Efficient thermodynamic description of the Gaudin-Yang model

Similar documents
Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases

Symmetry properties, density profiles and momentum distribution of multicomponent mixtures of strongly interacting 1D Fermi gases

arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Jul 2005

Breakdown and restoration of integrability in the Lieb-Liniger model

From unitary dynamics to statistical mechanics in isolated quantum systems

arxiv: v1 [cond-mat.stat-mech] 24 May 2007

BEC in one dimension

Effective field theory of one-dimensional polarized Fermi gas

Notes on Bethe Ansatz

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain

Condensation properties of Bethe roots in the XXZ chain

Exactly solvable models and ultracold atoms

arxiv: v1 [cond-mat.quant-gas] 29 Mar 2016

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft

Spinons in Spatially Anisotropic Frustrated Antiferromagnets

Bogolyubov Limit of Bethe Ansatz. and Dark Solitons

arxiv: v2 [cond-mat.quant-gas] 19 Mar 2018

Multifractality in simple systems. Eugene Bogomolny

Correlations in Integrable Quantum Many-Body Systems

Temperature Correlation Functions in the XXO Heisenberg Chain

Random Fermionic Systems

Quantum phase transitions and the Luttinger theorem.

arxiv: v1 [cond-mat.quant-gas] 18 Sep 2015

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook

Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation

Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries

One-dimensional multicomponent Fermi gas in a trap: quantum Monte Carlo study

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Separation of relaxation time scales in a quantum Newton s cradle

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Quantum dynamics in ultracold atoms

The Quantum Heisenberg Ferromagnet

Thermodynamics of quantum Heisenberg spin chains

NON-EQUILIBRIUM DYNAMICS IN

Non-Equilibrium Physics with Quantum Gases

Introduction to the Mathematics of the XY -Spin Chain

The nature of superfluidity in the cold atomic unitary Fermi gas

Bethe Ansatz Solutions and Excitation Gap of the Attractive Bose-Hubbard Model

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

The BCS-BEC Crossover and the Unitary Fermi Gas

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit:

Low dimensional interacting bosons

Fermi liquids and fractional statistics in one dimension

Design and realization of exotic quantum phases in atomic gases

Preface Introduction to the electron liquid

F. Chevy Seattle May 2011

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Ground state and low excitations of an integrable. Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap

Time-dependent DMRG:

Quantum gases in the unitary limit and...

arxiv: v2 [cond-mat.quant-gas] 18 Jun 2018

arxiv: v1 [cond-mat.quant-gas] 2 Jun 2014

arxiv: v1 [cond-mat.str-el] 27 Jan 2014

Fabian Essler (Oxford)

The correlation energy of charged quantum systems. Jan Philip Solovej University of Copenhagen

Bose-Bose mixtures in confined dimensions

Thermodynamic limit for a system of interacting fermions in a random medium. Pieces one-dimensional model

Phase Diagram of One-Dimensional Bosons in an Array of Local Nonlinear Potentials at Zero Temperature

arxiv: v3 [cond-mat.str-el] 15 Dec 2014

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory

Reduced dimensionality. T. Giamarchi

arxiv: v1 [math-ph] 25 Sep 2007

Confining ultracold atoms on a ring in reduced dimensions

Dynamic and static density-density correlations in the one-dimensional Bose gas: Exact results and approximations

INTRODUCTION TO THE STATISTICAL PHYSICS OF INTEGRABLE MANY-BODY SYSTEMS

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Superfluid 3 He. Miguel A. Morales

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Magnets, 1D quantum system, and quantum Phase transitions

Deformed Richardson-Gaudin model

Problem Set No. 1: Quantization of Non-Relativistic Fermi Systems Due Date: September 14, Second Quantization of an Elastic Solid

arxiv: v2 [cond-mat.quant-gas] 26 Feb 2014

Quantum quenches in the thermodynamic limit

Chapter 14. Ideal Bose gas Equation of state

To Eleonora & Annalisa, for their patience and support

Quantum Monte Carlo study of one-dimensional bosons with finite range interactions

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Polarizability and dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit at finite temperatures

Sine square deformation(ssd) and Mobius quantization of 2D CFTs

Deformed Richardson-Gaudin model

Numerical Study of the 1D Asymmetric Hubbard Model

Thermoelectric transport of ultracold fermions : theory

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

VII.B Canonical Formulation

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems

An introduction to integrable techniques for one-dimensional quantum systems

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

Workshop: Wonders of Broken Integrability

Reciprocal Space Magnetic Field: Physical Implications

Luttinger Liquid at the Edge of a Graphene Vacuum

Bogoliubov theory of disordered Bose-Einstein condensates

Mean field theories of quantum spin glasses

Transcription:

Efficient thermodynamic description of the Gaudin-Yang model Ovidiu I. Pâţu and Andreas Klümper Institute for Space Sciences, Bucharest and Bergische Universität Wuppertal Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 1 / 24

Outline 1 The Gaudin-Yang model 2 The Gaudin-Yang model as the continuum limit of the Perk-Schultz spin chain 3 Alternative thermodynamic description. Results 4 Numerical results for the contact 5 Conclusions and future plans Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 2 / 24

The Gaudin-Yang model Motivation Experimental realization of 1D integrable models Lieb-Liniger model: T. Kinoshita et al., Observation of a One-Dimensional Tonks-Girardeau Gas, Science 305, 1125 (2004); B. Paredes et al., Tonks-Girardeau gas of ultracold atoms in an optical lattice, Nature 429, 277 (2004). Yang-Yang thermodynamics for the Lieb-Liniger model: A.H. van Amerongen et al., Yang-Yang thermodynamics on an atom chip, Phys. Rev. Lett. 100, 090402 (2008). Atractive fermionic Gaudin-Yang model (N = 2): Y. Liao et. al., Spin-imbalance in a one-dimensional Fermi gas, Nature 467, 567 (2010). Repulsive fermionic Gaudin-Yang model (N = 2 6): G. Pagano et al., A one-dimensional liquid of fermions with tunable spin, Nature Physics 10, 198 (2014). Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 3 / 24

The Gaudin-Yang model The Gaudin-Yang model The Hamiltonian (Gaudin, Yang 1967, Sutherland 1968) H GY = 2 2m σ=, x Ψ σ (x) x Ψσ(x)+c σ,σ =, Ψ σ (x)ψ σ (x)ψ σ (x)ψ σ(x) c > 0 coupling constant, µ σ chemical potentials, m the mass of the particles. σ=, µ σψ σ (x)ψσ(x) Fermionic model Bosonic model {Ψ σ(x), Ψ σ (y)} = δ σ,σ δ(x y) [Ψ σ(x), Ψ σ (y)] = δ σ,σ δ(x y) Hamiltonian in first quantization H GY = M i=1 2 2m 2 x 2 i + 2c 1 i<j M δ(x i x j ) σ=, µ σm σ M = M + M total number of particles. We introduce µ = (µ + µ )/2 H = (µ µ )/2 γ = c/n, τ = T /n 2 (n=total density, T=temperature) ( = 2m = k B = 1) Strong interactions: γ 1, Weak interactions: γ 1 Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 4 / 24

The Gaudin-Yang model Thermodynamic Bethe Ansatz: Fermionic system Grandcanonical potential (Takahashi 1971, Lai 1971,1973) (β = 1/T ) φ TBA (β, µ, H) = 1 2πβ with ζ(k) satisfying the TBA equations + dk ln(1 + ζ(k)) ln ζ(k) = β(k 2 µ) + R ln(1 + ζ(k)) + f ln(1 + η 1 (k)), ln η 1 (k) = f (ln(1 + η 2 (k)) ln(1 + ζ(k))), ln η n(k) = f (ln(1 + η n 1 (k)) + ln(1 + η n+1 (k))), n = 2,,, ln η n(k) lim = 2βH n n g h(k) + g(k k )h(k ) dk, f (k) = 1/[2c cosh(πk/c)], R(k) = b 1 f (k) with b 1 (k) = c/[2π((c/2) 2 + k 2 )] Groundstate is unpolarized (Lieb-Mattis 1962). Groundstate properties and low-lying excitations (Schlottman 1993,1994) Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 5 / 24

The Gaudin-Yang model Thermodynamic Bethe Ansatz: Bosonic system Grandcanonical potential (Gu, Li, Ying, Zhao 2002) φ(µ, H, β) = 1 2πβ with η 1 (k) satisfying the TBA equations + dk ln(1 + η 1 (k)), ln η 1 (k) = β(k 2 µ H) + a 3 f ln(1 + η 1 (k)) + f ln(1 + η 2 (k)), ln η n(k) = f (ln(1 + η n 1 (k)) + ln(1 + η n+1 (k))), n = 2,,, ln η n(k) lim = 2βH. n n g h(k) + g(k k )h(k ) dk, f (k) = 1/[2c cosh(πk/c)] and a n(k) = nc/[2π((nc/2) 2 + k 2 )]. Groundstate is polarized (Eisenberg, Lieb 2002, Yang, Li 2003, Suto 1993) Groundstate properties and low-lying excitations (Gu, Li, Ying, Eckern 2003) Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 6 / 24

The Gaudin-Yang model Numerical implementation of the TBA Requires the truncation of the system at a certain level nmax. For n > nmax replace the functions by their asymptotic values. In order to obtain accurate results for intermediate and high temperatures nmax needs to be large which makes the entire procedure rather cumbersome. Fermionic system: Caux, Klauser, van der Brink 2009; Klauser Caux 2011 Start from the TBA equations and derive more manageable expressions in various limits Low-temperature strong coupling: Guan, Batchelor, Takahashi 2007; Lee, Guan, Sakai, Batchelor 2012 Is there a more efficient way of computing the thermodynamic properties? Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 7 / 24

The Gaudin-Yang model Quantum Transfer Matrix thermodynamics Integrable lattice models at T > 0: Quantum Transfer Matrix produces a finite number of NLIEs for the thermodynamics (M. Suzuki 1985; T. Koma 1987; M. Suzuki and M. Inoue 1987; A. Klümper 1992, 1993) Largest eigenvalue of QTM Free energy of the system F = k B T log Λ 0 (0) Next largest eigenvalues Correlation lengths Problem: The QTM does not exist for continuum models! Continuum limit of the XXZ spin chain Lieb-Liniger model (Kulish, Sklyanin 1979) Yang s thermodynamics from the XXZ spin chain QTM result (Seel, Bhattacharyya, Göhmann, Klümper 2007) General strategy: 1. Find a suitable lattice embedding of the continuum model 2. Compute the thermodynamics of the lattice model using QTM 3. Take the continuum limit Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 8 / 24

The Gaudin-Yang model as the continuum limit of the Perk-Schultz spin chain The q = 3 Perk-Schultz spin chain Hamiltonian L 3 H PS = Jε 1 cos γ j=1 a=1 ε ae (j) aae (j+1) aa + 3 e (j) ab e(j+1) ba + i sin γ a,b=1 a b 3 sign(a b)e aae (j) (j+1) bb a,b=1 a b L 3 h ae (j) aa, j=1 a=1 L is the number of lattice sites, γ (0, π) determines the anisotropy, J > 0 coupling strength, h a chemical potentials. (ε 1, ε 2, ε 3 ) is the grading (ε = ±1). Fundamental spin model of the q = 3 Perk-Schultz R-matrix R(v, w) = 3 a=1 R aa aa(v, w)e aa e aa + R aa sin[γ + εa(v w)] aa (v, w) = sin γ 3 a,b=1 a b R ab ab (v, w) eaa e bb +, R ab sin(v w) ab (v, w) = a b sin γ (e ab ) ij = δ ia δ jb is the canonical basis in the space of 3-by-3 matrices. 3 a,b=1 a b hyperbolic regime: Perk, Schultz (1981), Babelon, Vega, Viallet (1982), trigonometric regime: de Vega, Lopes (1991) R ab ba (v, w) e ab e ba,, R ab ba (v, w) = a b eisgn(a b)(v w), Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 9 / 24

The Gaudin-Yang model as the continuum limit of the Perk-Schultz spin chain Continuum limit Perk-Schultz spin chain Gaudin-Yang model lattice constant δ O(ɛ 2 ) particle mass m = 1/2 number of lattice sites L O(1/ɛ 2 ) physical length L GY = Lδ interaction strength J > 0 repulsion strength c = ɛ 2 /δ chemical potential h 1 O(ɛ 2 ) chemical potential µ = Jɛ2 δ h 2 1 chemical potentials h 2, h 3 O(ɛ 4 ) magnetic field H = (h 3 h 2 )/(2δ 2 ) inverse temperature β inverse temperature β = βδ 2 anisotropy γ = π ɛ Bosonic case: (ε 1, ε 2, ε 3 )=( ) Fermionic case: (ε 1, ε 2, ε 3 )=( + +) Spectral parameter ɛ δ λ = k; BAEs (Perk-Schultz spin chain) BAE (Gaudin-Yang model) One-particle energy βe 0 (λ) βe 0 (k) e βe 0 Z (h 1, h 2, h 3, β) Z(µ, H, β). δ + Jɛ4 2 4δ + 1 2 2δ 2 (h 3 + h 2 ) Low-T thermodynamics of the PS spin chain Thermodynamics of the Gaudin-Yang model at all T Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 10 / 24

Alternative thermodynamic description. Results Thermodynamics: Bosonic system I Grandcanonical potential (Klümper and O.I.P 2011,2015) φ(µ, H, β) = 1 [ln(1 + a 1 (k)) + ln(1 + a 2 (k))] dk, 2πβ R a 1,2 (k) auxiliary functions with ε 0 and ln a 1 (k) = β(k 2 µ H) + K 0 ln[1 + a 1 ](k) + K 2 ln[1 + a 2 ](k iε), ln a 2 (k) = β(k 2 µ + H) + K 1 ln[1 + a 1 ](k + iε) + K 0 ln[1 + a 2 ](k), K 0 (k) = 1 2π Valid for all values of µ, H, T and c. 2c k 2 + c 2, K 1(k) = 1 2π c k(k + ic), K 2(k) = 1 2π c k(k ic). Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 11 / 24

Alternative thermodynamic description. Results Thermodynamics: Bosonic system II Known limiting cases Noninteracting limit: c 0 lim c 0 K 2 (k iε) = lim c 0 K 1 (k + iε) = 0 and lim c 0 K B 0 (k k ) = δ(k k ) the NLIEs decouple ln a 1 (k) = β(k 2 µ H) + ln(1 + a 1 (k)), ln a 2 (k) = β(k 2 µ + H) + ln(1 + a 2 (k)). φ(µ, H, β) = 1 [ ] ln(1 e β(k2 µ H) ) + ln(1 e β(k2 µ+h) ) dk 2πβ R Strong magnetic field (polarized system) For H, a 2 (k) 0 φ(µ, H, β) = 1 ln(1 + a 1 (k)) dk, log a 1 (k) = β(k 2 µ H) + K 0 ln[1 + a 1 ](k). 2πβ R Yang-Yang thermodynamics of the Lieb-Liniger model. Same result is obtained for H fixed and T 0 proving the ferromagnetic nature of the groundstate. Impenetrable particles: c Same result as for impenetrable fermions (Takahashi 1971). Checked numerically. φ F (µ, H, β) = 1 ( ) dk ln 1 + 2 cosh(βh)e β(k2 µ). 2πβ R Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 12 / 24

Alternative thermodynamic description. Results Thermodynamics: Fermionic system I Grandcanonical potential (Klümper and O.I.P 2016) φ(µ, H, β) = 1 [ln(1 + a 1 (k)) + ln(1 + a 2 (k))] dk, 2πβ R a 1,2 (k) auxiliary functions ln a 1 (k) = β(k 2 µ H) + K 2 ln[1 + a 2 ](k iε), ln a 2 (k) = β(k 2 µ + H) + K 1 ln[1 + a 1 ](k + iε), with ε 0 and K 1 (k) = 1 2π c k(k + ic), K 2(k) = 1 2π c k(k ic). Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 13 / 24

Alternative thermodynamic description. Results Thermodynamics: Fermionic system II Known limiting cases Noninteracting limit: c 0 lim c 0 K 2 (k iε) = lim c 0 K 1 (k + iε) = 0 the NLIEs become ln a 1 (k) = β(k 2 µ H), ln a 2 (k) = β(k 2 µ + H). φ(µ, H, β) = 1 [ ] ln(1 + e β(k2 µ H) ) + ln(1 + e β(k2 µ+h) ) dk 2πβ R Strong magnetic field (polarized system) For H, a 2 (k) 0 φ(µ, H, β) = 1 ln(1 + a 1 (k)) dk, log a 1 (k) = β(k 2 µ H). 2πβ R Free fermions. Impenetrable particles: c (Takahashi 1971) Checked numerically. φ F (µ, H, β) = 1 ( ) dk ln 1 + 2 cosh(βh)e β(k2 µ). 2πβ R Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 14 / 24

Numerical results for the contact Tan contact. I Momentum distribution of models with zero range spin-independent interactions exhibit a universal lim k nσ(k) C k 4 C is called contact For the fermionic GY model C is the same for σ = {, } and is experimentally measurable Lieb-Liniger model (Olshanii, Dunjko, 2004) 3D spin 1/2 fermions (S. Tan, 2005) For the fermionic Gaudin-Yang model (we can also include a trapping potential V (x) = mω 2 x 2 /2) the contact is defined as (c = 2/a 1D with a 1D the scattering length) C = 4 a1d 2 dx Ψ (x)ψ (x)ψ (x)ψ (x) = c 2 dx Ψ (x)ψ (x)ψ (x)ψ (x), we denote the zero or finite temperature expectation value. The contact is related to the interaction energy I = 2c dx Ψ (x)ψ (x)ψ (x)ψ (x) and the local correlation function of opposite spins g (2) (x) = 4 Ψ (x)ψ (x)ψ (x)ψ (x) n(x) 2 = 4 Ψ (x)ψ (x)ψ (x)ψ (x) (n (x) + n (x)) 2. Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 15 / 24

Numerical results for the contact Tan contact. II Homogeneous case V (x) = 0. Contact and interaction energy per length C = c2 4 n2 g (2) (0), I = c 2 n2 g (2) (0). Using the Hellmann-Feynman theorem (φ is the grandcanonical potential per length) g (2) (0) = 2 n 2 φ c Tan relations (Tan 2005; Barth and Zwerger 2011): Tan adiabatic theorem (Hellman-Feynman theorem) de HGY = = C da 1D a 1D variation of the total energy E with respect to the scattering length. Pressure relation: p = 2E 2C/c Energy relation (inhomogeneous system): E = 2 V + C/c Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 16 / 24

Numerical results for the contact Results at T=0. Dependence on the coupling strength I At T=0 the groundstate is characterized by ρ c(k) = 1 λ0 2π + b 1 (k λ)ρ s(λ) dλ λ 0 k0 λ0 ρ s(λ) = b 1 (λ k)ρ c(k) dk b 2 (λ µ)ρ s(µ) dµ k 0 λ 0 where b m(k) = mc/[2π[(mc) 2 /4 + k 2 ]]. k 0 and λ 0 are parameters which fix the values of the density of spin down particles and energy per length via k0 λ0 k0 n = ρ c(k) dk, n = k 0 ρ s(λ) dλ, E = λ 0 k 2 ρ c(k) dk. k 0 Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 17 / 24

Numerical results for the contact Results at T=0. Dependence on the coupling strength II Asymptotic expansions (Guan and Ma, 2012) [ n 3 π 2 1 4 ln 2 + 3 γ E = n 3 π 2 3 ] 12(ln 2)2 32(ln 2)3 + π2 ζ(3), P = 0, γ 2 γ 3 γ 3 [ ] 1 4(1 P) + 12(1 P)2 32(1 P)3 + 16π2 (1 P), P 0.5, γ γ 2 γ 3 5γ 3 (γ 1) E = n3 π 2 (1 P) 3 24 + n3 π 2 (1 + P) 3 24 + γ n3 (1 P 2 ) 2 g (2), (0) = 2 de n 3 dγ, C = n de γ2 2 dγ,, (γ 1) I = γ de dγ (γ = c/n) Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 18 / 24

Numerical results for the contact Results at T>0. Dependence on the coupling strength Al low T the contact presents a local maximum g (2), (0) 0 like 1/γ2 Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 19 / 24

Numerical results for the contact Results at T>0. Dependence on temperature Crossover of the momentum distribution (Cheianov, Smith and Zvonarev 2005, γ = ) at strong coupling. As we increase the temperature the momentum distribution becomes narrower. There are two temperature scales T F = π 2 n 2 and T 0 = T F /γ two different quantum regimes: T < T 0 Tomonaga-Luttinger liquid theory and T 0 T T F incoherent spin Luttinger theory (Cheianov and Zvonarev 2004, Fiete and Balents 2004). In the strong coupling limit and for T 0 T T F the charge degrees of freedom are effectively frozen while the spin degrees of freedom are strongly disordered". At high-t the contact depends linearly on the reduced temperature Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 20 / 24

Conclusions and future plans Bose-Fermi mixture [Mildly speculative] Grandcanonical potential ( ln a1 Bosonic Fermionic ln a 2 ) (k) = K 0 (k) = 1 2π φ(µ, H, β) = 1 2πβ ( β(k 2 µ H) β(k 2 µ + H) ( K11 K 12 K 21 K 22 ) = ( ) K11 K 12 = K 21 K 22 2c k 2 + c 2, K 1(k) = 1 2π [ln(1 + a 1 (k)) + ln(1 + a 2 (k))] dk, R ) ( ) ( K11 K + 12 ln[1 + a1 ] K 21 K 22 ln[1 + a 2 ] 1 K ( 0 K 0 ) K2 ( K0 K 2 ) K 1 0 ( ) ( K11 K Bose-Fermi mixture 12 K0 K = 2 K 21 K 22 K 1 0 c k(k + ic), K 2(k) = 1 2π ) c k(k ic). ) (k) Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 21 / 24

Conclusions and future plans N-components system [Highly speculative] Grandcanonical potential φ(µ 1,, µ N, β) = 1 2πβ N ln(1 + a i (k)) dk, i=1 R N = 4 ln a 1 ln a 2. ln a N Bosonic (k) = Fermionic β(k 2 µ 1 ) β(k 2 µ 2 ). β(k 2 µ N ) K 0 K 2 K 2 K 2 K 1 K 0 K 2 K 2 K 1 K 1 K 0 K 2 K 1 K 1 K 1 K 0 0 K 2 K 2 K 2 K 1 0 K 2 K 2 K 1 K 1 0 K 2 K 1 K 1 K 1 0 + K 11 K 12 K 1N K 21 K 22 K 2N.... K N1 K N2 K NN ln[1 + a 1 ] ln[1 + a 2 ]. ln[1 + a N ] (k) Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 22 / 24

Conclusions and outlook Conclusions and future plans Summary Outlook New thermodynamic description of the bosonic and fermionic Gaudin-Yang model Nonmonotonic behaviour of the contact as a function of the coupling strength and temperature. Momentum reconstruction in the Tonks-Girardeau regime Improved numerical approach 3-component case Correlation lengths Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 23 / 24

Conclusions and future plans THANK YOU! Ovidiu I. Pâţu (ISS, Bucharest) Efficient thermodynamic description Geneva 2016 24 / 24