Chapter 11 Ideal gases

Similar documents
Compiled and rearranged by Sajit Chandra Shakya

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

S6. (a) State what is meant by an ideal gas...

PhysicsAndMathsTutor.com 1

Kinetic Theory. 84 minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation.

CHAPTER 3 TEST REVIEW

CLASSIFIED 2 PRESSURE THERMAL PHYSICS MR. HUSSAM SAMIR

Topic 3 &10 Review Thermodynamics

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

Thermodynamics. Atoms are in constant motion, which increases with temperature.

P6 Molecules and matter. Student Book answers. P6.1 Density. Question Answer Marks Guidance. 1 a m 3 (= 0.80 m 0.60 m 0.

PURE PHYSICS THERMAL PHYSICS (PART I)

All gases display distinctive properties compared with liquid or solid. Among them, five properties are the most important and listed below:

1. Thermal energy is transferred through the glass windows of a house mainly by. D. radiation and convection. (1)

Introduction. Chemistry the science of matter and the changes it can undergo.

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

Revision Guide for Chapter 13

tp03: The Ideal Gas Law

Chapter 10. Thermal Physics

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

NATIONAL 5 PHYSICS THERMODYNAMICS

11/22/11. If you add some heat to a substance, is it possible for the temperature of the substance to remain unchanged?

Properties of Gases. assume the volume and shape of their containers. most compressible of the states of matter

Theory (NOTE: This theory is the same that we covered before in Experiment 11on the Ideal Gas model)

14.3 Ideal Gases > Chapter 14 The Behavior of Gases Ideal Gases Properties of Gases The Gas Laws Gases: Mixtures and Movements

(a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision.

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

12. Heat of melting and evaporation of water

Name: New Document 1. Class: Date: 83 minutes. Time: 82 marks. Marks: Comments:

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

17-6 The Gas Laws and Absolute Temperature

Chemistry 11. Unit 11 Ideal Gas Law (Special Topic)

11/22/2010. Mid term results. Thermal physics

GAS LAWS. Boyle s Law: Investigating the dependence of Volume on Pressure (Temperature kept constant)

The Kinetic Theory of Gases

Chapter 12. Answers to examination-style questions. Answers Marks Examiner s tips

Chemistry Entrance Material for Grade 10 to

Chapter 10, Thermal Physics

Chapter 10: Thermal Physics

Chapter 5 The Gaseous State

Chapter 10. Answers to Even Numbered Problems. 2. (a) 251 C. (b) 1.36 atm C, C. 6. (a) 273 C (b) 1.27 atm, 1.74 atm

National 5 Physics. Electricity and Energy. Notes

Temperature, Thermal Expansion and the Gas Laws

Section A Q1 Which of the following least resembles an ideal gas? A ammonia B helium C hydrogen D trichloromethane

What Do You Think? Investigate GOALS. [Catch art: xxxxxxxxxxxxxxxxxx] Part A: Volume and Temperature of a Gas

Unit 08 Review: The KMT and Gas Laws

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Although different gasses may differ widely in their chemical properties, they share many physical properties

A).5 atm B) 1 atm C) 1.5 atm D) 2 atm E) it is impossible to tell

Some Fundamental Definitions:

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70)

LAB 11: THE IDEAL GAS LAW AND ABSOLUTE ZERO OF TEMPERATURE

STP : standard temperature and pressure 0 o C = 273 K kpa

Ideal Gas and Latent Heat

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

Chapter 19 Thermal Properties of Matter. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm?

CHEMISTRY NOTES Chapter 12. The Behavior of Gases

REVISION: GAS LAWS & MOLE CALCULATIONS 18 JUNE 2013

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Electricity and Energy 1 Content Statements

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Dual Program Level 1 Physics Course

Chapter 5 The Gaseous State

1. This question is about modelling the thermal processes involved when a person is running.

PhysicsAndMathsTutor.com 1 2 (*) (1)

2. If the volume of a container holding a gas is reduced, what will happen to the presure within the container?

Ideal Gas Law. Name, Date, Partner Lab Section. Date, Partner and Lab Section

Chapter 14 Thermal Physics: A Microscopic View

Heat Lost and Heat Gained Determining the Specific Heat of a Metal

Name: Regents Review Quiz #1 2016

10 States of Matter. Aubrey High School AP Chemistry. Period Date / / 10.2 Problems - Liquids and Gases

Ch 6 Gases 6 GASES. Property of gases. pressure = force/area

Gases. Characteristics of Gases. Unlike liquids and solids, gases

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY

EXPERIMENT 6: ABSOLUTE ZERO

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

Scientists and Their Discoveries: The Ideal Gas Law Poster Illustrated Teacher's Guide

Lecture 24. Ideal Gas Law and Kinetic Theory

--Lord Kelvin, May 3rd, 1883

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

12.2. The Ideal Gas Law. Density and Molar Mass of Gases SECTION. Key Terms

Empirical Gas Laws (Parts 1 and 2) Pressure-volume and pressure-temperature relationships in gases

Chapter 11. Molecular Composition of Gases

Lab 12 Pressure-Temperature Relationship in Gases

HEAT AND THERMODYNAMICS

LAB 12 - THE IDEAL GAS LAW

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

Student Book links Specification links Links to prior learning Suggested teaching order

MATTER AND HEAT. Chapter 4 OUTLINE GOALS

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Transcription:

OCR (A) specifications: 5.4.10c,d,e,i,j,k Chapter 11 Ideal gases Worksheet Worked examples Practical: Determining absolute zero of temperature from the pressure law End-of-chapter test Marking scheme: Worksheet Marking scheme: End-of-chapter test

Worksheet Avogadro constant N A = 6.02 10 23 mol 1 universal gas constant R = 8.31 J mol 1 K 1 Intermediate level 1 Determine the number of atoms or molecules in each of the following: a 1.0 mole of carbon; [1] b 3.6 moles of water; [1] c 0.26 moles of helium. [1] 2 The molar mass of helium is 4.0 g. Determine the mass of a single atom of helium in kilograms. [2] 3 The molar mass of uranium is 238 g. a Calculate the mass of one atom of uranium. [2] b A small rock contains 0.12 g of uranium. For this rock, calculate the number of: i moles of uranium; [2] ii atoms of uranium. [1] 4 Explain what is meant by the absolute zero of temperature. [3] 5 a Change the following temperatures from degrees Celsius into kelvin. i 0 C ii 80 C iii 120 C [3] b Change the following temperatures from kelvin into degrees Celsius. i 400 K ii 272 K iii 3 K [3] 6 a Write the ideal gas equation in words. [1] b One mole of an ideal gas is trapped inside a rigid container of volume 0.020 m 3. What pressure is exerted by the gas when the temperature within the container is 293 K? [3] Higher level 7 A fixed amount of an ideal gas is trapped in a container of volume V. The pressure exerted by the gas is P and its absolute temperature is T. a Using a sketch of against T, explain how you can determine the number of moles of gas within the container. [4] b Sketch a graph of against P when the gas is kept at a constant temperature. Explain the shape of the graph. [3] 8 A rigid cylinder of volume 0.030 m 3 holds 4.0 g of air. The molar mass of air is 29 g. a b Calculate the pressure exerted by the gas when the temperature within the cylinder is 34 C. [4] What is the temperature of the gas in degrees Celsius when the pressure is twice your value from part a? [4] 11 Ideal gases Cambridge University Press 2005 127

9 The diagram shows two insulated containers holding gas. The containers are connected together by tubes of negligible volume. valve A B The internal volume of each container is 2.0 10 2 m 3. The temperature within each container is 13 C. The gas in container A exerts a pressure of 180 kpa and the gas in container B exerts a pressure of 300 kpa. a Show that the amount of gas within the two containers is about 4.4 moles. [3] b The valve connecting the containers is slowly opened and the gases are allowed to mix. The temperature within the containers remains the same. What is the new pressure exerted by the gas within the containers? [3] 10 The diagram shows a cylinder containing air at a temperature of 5.0 C. A force of 400 N is applied normally to the piston of cross-sectional area 1.6 10 3 m 2. The volume occupied by the compressed air is 2.4 10 4 m 3. The molar mass of air is 29 g. Calculate: 400N a the pressure exerted by the compressed air; [2] b the number of moles of air inside the cylinder. [3] c Use your answer to b to determine: i the mass of air inside the cylinder; [1] ii the density of the air inside the cylinder. [2] 11 The mean speed of a helium atom at a temperature of 0 C is 1.3 km s 1. What is the mean speed of helium atoms on the surface of a star where the temperature is 10 000 K? [6] cylinder piston cross-sectional area = 1.6 10 3 m 2 Extension 12 The mean kinetic energy of a gas molecule at an absolute temperature T is given by: kinetic energy = 3RT 2N A where R is the molar gas constant and N A is the Avogadro constant. a Calculate the mean kinetic energy of gas atoms at 0 C. [2] b c Determine the speed of carbon dioxide molecules at 0 C. The molar mass of carbon dioxide is 44 g. [5] Calculate the change in the internal energy of one mole of carbon dioxide gas when its temperature increases from 0 C to 100 C. [3] Total: 68 Score: % 128 Cambridge University Press 2005 11 Ideal gases

Worked examples Example 1 A sealed container holds air at a pressure of 100 kpa at 80 C. The container is cooled to a temperature of 10 C. Assuming that there is negligible change in the volume of the container, calculate the new pressure exerted by the air in the container. Assuming that the air behaves as an ideal gas, we have: = nrt Hence: T = nr Initial P = 100kPa θ = 80 C Final P =? θ = 10 C In the relation above, the terms n, R and V are all constant. Therefore: P T P 1 T 1 =constant or = P 2 T 2 The new pressure P is given by: 100 10 3 (273 + 80) = P (273 10) It is very important to change the temperature into kelvin. To change temperature from C to kelvin, just add 273. P = 263 100 10 3 353 = 7.45 10 4 Pa 75 kpa Example 2 A particular filament lamp contains argon gas at a low pressure. When the lamp is switched on, the temperature within the lamp increases from 20 C to 80 C. Calculate the ratio: speed of argon atom at 80 C speed of argon atom at 20 C The mean kinetic energy of an atom is proportional to the absolute temperature: 1 mv 2 T or v 2 2T 2 m Since the mass m of the atom is constant, we have: v 1 v 2 v T and so = T 1 T 2 If the speed at 80 C is v 80 and the speed at 20 C is v 20, then: v ratio 80 273 + 80 353 = = = 1.2 1.1 v Once again, do not forget to convert the temperature into kelvin. 20 273 + 20 293 Tip 353 The temperature in kelvin increases by a factor of: = 1.2 293 The mean kinetic energy of an atom is directly proportional to the absolute temperature. Therefore the mean kinetic energy also increases by the same factor of 1.2. For a given atom, the kinetic energy is proportional to the speed 2. Hence the speed must increase by a factor of 1.2 1.1. 11 Ideal gases Cambridge University Press 2005 129

Practical Determining absolute zero of temperature from the pressure law Safety Be careful when working around the heater and ensure that the hot beaker is stable when stirring the water. Teachers and technicians should follow their school and departmental safety policies and should ensure that the employer s risk assessment has been carried out before undertaking any practical work. Apparatus electrical heater (hot plate) thermometer water bath crushed ice conical flask stirrer pressure gauge or sensor Introduction The details of the ideal gas equation are given on page 117 of Physics 2. In this experiment you will investigate how the pressure exerted by a fixed amount of trapped air depends on its temperature. You can use your results to estimate the value of absolute zero of temperature. The apparatus is shown in the diagram. pressure gauge thin glass pipe thermometer rubber bung water bath flask dry air heater Procedure 1 Put some water and crushed ice into the water bath and leave the water to cool. 2 Fully immerse the conical flask in the cold water. 3 Measure and record the temperature θ of the water in degrees Celsius and the pressure P as measured by the pressure gauge. 4 Warm the water on the heater. 5 Carefully stir the water and measure the pressure for every 10 C change in temperature. 6 Continue taking readings until the water boils. 130 Cambridge University Press 2005 11 Ideal gases

7 Plot a graph of pressure P against temperature θ on axes in the range 300 C to 100 C. extrapolation P absolute zero 0 300 0 100 θ ( C) 8 Draw a straight line of best fit and extrapolate it until it crosses the temperature axis. What is your experimental value for the absolute zero of temperature? 9 What is the relationship between the pressure P and the thermodynamic (absolute) temperature T of the air? 11 Ideal gases Cambridge University Press 2005 131

End-of-chapter test Answer all questions. Avogadro constant N A = 6.02 10 23 mol 1 universal gas constant R = 8.31 J mol 1 K 1 1 The molar mass of water is 18 g. Calculate: a the number of molecules in 2.0 moles of water; [1] b the number of molecules of water in a cup containing 200 g of water. [3] 2 The temperature of solid A is 210 K and the temperature of solid B is 70 C. Which of these two solids is at a higher temperature? [2] 3 a Use the ideal gas equation to explain why for a fixed amount of gas: = constant T where P is the pressure exerted by the gas, V is the volume occupied by the gas and T is the thermodynamic (absolute) temperature. [2] b At a research station in the Arctic a weather balloon is filled with helium gas. The volume of the balloon is 0.56 m 3. At a temperature of 20 C the pressure exerted by the helium gas is 180 kpa. i Calculate the number of moles of helium. [3] ii When the balloon is released it reaches a stable height above the ground. The pressure within the balloon drops to 120 kpa. Assuming there is no change in the temperature, calculate the new volume of the balloon. [3] 4 At a temperature of 30 C, the mean kinetic energy of a proton is 6.3 10 21 J. The mass of a proton is 1.7 10 27 kg. For a single proton, calculate: a its speed at a temperature of 30 C; [3] b its mean kinetic energy at 600 C. [3] Total: 20 Score: % 132 Cambridge University Press 2005 11 Ideal gases

Marking scheme Worksheet 1 a Number of atoms = number of moles N A number of atoms = 1.0 6.02 10 23 6.0 10 23 [1] b Number of molecules = 3.6 6.02 10 23 2.2 10 24 [1] c Number of atoms = 0.26 6.02 10 23 1.6 10 23 [1] 2 There are 6.02 10 23 atoms in 4.0 g of helium. [1] 0.004 mass of atom = = 6.645 10 27 kg 6.6 10 27 kg [1] 6.02 10 23 3 a There are 6.02 10 23 atoms in 0.238 kg of uranium. [1] 0.238 mass of atom = = 3.95 10 25 kg 4.0 10 25 kg [1] 6.02 10 23 mass of uranium b i Number of moles = [1] molar mass of uranium ii 0.12 g number of moles = = 5.11 10 4 5.1 10 4 [1] 235 g Number of atoms = number of moles N A number of atoms = 5.11 10 4 6.02 10 23 3.1 10 20 [1] 4 The absolute zero of temperature is 273 C or 0 K. [1] This is the lowest temperature any substance can have. [1] At absolute zero of temperature, the substance has minimum internal energy. [1] 5 a i T =273+ 0 = 273 K [1] ii T =273+80=353K [1] iii T =273 120=153K [1] b i θ =400 273=127 C [1] ii θ =272 273= 1 C [1] iii θ =3 273= 270 C [1] 6 a Pressure volume = number of moles universal gas constant thermodynamic temperature [1] b = nrt [1] nrt 1.0 8.31 293 P = = [1] V 0.020 P 1.2 10 5 Pa (120 kpa) [1] 11 Ideal gases Cambridge University Press 2005 133

7 a = nrt [1] Comparing this equation with y = mx, we have: y =, x=t, gradient, m = nr [1] A graph of against T is a straight line through the origin. Correct graph. [1] gradient n = (R = molar gas constant) [1] R gradient = nr 0 0 T b = nrt [1] At a constant temperature, the product is a constant. [1] Hence a graph of against P is a straight horizontal line (see below). [1] 0 0 P 8 a = nrt [1] 4.0 n = = 0.138 [1] 29 nrt 0.138 8.31 (273 + 34) P = = [1] V 0.030 P = 1.17 10 4 Pa 1.2 10 4 Pa (12 kpa) [1] P b = constant when the volume of the gas is constant. [1] T The pressure is doubled, hence the absolute temperature of the gas is also doubled. [1] Therefore: temperature = 2 (273 + 34) = 614 K [1] temperature in C = 614 273 = 341 C 340 C [1] 134 Cambridge University Press 2005 11 Ideal gases

9 a n = [1] RT 180 10 3 2.0 10 2 300 10 3 2.0 10 2 n = + 8.31 (273 13) [1] 8.31 (273 13) Hence, n= 4.44 4.4 moles [1] b Total volume, V =4.0 10 2 m 3, T =273 13=260K nrt 4.44 8.31 260 P = [1]; P = V 4.0 10 2 [1] P 2.4 10 5 Pa (240 kpa) [1] F 400 10 a P = = [1] A 1.6 10 3 P =2.5 10 5 Pa [1] b n = [1] RT 2.5 10 5 2.4 10 4 n = [1] 8.31 (273 + 5.0) n =2.6 10 2 moles [1] c i Mass = number of moles molar mass mass = 2.6 10 2 29 = 0.754 g 0.75 g [1] ii Density = 0.754 10 3 density = [1] 2.4 10 4 density = 3.14 kg m 3 3.1 kg m 3 [1] 11 Mean kinetic energy of atom absolute temperature [1] 1 mv 2 T [1] or v 2 2T 2 m Since the mass m of the atom is constant, we have: v T [1] The temperature of 0 C in kelvin is: T = 273 K The absolute temperature increases by a factor of: 10 000 273 (= 36.6) [1] Hence the speed will increase by a factor of: 10 000 273 [ = 6.05 [1] mass volume The speed of the atoms at 10 000 K is: speed = 1.3 6.05 7.9 km s 1 [1] ] [ ] 11 Ideal gases Cambridge University Press 2005 135

12 a 3RT 3 8.31 273 Mean kinetic energy = = 2N 2 6.02 10 23 A [1] mean kinetic energy = 5.65 10 21 J 5.7 10 21 J [1] b There are 6.02 10 23 atoms in 44 g of carbon dioxide. [1] 0.044 mass of molecule = m = =7.31 10 26 kg [1] 6.02 10 23 1 mv 2 = 5.65 10 2 21 [1] v = 2 5.65 10 21 7.31 10 26 [1] v 390 m s 1 [1] c 3RT 3RT Total kinetic energy of 1 mole of gas = N A = 2N A 2 [1] The change in the internal energy of the gas is almost entirely kinetic energy. 3 3 change in internal energy = 2 R(373 273) = 8.31 100 [1] 2 change in internal energy 1.2 kj [1] 136 Cambridge University Press 2005 11 Ideal gases

Marking scheme End-of-chapter test 1 a Number of molecules = number of moles N A number of molecules = 2.0 6.02 10 23 1.2 10 24 [1] mass of water b Number of moles = [1] molar mass of water 200 number of moles = [1] 18 number of molecules = number of moles N A 200 number of molecules = 6.02 10 23 = 6.69 10 24 6.7 10 24 [1] 18 2 Temperature of B in kelvin is: T =273 70=203K [1] Solid A has a higher temperature of 210 K. [1] 3 a The ideal gas equation is: = nrt [1] For a fixed amount of gas, the number n of moles is a constant and R is a constant for all ideal gases. [1] Hence: = nr = constant. T b i n = [1] RT 180 10 3 0.56 n = [1] 8.31 (273 20) n = 47.9 moles 48 moles [1] ii At constant temperature, = constant [1] 180 10 3 0.56 = 120 10 3 V [1] 180 10 3 0.56 V = = 0.84 m 3 [1] 120 10 3 1 4 a mv 2 =6.3 10 21 [1] 2 2 6.3 10 21 v = [1]; 1.7 10 27 v 2.7 10 3 ms 1 [1] b Mean kinetic energy absolute temperature [1] 273 +600 The temperature increases by a factor of: = 2.88 [1] 273 + 30 The mean kinetic energy increases by the same factor. Hence: mean kinetic energy = 2.88 6.3 10 21 J 1.8 10 20 J [1] 11 Ideal gases Cambridge University Press 2005 137