BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

Size: px
Start display at page:

Download "BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings"

Transcription

1 COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1

2 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information gathered from Dr. Fesen & Dr. Brown Can the telescopic imaging of HST be achieved on a more affordable, balloon-stationed platform?

3 Telescope Comparison Pros Cons Ground-Based Orbiting Balloon-Stationed Capability for large primary mirrors Easy to maintain Above all of Earth s atmosphere Extremely dark sky background Diurnal functioning Extremely stable platform HST is currently the only facility that produces sharp pictures in the nm range. Very affordable compared to orbiting telescope Above 99% of Earth s atmosphere Sky background nearly as dark as HST Diurnal functioning. Can focus on multiple objects in the time it takes for HST to observe one Cannot function in bad weather Cannot function during daytime Images subject to atmospheric distortion Cannot compensate for turbulence at wavelengths shorter than 1200 nm. HST cost nearly 6 billion dollars Difficult and expensive maintenance Takes long time to observe one celestial object Easy to maintain May not be as stable of a platform as HST Cannot stay at float for extremely long durations of time. BOWSER 3

4 Mission Premise Problems a balloon-borne observatory faces: Optical Disturbances: o Bright Sky Background = Decreased Stellar Magnitude Limit Difficult to Orient Platform Mechanical Disturbances: o Pointing Errors Balloon Movements (Pitch, Roll, Yaw) High-frequency disturbances (on board motors) BOWSER 4

5 MODTRAN Displays sky background as a function of wavelength, altitude, and angle from the sun Indicates the ideal orientation for daytime observations from the stratosphere Theoretically, the model predicts an adequate reduction in sky brightness in the stratosphere Proving the accuracy of brightness at km is vital BOWSER 5

6 StarTracker5000 Successfully flight tested as the orientation system on three sounding rockets. Attitude determination, mapping and imaging of stars from sounding rockets, satellites, and balloons Able to view a field of stars up to 8 th magnitude brightness Triangulates constellations to determine pointing direction. The ST5000 could be utilized as a part of a pointing system for a balloon-borne observatory. BOWSER 6

7 Mission Overview High Altitude Student Platform 2009 (HASP): BOWSER Proposal won large payload spot January 2009 Launch September 7, 2009 out of Fort Sumner, New Mexico Platform ascends on a zero pressure NASA balloon to 36 km and floats for 25 hours experiencing both day and night conditions Power, communications, and downlink is provided. BOWSER 7

8 Payload Location BOWSER BOWSER 8

9 Payload Location Payload 10 Payload 9 Payload 12 BOWSER 9

10 BOWSER Payload 360 LED Array Multi-Angle LED Array Aluminum Isogrid Modified Newtonian Telescope Computer (TS-7260) Sunshade AVR Board DVR (DVQ19) Compass (HMC6343) Stepper Motor Wide Angle Camera (Canon G9) Photometers Telescope CCD (PC164CEX-2) BOWSER 10

11 Mission Visual 36 km HASP Balloon 35.9 km θ 35.8 km 35.7 km 35.6 km Verification of the MODTRAN model BOWSER will measure sky brightness as a function of: Altitude Wavelength Angle from the Sun BOWSER 11 HASP Payload 35.5 km 35.4 km

12 Mission Visual HASP Balloon XYZ Accelerations Yaw Determine performance requirements for a balloon-stationed star tracker BOWSER will: Measure the faint limit of detectable stars Measure pointing errors in the typical balloon environment BOWSER 12 Pitch / Roll

13 Mission Overview Mission Statement: Mission Science Goal Team BOWSER is working towards the eventual goal of supporting the diffraction-limited performance of balloon-borne telescopes. This mission focuses on the specific problem of compensating for mechanical and optical disturbances: BOWSER will measure the amplitude and frequency of disturbances in the typical balloon environment and characterize the stratospheric sky brightness in order to determine the performance requirements for balloon-borne star trackers. Mission Objectives: Objective 1: Objective 2: Mission Objectives Level 0 Team BOWSER will measure the amplitude and frequency of pointing errors in the typical balloon environment. Team BOWSER will measure sky brightness diurnally as a function of altitude, wavelength, and angle from the sun. BOWSER 13

14 Mission Implementation BOWSER will define requirements for balloon-borne star trackers. BOWSER will measure the amplitude and frequency of pointing errors in the balloon environment. BOWSER will measure sky brightness as a function of altitude, wavelength, and angle from the sun. Gyroscopic Sensors Pressure Sensor Wide-Angle CCD 360 LED Array Digital Compass Accelerometer Sensors Modified Telescope CCD Multi-Angle LED Array Photodetector Array BOWSER 14

15 LEDs as Light Sensors BOWSER 15

16 Requirements: LED 360 Array Measure sky brightness as a function of altitude, wavelength, and angle from the sun Design Description: 64 LEDs will measure light in the red, orange, green and blue spectrum Reasons for Choice: LEDs do not require the use of filters in order to sense discreet wavelength ranges. The array will produce over six million altitude, angle, and wavelength-specific data points that can easily verify the MODTRAN model. BOWSER 16

17 LED Multi-Angle Array Requirements: Measure sky brightness as a function of altitude, wavelength, and angle from the sun Design Description: Array of 12 red LEDs with angles varying between 5 degrees and 60 degrees, spaced 5 degreed apart Reasons for Choice: Provides a second dimension of data to correspond with the LED 360 array BOWSER 17

18 Angle From the Sun Test Looking for a relationship of wavelength -4 BOWSER 18

19 Requirements: Photodetector Array Correspond sky background brightness to cosmic images to discover the faint limit of stars. Design Description: Filter and lens combination will break up the visible spectrum into approximately 50 nm ranges in the IR, red and orange spectrums. Photodetectors will measure sky background brightness corresponding with the imaging system. Reasons for Choice: Filters allow for smaller and more accurate filtering. Common angle allows for sky background brightness readings to be compared with telescope and wide-angle images of the sky. BOWSER 19

20 Modified Newtonian Telescope Requirements: Characterize sky background brightness and faint limit of detectable stars Image celestial bodies and constellations consisting of 8 th magnitude stars. Design Description: Orion Newtonian with a flat secondary mirror, interior baffle, and a correcting lens pair. Designed to baffle out stray light in order to view fainter stars during daytime. Reasons for Choice: Baffle design will allow for daytime identification of at least 8 th magnitude stars in order for CCD to perform like the Star Tracker Affordable baffling modification constructed under the guidance of professional Russ Melon. BOWSER 20

21 BOWSER 21

22 Telescope CCD Requirements: Identify constellations consisting of 8 th magnitude stars to verify the use of a star tracker on a balloon platform. Design Description: Stationed behind the modified Newtonian telescope. Acts like ST5000 by recording at 10fps. Reasons for Choice: Accurately simulates what a star tracker could see from the stratosphere both at night and during the day. BOWSER 22

23 Wide-Angle CCD Requirements: Identify constellations within its field of view. Correspond sky brightness readings with images to discover the faint limit of detectable stars. Design Description: Installed with a cone baffle to eliminate light at extreme angles of incidence. High resolution CCD will produce uncompressed RAW images of celestial bodies. Reasons for Choice: Adjustable features and customizable settings: Supports the Canon Hack Development Kit (CHDK), which allows the user to run automated scripts, control various optical settings, and automatically capture pictures on a timed program. Adjustable exposure time and ISO sensitivity makes this high resolution camera perfect for the low-light settings of the dark sky. BOWSER 23

24 Disturbance Sensors Requirements: Characterize the pointing errors in the balloon environment. Requirements: Characterize the pointing errors in the balloon environment. Design Description: This three axis gyroscopic device will measure the rotational rates of the platform. Design Description: Two dual-axis accelerometers will be mounted perpendicularly, allowing for three dimensional acceleration profiling. Reasons for Choice: Temperature compensated readings. Reasons for Choice: Fast reset time which allows for readings at 2500Hz BOWSER 24

25 Digital Compass Requirements: Sense orientation relative to N, S, E, W direction and angle from the sun Design Description: Determines the pointing direction of the scientific instruments Reasons for Choice: Tilt compensated, so the payload s movement does not affect headings. BOWSER 25

26 BOWSER 26 CAD Drawings

27 BOWSER 27 CAD Drawings

28 Structural Compliance BOWSER 28

29 BOWSER 29 Questions?

30 Mario Test Flight Results Voltage data from photometer tubes Voltage data from LED tubes launch burst landing launch burst landing BOWSER 30

31 Mario Test Flight Results Light intensity data from photometer tubes Light intensity data from LED tubes launch burst landing launch burst landing BOWSER 31

32 Mission Timeline -2:00:00 HASP Internal Batteries On Avionics Components Checkout Science Components Checkout Continuous ADS and Light sensing 0:00:00 Ascent Observations Pictures 1 per 3 sec Video 10 sec every 3 min All ADS and Light Sensing taking continuous data 1 picture every 3 sec ~3:00:00 Float Observations Pictures change from continuous to clusters every 30 sec 30 sec clusters every 5 minutes 10 sec of video every 5 minutes +1:00:00 +2:00:00 +3:00:00 +4:00:00 +5:00:00 0:00:00 Launch Activate Computer & AVRs Activate Compass & Accelerometer Activate LEDs and photodiodes Health and Status packages every 10 minutes on ascent KEY: Satellite Communications Still Imaging Video BOWSER 32 ADS and Light Sensing

33 Mission Timeline 18:00:00 Termination All Instruments Shall Remain Off +14:00:00 +15:00:00 ~18:48:00 Landing +16:00:00 +17:00:00 All Instruments Shall Remain Off 17:30:00 Payload Shall Be Recovered By HASP Personnel Prepare for Termination Close sunshade Suspend operation of all electronics KEY: Satellite Communications Still Imaging Video BOWSER 3333 ADS and Light Sensing

2008 COSGC Space Research Symposium Page 1

2008 COSGC Space Research Symposium Page 1 Demonstrating Intensity of Electromagnetic High Altitude Radiation Determination Grant Fritz Kyle Kemble Brock Kowalchuk Colorado Space Grant Consortium - Boulder Brian Sanders Brock.kowalchuk@colorado.edu

More information

DIEHARD Data Analysis

DIEHARD Data Analysis Data Analysis Demonstrating Intensity of Electromagnetic High Altitude Radiation Determination Team HASP Taylor Boe Kevin Dinkel Amanda Covington Melanie Dubin Space Grant Student Research Coordinator

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

Chapter 6 Telescopes: Portals of Discovery

Chapter 6 Telescopes: Portals of Discovery Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How does your eye form an image? How do we record images? How does your eye form an image?

More information

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset Chapter 6 Telescopes: Portals of Discovery Agenda Announce: Read S2 for Thursday Ch. 6 Telescopes 6.1 Eyes and Cameras: Everyday Light Sensors How does your eye form an image? Our goals for learning How

More information

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light. Telescopes Portals of Discovery Chapter 6 Lecture The Cosmic Perspective 6.1 Eyes and Cameras: Everyday Light Sensors How do eyes and cameras work? Seventh Edition Telescopes Portals of Discovery The Eye

More information

= λ. Topics for Today. Clicker Q: Radio Waves. Radios. Light Pollution. Problems in Looking Through Our Atmosphere

= λ. Topics for Today. Clicker Q: Radio Waves. Radios. Light Pollution. Problems in Looking Through Our Atmosphere ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 5 Tues 30 Jan 07 zeus.colorado.edu/astr1040-toomre toomre Topics for Today Twinkle and absorption by our atmosphere

More information

A Stellar Gyroscope for CubeSat Attitude Determination

A Stellar Gyroscope for CubeSat Attitude Determination A Stellar Gyroscope for CubeSat Attitude Determination Samir A. Rawashdeh and James E. Lumpp, Jr. Space Systems Laboratory University of Kentucky James Barrington-Brown and Massimiliano Pastena SSBV Space

More information

More Optical Telescopes

More Optical Telescopes More Optical Telescopes There are some standard reflecting telescope designs used today All have the common feature of light entering a tube and hitting a primary mirror, from which light is reflected

More information

Telescopes, Observatories, Data Collection

Telescopes, Observatories, Data Collection Telescopes, Observatories, Data Collection Telescopes 1 Astronomy : observational science only input is the light received different telescopes, different wavelengths of light lab experiments with spectroscopy,

More information

ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies ASTR 1120 General Astronomy: Stars & Galaxies!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift) "ODA# Detecting

More information

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies !

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies ! ASTR 1120 General Astronomy: Stars & Galaxies On to Telescopes!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift)

More information

Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations

Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations T. Gregory Guzik, Louisiana Space Grant Consortium Department of Physics & Astronomy Louisiana State University v030316 1 Primary

More information

NICMOS Status and Plans

NICMOS Status and Plans 1997 HST Calibration Workshop Space Telescope Science Institute, 1997 S. Casertano, et al., eds. NICMOS Status and Plans Rodger I. Thompson Steward Observatory, University of Arizona, Tucson, AZ 85721

More information

BalloonSat Missions to the Edge of Space

BalloonSat Missions to the Edge of Space The Colorado Space Grant Consortium, The University of Colorado at Boulder Department of Aerospace Engineering Sciences, and the Edge of Space Sciences present BalloonSat Missions to the Edge of Space

More information

Telescopes and the Atmosphere

Telescopes and the Atmosphere Telescopes and the Atmosphere Our goals for learning How does Earth s atmosphere affect ground-based observations? Why do we put telescopes into space? How does Earth s atmosphere affect ground-based observations?

More information

Selective Pointing Apparatus for Research of Turbulence and Atmospheric Noise Variation

Selective Pointing Apparatus for Research of Turbulence and Atmospheric Noise Variation Selective Pointing Apparatus for Research of Turbulence and Atmospheric Noise Variation Bryan Barnhart, Brian Ibeling, Christopher Nie, and Sushia Rahimizadeh University of Colorado at Boulder, Boulder,

More information

What do we do with the image?

What do we do with the image? Astro 150 Spring 2018: Lecture 7 page 1 Reading: Chapter 6, Sect. 6.4; Chapter 14 + assignment posted on Astro 150 website Homework: questions on special reading - answers due in lecture Thursday Exam

More information

What do companies win being a supplier to ESO

What do companies win being a supplier to ESO What do companies win being a supplier to ESO Arnout Tromp Head of Contracts and Procurement Topics Characteristics of what ESO procures Technology in Astronomy Spin off from the past The future: E-ELT

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

Planetary Science From Stratospheric Balloons, BRRISON Mission Overview, and Poten=al 2014 Re- flight Op=ons SBAG - January 8-9, 2014

Planetary Science From Stratospheric Balloons, BRRISON Mission Overview, and Poten=al 2014 Re- flight Op=ons SBAG - January 8-9, 2014 Planetary Science From Stratospheric Balloons, BRRISON Mission Overview, and Poten=al 2014 Re- flight Op=ons SBAG - January 8-9, 2014 Tibor Kremic and Andy Cheng Introduc6on / Ra6onale The Planetary Science

More information

Properties of Thermal Radiation

Properties of Thermal Radiation Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation

More information

ASTR 2310: Chapter 6

ASTR 2310: Chapter 6 ASTR 231: Chapter 6 Astronomical Detection of Light The Telescope as a Camera Refraction and Reflection Telescopes Quality of Images Astronomical Instruments and Detectors Observations and Photon Counting

More information

Spitzer Space Telescope

Spitzer Space Telescope Spitzer Space Telescope (A.K.A. The Space Infrared Telescope Facility) The Infrared Imaging Chain 1/38 The infrared imaging chain Generally similar to the optical imaging chain... 1) Source (different

More information

Universe Now. 2. Astronomical observations

Universe Now. 2. Astronomical observations Universe Now 2. Astronomical observations 2. Introduction to observations Astronomical observations are made in all wavelengths of light. Absorption and emission can reveal different things on different

More information

The Atsa Suborbital Observatory. Luke Sollitt and Faith Vilas

The Atsa Suborbital Observatory. Luke Sollitt and Faith Vilas The Atsa Suborbital Observatory Click Using to crewed edit Master suborbital subtitle style spacecraft for a lowcost space-borne telescope Luke Sollitt and Faith Vilas Introduction Why take an IR telescope

More information

Lecture 2. September 13, 2018 Coordinates, Telescopes and Observing

Lecture 2. September 13, 2018 Coordinates, Telescopes and Observing Lecture 2 September 13, 2018 Coordinates, Telescopes and Observing News Lab time assignments are on class webpage. Lab 2 Handed out today and is due September 27. Observing commences starting tomorrow.

More information

High-Altitude airborne platform characterisation of adaptive optic corrected ground based laser

High-Altitude airborne platform characterisation of adaptive optic corrected ground based laser High-Altitude airborne platform characterisation of adaptive optic corrected ground based laser F. Bennet, M. Petkovic Research School of Astronomy and Astrophysics, Australian National University, Canberra,

More information

Reading Clicker Q. Spectroscopy analyzing the light. What light gets through? Instruments in the Focal Plane. ASTR 1040 Accel Astro: Stars & Galaxies

Reading Clicker Q. Spectroscopy analyzing the light. What light gets through? Instruments in the Focal Plane. ASTR 1040 Accel Astro: Stars & Galaxies ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TAs: Nicholas Nelson, Zeeshan Parkar Lecture 5 Tues 26 Jan 2010 zeus.colorado.edu/astr1040-toomre toomre Topics for Today What light does and does

More information

Telescopes. Lecture 7 2/7/2018

Telescopes. Lecture 7 2/7/2018 Telescopes Lecture 7 2/7/2018 Tools to measure electromagnetic radiation Three essentials for making a measurement: A device to collect the radiation A method of sorting the radiation A device to detect

More information

III. ASTRONOMY TOOLS:

III. ASTRONOMY TOOLS: III. ASTRONOMY TOOLS: A. Since light is so important to astronomers, they want to collect as much of it as possible from a given object, and quantitatively study it in great detail. 1. Astronomers use

More information

1/29/14. Topics for Today. UV, X-rays and Gamma-rays. Atmospheric Absorption of Light. Why bother with other light? ASTR 1040: Stars & Galaxies

1/29/14. Topics for Today. UV, X-rays and Gamma-rays. Atmospheric Absorption of Light. Why bother with other light? ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Gran Telescopio Canarias, La Palma 10.4m Topics for Today What our atmosphere does to light Magic of adaptive optics Radio telescopes: many dishes make a big one (interferometry

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

Earth s Atmosphere & Telescopes. Atmospheric Effects

Earth s Atmosphere & Telescopes. Atmospheric Effects Earth s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth s atmosphere can absorb certain wavelengths of light so much that astronomers

More information

Overview of the Current Baseline of the Solar-C Spacecraft System

Overview of the Current Baseline of the Solar-C Spacecraft System Overview of the Current Baseline of the Solar-C Spacecraft System Keisuke YOSHIHARA (JAXA) 11 November, 2013 Solar-C Science Meeting Hida Earth Wisdom Center, Takayama, Japan Solar-C Spacecraft System

More information

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Dr. Simon Grocott Dr. Robert E Zee Dr. Jaymie Matthews Dynacon Inc UTIAS SFL UBC 13 August 2003 Outline MOST (Microvariability and

More information

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

Photographing the Moon and the ISS. By Thierry Legault

Photographing the Moon and the ISS. By Thierry Legault Photographing the Moon and the ISS By Thierry Legault Photographing the whole Moon: basics Needs a DSLR at prime focus of the telescope The field of view depends on the telescope FL and the size S of the

More information

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Seventh Edition Telescopes Portals of Discovery Telescopes Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes

More information

How do telescopes "see" on Earth and in space?

How do telescopes see on Earth and in space? How do telescopes "see" on Earth and in space? By NASA, adapted by Newsela staff on 03.28.17 Word Count 933 Level 970L TOP IMAGE: The Hubble Space Telescope orbiting in space over Earth. SECOND IMAGE:

More information

Telescopes: Portals of Discovery Pearson Education, Inc.

Telescopes: Portals of Discovery Pearson Education, Inc. Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes and cameras work? The Eye Refraction Incoming light ray Air Glass Refraction is the bending

More information

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

Space Telescopes Asteroid Mining Space Manufacturing. Wefunder.com/SpaceFab

Space Telescopes Asteroid Mining Space Manufacturing. Wefunder.com/SpaceFab Space Telescopes Asteroid Mining Space Manufacturing Wefunder.com/SpaceFab Business Road Map Cost efficient high value space telescopes Unique business model Deployable optics technology Asteroid mining

More information

Useful Formulas and Values

Useful Formulas and Values Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

More information

Why Use a Telescope?

Why Use a Telescope? 1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

More information

INTRODUCTION TO THE TELESCOPE

INTRODUCTION TO THE TELESCOPE INTRODUCTION TO THE TELESCOPE What will you learn in this Lab? For a few of the labs this semester, you will be using an 8-inch Celestron telescope to take observations. This lab will introduce you to

More information

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL PROBA 1 F. Teston ESA/ESTEC D/TEC-EL Frederic.Teston@esa.int PROBA 1 launch PROBA 1 has been launched on 21 October 2001 Orbital parameters: Altitude: 681-561 km Near polar (inclination of 97.9 ) Sun-synchronous

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology A CubeSat Mission for Exoplanet Transit Detection and Astroseismology Jeremy Bailey (UNSW, Physics) Steve Tsitas (UNSW, ACSER) Daniel Bayliss (RSAA, ANU) Tim Bedding (Univ. Sydney) ESO Very Large Telescope

More information

BRITE One Year in Orbit

BRITE One Year in Orbit BRITE One Year in Orbit O. Koudelka, M.Unterberger, P.Romano Graz University of Technology W.Weiss, R.Kuschnig University of Vienna 1 Contents Scientific Goals Mission Description Commissioning Science

More information

Telescopes come in three basic styles

Telescopes come in three basic styles Telescopes come in three basic styles Refracting telescopes use lenses Refractors are either achromatic (some color distortion) or apochromatic (very little if any color distortion). Apo refractors use

More information

Telescopes. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. Key Ideas:

Telescopes. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. Key Ideas: Telescopes A Warm Up Exercise If we measure the wavelengths of emission lines and absorption lines from the same gas, we find that (ignoring any Doppler shifts) a) Some emission lines shift to the red

More information

THE PICSAT PROJECT. Mathias Nowak, PhD student LESIA/Observatoire de Paris

THE PICSAT PROJECT. Mathias Nowak, PhD student LESIA/Observatoire de Paris THE PICSAT PROJECT Mathias Nowak, PhD student LESIA/Observatoire de Paris mathias.nowak@obspm.fr THE PICSAT PROJECT - A 3-unit CubeSat, ~4 kg, ~6 W - Dedidacted to the observation of Beta Pictoris - LESIA

More information

Optical Telescopes. Not *INVENTED* by Galileo, but he was the first to point it at the sky in 1609.

Optical Telescopes. Not *INVENTED* by Galileo, but he was the first to point it at the sky in 1609. Telescopes! Optical Telescopes Not *INVENTED* by Galileo, but he was the first to point it at the sky in 1609. The Purpose of a Telescope Gather as much light as possible Reveal as much detail as possible

More information

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation. Problem Solving picture θ f = 10 m s =1 cm equation rearrange numbers with units θ factors to change units s θ = = f sinθ fθ = s / cm 10 m f 1 m 100 cm check dimensions 1 3 π 180 radians = 10 60 arcmin

More information

Lecture Outline: Chapter 5: Telescopes

Lecture Outline: Chapter 5: Telescopes Lecture Outline: Chapter 5: Telescopes You don t have to know the different types of optical reflecting and refracting telescopes. It is important to understand the difference between imaging, photometry,

More information

Studying the universe

Studying the universe Studying the universe What is astronomy? A branch of science that deals with study of stars, planets, the universe as a whole The idea is that we live in a clockwork universe and is governed by laws that

More information

Autonomous Vision Based Detection of Non-stellar Objects Flying in Formation with Camera Point of View

Autonomous Vision Based Detection of Non-stellar Objects Flying in Formation with Camera Point of View Autonomous Vision Based Detection of Non-stellar Objects Flying in Formation with Camera Point of View As.Prof. M. Benn (1), Prof. J. L. Jørgensen () (1) () DTU Space, Elektrovej 37, 4553438, mb@space.dtu.dk,

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

How to Measure and Record Light Spectrograph. The Photographic plate now obsolete Turbulence

How to Measure and Record Light Spectrograph. The Photographic plate now obsolete Turbulence PHYS 1411 Introduction to Astronomy Light and Telescope Chapter 6 Chapter 6 topics we have covered so far Radiation Information from Space Wave properties, light as a wave and particle, Electromagnetic

More information

The Main Point. Familiar Optics. Some Basics. Lecture #8: Astronomical Instruments. Astronomical Instruments:

The Main Point. Familiar Optics. Some Basics. Lecture #8: Astronomical Instruments. Astronomical Instruments: Lecture #8: Astronomical Instruments Astronomical Instruments: Optics: Lenses and Mirrors. Detectors. Ground Based Telescopes: Optical, Infrared, and Radio. Space Based Telescopes. Spacecraft Missions.

More information

EXPOSURE TIME ESTIMATION

EXPOSURE TIME ESTIMATION ASTR 511/O Connell Lec 12 1 EXPOSURE TIME ESTIMATION An essential part of planning any observation is to estimate the total exposure time needed to satisfy your scientific goal. General considerations

More information

Telescopes 3 Feb. Purpose

Telescopes 3 Feb. Purpose Telescopes 3 Feb Key parameters of telescopes Optical telescopes SOAR Telescope, MSU s window on the universe Radio telescopes Telescopes in space SOAR Telescope Cerro Pachon, Chile First Test is Thurs

More information

Outline HST HST. HST& JWST CARMA and ALMA SOFIA Chandra Blackbodies. Doppler Effect. Homework #5 was due today.

Outline HST HST. HST& JWST CARMA and ALMA SOFIA Chandra Blackbodies. Doppler Effect. Homework #5 was due today. Outline Homework #5 was due today. Next homework is #6 due next Friday at 11:50 am. There will be another make-up nighttime observing session in November. Stay tuned. I will be teaching Paul s class on

More information

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team Team X Study Summary for ASMCS Theia Jet Propulsion Laboratory, California Institute of Technology with contributions from the Theia Team P. Douglas Lisman, NASA Jet Propulsion Laboratory David Spergel,

More information

SPECTRAL WORKSHOP. Picture of the lamps, professional spectroscopes and 'DIY' spectroscopes. Larger view of the 'DIY' spectroscopes

SPECTRAL WORKSHOP. Picture of the lamps, professional spectroscopes and 'DIY' spectroscopes. Larger view of the 'DIY' spectroscopes SPECTRAL WORKSHOP OVERVIEW I STEP-BY-STEP GUIDE Equipment List Workshop guides II ADDITIONAL MATERIAL Picture of the lamps, professional spectroscopes and 'DIY' spectroscopes III Larger view of the 'DIY'

More information

An Agile Multi-Use Nano Star Camera for Constellation Applications

An Agile Multi-Use Nano Star Camera for Constellation Applications An Agile Multi-Use Nano Star Camera for Constellation Applications Scott Palo 1,2, George Stafford 2 and Alan Hoskins 1 1 University of Colorado 2 Blue Canyon Technologies Partnership The BCT technical

More information

Educational Product Teachers Grades K-12 EG MSFC

Educational Product Teachers Grades K-12 EG MSFC Educational Product Teachers Grades K-12 NASA Spacelink Optics: An Educators Guide With Activities In Science and Mathematics is available in electronic format through NASA Spacelink one of the Agency

More information

A Concept of Nanosatellite Small Fleet for Earth Observation

A Concept of Nanosatellite Small Fleet for Earth Observation A Concept of Nanosatellite Small Fleet for Earth Observation Prof. Janusz Narkiewicz jnark@meil.pw.edu.pl Sebastian Topczewski stopczewski@meil.pw.edu.pl Mateusz Sochacki msochacki@meil.pw.edu.pl 10-11

More information

Rømer Science Mission Plan

Rømer Science Mission Plan Institute of Physics and Astronomy, University of Aarhus Rømer Science Mission Plan Danish Small Satellite Programme Document No.(issue): MONS/IFA/MAN/PLN/0001(1) Date: 2001-05-29 Prepared by: Jørgen Christensen-Dalsgaard,

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

CASE/ARIEL & FINESSE Briefing

CASE/ARIEL & FINESSE Briefing CASE/ARIEL & FINESSE Briefing Presentation to NRC Committee for Exoplanet Science Strategy including material from the ARIEL consortium Mark Swain - JPL 19 April 2019 2018 California Institute of Technology.

More information

Light and Telescopes

Light and Telescopes Light and Telescopes The key thing to note is that light and matter interact. This can happen in four principal ways: 1) emission a hot object such as the filament in a light bulb emits visible light 2)

More information

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors PHYS 1403 Introduction to Astronomy Light and Telescope Chapter 6 Todays Topics Astronomical Detectors Radio Telescopes Why we need space telescopes? Hubble Space Telescopes Future Space Telescopes Astronomy

More information

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Makoto TAGAWA Kyushu University Toshiya HANADA Kyushu University Kozue HASHIMOTO, Yukihito KITAZAWA, Aritsune KAWABE IHI

More information

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley 7. Telescopes: Portals of Discovery Parts of the Human Eye pupil allows light to enter the eye lens focuses light to create an image retina detects the light and generates signals which are sent to the

More information

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Telescopes Portals of Discovery 2014 Pearson Education, Inc. Telescopes Portals of Discovery CofC Observatory 6.1 Eyes and Cameras: Everyday Light Sensors Our goals

More information

Imaging with SPIRIT Exposure Guide

Imaging with SPIRIT Exposure Guide Imaging with SPIRIT Exposure Guide SPIRIT optical telescopes utilise extremely sensitive cameras to record the light from distant astronomical objects. Even so, exposures of several seconds up to a few

More information

THE NEWEST HUNGARIAN COSMIC RADIATION MEASUREMENT RESULTS IN THE STRATOSPHERE USING STRATOSPHERIC BALLOONS AND SOUNDING ROCKETS

THE NEWEST HUNGARIAN COSMIC RADIATION MEASUREMENT RESULTS IN THE STRATOSPHERE USING STRATOSPHERIC BALLOONS AND SOUNDING ROCKETS THE NEWEST HUNGARIAN COSMIC RADIATION MEASUREMENT RESULTS IN THE STRATOSPHERE USING STRATOSPHERIC BALLOONS AND SOUNDING ROCKETS Balázs Zábori Centre for Energy Research, Hungarian Academy of Sciences zabori.balazs@energia.mta.hu

More information

Space Notes 3B. Covers objectives 5, 10, and 11

Space Notes 3B. Covers objectives 5, 10, and 11 Space Notes 3B Covers objectives 5, 10, and 11 Technologies Designed To Explore Space Space Shuttle History Rocket Propulsion 1. Rockets transport astronauts and materials into space. 2. Animals such as

More information

Exploring the Depths of the Universe

Exploring the Depths of the Universe Exploring the Depths of the Universe Jennifer Lotz Hubble Science Briefing Jan. 16, 2014 Hubble is now observing galaxies 97% of the way back to the Big Bang, during the first 500 million years 2 Challenge:

More information

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key 1. Which of these Electromagnetic radiation bands has the longest wavelength (λ)? [Section 12.1] a. X-Ray b. Visible Light c. Infrared d. Radio 2. How is energy in Electromagnetic (EM) radiation related

More information

Status and Calibration of the erosita X ray Telescope

Status and Calibration of the erosita X ray Telescope Status and Calibration of the erosita X ray Telescope Vadim Burwitz Max Planck Institut für extraterrestrische Physik on behalf of the erosita Team IACHEC, Lake Arrowhead, USA, 29 Mar 2017 Spektr Rentgen

More information

Chapter 6 Light and Telescopes

Chapter 6 Light and Telescopes Chapter 6 Light and Telescopes Guidepost In the early chapters of this book, you looked at the sky the way ancient astronomers did, with the unaided eye. In chapter 4, you got a glimpse through Galileo

More information

4.2 Detecting Celestial Bodies and the Moon

4.2 Detecting Celestial Bodies and the Moon 4.2 Detecting Celestial Bodies and the Moon Astronomers cannot conduct experiments on celestial objects, they can only observe them at a distance. However, today's technology allows us to see farther into

More information

Introduction to Telescopes Pre-lab

Introduction to Telescopes Pre-lab AST 114 Spring 2005 Introduction to Telescopes Introduction to Telescopes Pre-lab 1. Read through the "Parts of a Telescope" section of the lab. You may be asked to point out the different parts of the

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 3 Telescopes Lecture Presentation 3.0 Imaging the universe Our original observations of the universe depended on our eyes! What other

More information

arxiv: v1 [astro-ph.im] 12 Apr 2011

arxiv: v1 [astro-ph.im] 12 Apr 2011 Fine tracking system for balloon-borne telescopes M. Ricci a,, F. Pedichini a, D.Lorenzetti a, arxiv:1104.2181v1 [astro-ph.im] 12 Apr 2011 a INAF - Osservatorio Astronomico di Roma - Via Frascati, 33-00040

More information

Astronomy 1504/15014 Section 20

Astronomy 1504/15014 Section 20 1 point each Astronomy 1504/15014 Section 20 Midterm 1 (Practice Exam) September 21, 2015 Exam Version A Choose the answer that best completes the question. Read each problem carefully and read through

More information

UNIT E: SPACE EXPLORATION

UNIT E: SPACE EXPLORATION UNIT E: SPACE EXPLORATION S C I E N C E 9 1 Science 9 Unit E Section 3.0 OPTICAL TELESCOPES, RADIO TELESCOPES, AND OTHER TECHNOLOGIES ADVANCE OUR UNDERSTANDING OF SPACE SECTI ON 3.0 Science 9 Unit E Section

More information

HICO Science Mission Overview

HICO Science Mission Overview HICO Science Mission Overview Michael R. Corson* and Curtiss O. Davis** * Naval Research Laboratory Washington, DC corson@nrl.navy.mil ** College of Oceanic and Atmospheric Sciences Oregon State University

More information

Selective Pointing Apparatus for Research of Turbulence and Atmospheric Noise Variation Final Report

Selective Pointing Apparatus for Research of Turbulence and Atmospheric Noise Variation Final Report Selective Pointing Apparatus for Research of Turbulence and Atmospheric Noise Variation Final Report Bryan Barnhart, Brian Ibeling, Christopher Nie, and Sushia Rahimizadeh University of Colorado at Boulder,

More information

Abstract HISAKI (SPRINT A) satellite is an earth orbiting EUV spectroscopic mission and launched on 14 Sep Extreme ultraviolet spectroscope (EX

Abstract HISAKI (SPRINT A) satellite is an earth orbiting EUV spectroscopic mission and launched on 14 Sep Extreme ultraviolet spectroscope (EX Pointing control of extreme ultraviolet spectroscope onboard the SPRINT A satellite F. Tsuchiya(1*), A. Yamazaki(2), G. Murakami(2), K. Yoshioka(2), T. Kimura(2), S. Sakai(2), K. Uemizu(3), T. Sakanoi(1),

More information

Observation of Light Curves of Space Objects. Hirohisa Kurosaki Japan Aerospace Exploration Agency Toshifumi Yanagisawa.

Observation of Light Curves of Space Objects. Hirohisa Kurosaki Japan Aerospace Exploration Agency Toshifumi Yanagisawa. Observation of Light Curves of Space Objects Hirohisa Kurosaki Japan Aerospace Exploration Agency Toshifumi Yanagisawa Japan Aerospace Exploration Agency Atsushi Nakajima Japan Aerospace Exploration Agency

More information

THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING

THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING ABSTRACT Sergey Voronkov Space Research Institute, Russian Academy of Sciences, 117997, Profsoyuznaya str., 84/32, Moscow, Russia Phone: +7 095

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

Astroimaging From Easy to Less Than Easy. S. Douglas Holland

Astroimaging From Easy to Less Than Easy. S. Douglas Holland Amateur Astrophotography Made possible by advances in: 1. Camera technology 2. High quality amateur telescopes 3. Telescope mounts 4. Computer technology 5. Astroimaging software What You Can Expect: Types

More information

Tibor Kremic, Glenn Research Center

Tibor Kremic, Glenn Research Center Balloon Based Planetary" Science Capability" Tibor Kremic, Glenn Research Center VEXAG Meeting #10 " Nov, 2012 Study Objectives 1) Confirm the science potential of a balloon based telescope deeper exploration

More information