppm 50 ppm V = 4.3 47 ppm 36 ppm 61 ppm V = 5.0 81 ppm 60 ppm 100 ppm V = 6.0 170 ppm 130 ppm 240 ppm V = 7.0 440 ppm 320 ppm 570 ppm V = 8.0 0.11 % 780 ppm 0.14 % V = 9.0 0.27 % 0.19 % 0.35 % V = 10.0 0.67 % 0.48 % 0.85 % Milli-magnitude oscillations can be detected in stars down to magnitude V=8. MONS/IFA/PL/RS/0003(1) 11

3.5.1 Data volume and rate We will produce data for 242 stars per minute (each in 2 apertures), plus housekeeping (e.g., pitch, yaw, roll and background estimates). The total data rate will be 1050 bytes per minute. This means 636 kbytes per orbit and 1.27 Mbytes per 24 hr. + 25% margin: 1.6 Mbytes/24 hr. MONS/IFA/PL/RS/0003(1) 12