Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Size: px
Start display at page:

Download "Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill"

Transcription

1 Thermodynamics of the polarized unitary Fermi gas from complex Langevin Joaquín E. Drut University of North Carolina at Chapel Hill INT, July 2018

2 Acknowledgements Organizers Group at UNC-CH (esp. Andrew Loheac) UW & INT J. Braun, L. Rammelmueller + Disclaimer

3 A sequence of papers Thermal equation of state of polarized fermions in one dimension via complex chemical potentials A. C. Loheac, J. Braun, J. E. Drut, D. Roscher Phys. Rev. A 92, (2015) Third-order perturbative lattice and complex Langevin analyses of the finite-temperature equation of state of non-relativistic fermions in one dimension A. C. Loheac, J. E. Drut Phys. Rev. D 95, (2017) Surmounting the sign problem in non-relativistic calculations: a case study with mass-imbalanced fermions L. Rammelmueller, W. J. Porter, J. E. Drut, J. Braun Phys. Rev. D 96, (2017) Polarized fermions in one dimension: density and polarization from complex Langevin calculations, perturbation theory, and the virial expansion A. C. Loheac, J. Braun, J. E. Drut arxiv: Finite-temperature equation of state of polarized fermions at unitarity L. Rammelmueller, A. C. Loheac, J. E. Drut, J. Braun arxiv: Come to Andrew s talk! Tomorrow at 3:15pm

4 Outline Definition, motivation, and some history of the UFG Formalism and technique: Path integrals and CL Results: Equations of state Summary & Conclusions

5 <latexit sha1_base64="tmskt0sdqqdxl86s6zlg0gaj5qq=">aaacjxicjvdns8mwhe3n15xfvy9egkpw4uimob4gqxe8ejhg3wctjc3sltrns5iko/sv8ek/4sxdfmgt/4rzb36h4ipay3u/xy95fskovjb1ahrmzufmf4qlpaxlldu1c33jwsapwmtgmytf20esmmqjrahipj0igikfkzyfno781i0rksb8sg0s4kaox2lamvja8sy6ewies2qe9xjyhx+3i5v93jfp5gvh/qnwhjjiynqwhhvwlpfmcrvijqh/jmuwrdmzh043xmleumimsdmpwolymyquxyzkjsevjee4rd3s0zsjieg3g38zhzta6cigfvpwbcfq10sgiikhka8ni6t68qc3en/zoqkkjtym8irvhopjoiblumvw1bnsukgwygnnebzuvxxiptkdkn1s6x8l2lxkccw6pcg3tqztfmew2aa7oaooqqocgyawaqz34aemwznxbzwaz8blzlrgtdob4bumt3e/iqwg</latexit> <latexit sha1_base64="61vffyq+seupjccljctrvgirr6o=">aaaclhicjvdlsgmxfm3uv62vuzdugkvqxditgroqirpwqwc10kklk95pqzmpkjtigeah3pgririo4tbvmk1fvbq8edg55x5ucrxyco2om7bye5nt0zp52clc/mlikr28cqmjrhgo8uhgqu4xdvkeueobeuqxahz4eq683vhqv7obpuuuxma/hmbaoqhwbwdopjz9eloxr0jdnkhkm/ewpaq7rq8yt8tzyjk6tt9vluy1xirbtmh3s951zwi2i9qtu1guospqv0mrjhhwsh9njicbhmgl07prdmjspkyh4bkygptoibnvsq40da1zalqzjn6b0q2jtkkfkxncpcp1ayjlgdb9wdotacou/uknxd+8rol+fjmvyzwghpxjkz9iihedvkfbqgfh2teecsxmwynvmlmomoil/yuhvikdljzz3wl1anxgnqyrdbjjymspvmkposm1wskdesad8mzdw0/wi/x6mzqzxplv8g3w2zsqsqct</latexit> Definition: Hamiltonian & scales Two species of fermions with a contact two-body force 2 Z Ĥ = d 3 x 4 X s=",# ˆ s (x) ~ 2 r 2 ˆs(x) 2m 3 gˆn " (x)ˆn # (x) 5 Coupling is dimensionful [g] =L Renormalize by solving the two-body problem and relating bare coupling to scattering length 1 g = 1 X L 3 k 2 k 1 E p cot (p) = 1 a r e k

6 <latexit sha1_base64="5j+o7vzwwniredyvegmm/5+ctq4=">aaab/nicjvdlssnafl2pr1pfucgnm8ei1e1nwkfdcevbxfywwmjtmjlo2qgtszizccv24a+4cahi1u9w59+yphyqch64cdjnxu7h+dfnslvwh5gbmz2bx8gvfpawv1bxzpwnaxulklchrdysdr8rypmgjmaa00yskq59tm/8/tniv7mlurfixolbtn0qdwulgme6kzxzq++doxnuqrzi1q4gsddo7f3q0doldtkaa/1nijbf3tpfw52ijcevmncsvno2yu2mwgpgob0wwomimsz93kxnjaocuuwm4/xdtjsphrremhuh0vj9ephiuklb6gebidy99dmbib95zuqhr27krjxoksjkuzbwpcm0kgn1mkre80fgmjesy4pid0tmdfzz4x8lojxycdm6pcjwtqdt5gebdqaenhxcds6gdg4quimheijn4954nf6m18lqzpjebmi3gg+f66otqg==</latexit> Two-body problem Bound state appears at a critical attractive coupling gc Unitarity g EGS Scattering length and density determine the physical dimensionless coupling for the many-body problem 1/(k F a) k F =(3 2 n) 1/3

7 <latexit sha1_base64="3wwr1iil60+nrj6zqpeosciswqm=">aaacfnicjvbns8naen3ur1q/oh69lbbbiyerqb0vbffywdpcu8nmu2mxbjzhd6ku0h/hxb/ixyokv/hmv3ht9qci4iofn+/nmdsvtaxx4lofvmlmdm5+obxywvpewv2z1zeudjipyho0eylqhuqzwsvraafbwqlija4fa4ad08jv3jclesivyziytkx6kkecejbsydsu9gwlgciv3givfkxag+dsot/zruocyb8s7hmzwtcwq57jjoh/jlu0rt2w3/1uqroysaccan323bq6ovhaqwcjip9plhi6id3wnlssmolopr5rhhem0svrosytgmfq14mcxfop49b0xgt6+qdxil957qyio07ozzobk3sykmoenncwieeuv4ycgbpcqolmr5j2isiutjsv/4xq2heohffiofo7mazrrltog+0idx2igjphddrafn2hb/senq1769f6sv4nrsvrorojvsf6+ws/dz4c</latexit> <latexit sha1_base64="d1uist+rjpchzz/82dtcymhmepc=">aaab+3icjvdlssnafj3uv62vajdubovgqqqiqauhkfwxfywvmham00k7ddijmzfseuqvuhgh4tyfceffoh0svbq8cofwzr3cwwltwtu4zodvmjtfwfwqlpdwvtfwn+znrrudzioylyyiubch0uxwyvzginhtqhijq8fayf9s7lfumni8kdcwtjkfk67keacejbty5qy+wd6a40bgartafn4xcuxkrepmgp8mftrdm7dfvu5cs5hjoijo3a45kfg5uccpykosl2mwetonxdy2vjkyat+fhb/hxan0cjqomxlwrp16kzny62ecms2yqe//9mbib147g+jiz7lmm2csth9fmccq4hetummvoycghhcqummkay8oqsh0vfpfce5+9bjqxb1u6qeznopog+2gpvrdh6iolletuyiiixpat+jzurcerrfrdbpasgy3zfqn1tsnmowtqa==</latexit> <latexit sha1_base64="mg+lwlwnarglt00wmp16x6e/oos=">aaab6nicjvbnswmxej2tx7v+vt16crbbu9mkon6kgnis4fqhxuo2nw1dk+ysziwy9c948adi1v/kzx9jtu1brceha4/3zpizf6wcg+v7h15pyxfpeaw8wllb39jcqm7v3jok0wwdlohe30xuooaka8utwltui5wrwhy0uij89j1qwxn1y8cphpiofi85o7aqrr1l0qvwgnv/cvi3qcecrv71vdtpwczrwsaomz2gn9owp9pyjnbs6wygu8pgdiadrxwvamj8euuehdilt+jeu1kwtnwvezmvxoxl5doltupz0yve37xozuptmocqzswqnlsuz4lyhbspkz7xykwyo0kz5u5wwozuu2zdpjx/hrac1c/q/vvxrxk+t6mme7aph9cae2jcfbqgaazdeianepak9+i9ek+z1pi3n9mfb/depghf2o2o</latexit> <latexit sha1_base64="mg+lwlwnarglt00wmp16x6e/oos=">aaab6nicjvbnswmxej2tx7v+vt16crbbu9mkon6kgnis4fqhxuo2nw1dk+ysziwy9c948adi1v/kzx9jtu1brceha4/3zpizf6wcg+v7h15pyxfpeaw8wllb39jcqm7v3jok0wwdlohe30xuooaka8utwltui5wrwhy0uij89j1qwxn1y8cphpiofi85o7aqrr1l0qvwgnv/cvi3qcecrv71vdtpwczrwsaomz2gn9owp9pyjnbs6wygu8pgdiadrxwvamj8euuehdilt+jeu1kwtnwvezmvxoxl5doltupz0yve37xozuptmocqzswqnlsuz4lyhbspkz7xykwyo0kz5u5wwozuu2zdpjx/hrac1c/q/vvxrxk+t6mme7aph9cae2jcfbqgaazdeianepak9+i9ek+z1pi3n9mfb/depghf2o2o</latexit> <latexit sha1_base64="mg+lwlwnarglt00wmp16x6e/oos=">aaab6nicjvbnswmxej2tx7v+vt16crbbu9mkon6kgnis4fqhxuo2nw1dk+ysziwy9c948adi1v/kzx9jtu1brceha4/3zpizf6wcg+v7h15pyxfpeaw8wllb39jcqm7v3jok0wwdlohe30xuooaka8utwltui5wrwhy0uij89j1qwxn1y8cphpiofi85o7aqrr1l0qvwgnv/cvi3qcecrv71vdtpwczrwsaomz2gn9owp9pyjnbs6wygu8pgdiadrxwvamj8euuehdilt+jeu1kwtnwvezmvxoxl5doltupz0yve37xozuptmocqzswqnlsuz4lyhbspkz7xykwyo0kz5u5wwozuu2zdpjx/hrac1c/q/vvxrxk+t6mme7aph9cae2jcfbqgaazdeianepak9+i9ek+z1pi3n9mfb/depghf2o2o</latexit> <latexit sha1_base64="whzveqddgxlcwqtbwor25ptw0bi=">aaacdhicjvdjsgnbfoxxjxglevtsgavpyekcehcc4nisbuefzbb6om+sjj0l3w/emmwpepfxvhhq8eohepnv7mqcvbqsefbu1ap7lz9iodg2362h4zhrsfhcrhfyanpmtjq3f6hjvhfwecxjdeuzdvje4kbacvejahb6ei79zn7pv7wgpuucnwm3as9krugegjm0uqo0fnbwew4wozzk6s51a8v4tp5nm/mjc4kw0oqog6vytwl3qf8mztlaaap05jzjnoyqizdm63rvttdlmelbjerfn9wqmn5hlagbgreqtjf1r8npilganiivmqhpx/26kbfq627om2tisk1/ej3xn6+eyrdtzsjkuosifz4upjjithvv0kzqwff2dwfccfnxytvmfikmwol/sndwkjsv+2yjxnsbtfegi2sjrjiq2si1ckxoium4usx35je8wxfwg/vsvxxgh6zbzgl5buv1a0yem0k=</latexit> <latexit sha1_base64="e2ha2qh9u/hllfstonrszsrtnxy=">aaacbhicjzblswmxfiuz9vxra9sllojfcfwmrvaxqleolis4ttazsya904zmmkosecowgzf+ftcuvnz6i9z5b0wfcxufdwqo59xlki9iofpact6swtz8wujscbm0srq2vmfvbl2rojuuxbrzwlydooazaa5mmkm7kucigemrgj6p+9ytsmvicavhcfgr6qswmkq0ibr2rgejytzybj7fxigjzybdxk0tz2p51y5xk85e+g9trjm1u/a714tpgohqlbololun0x5gpgauq17yugujoupsh46xgksg/gzyixzvm6shw1iaizsepf83mhipnyocmxkrpva/u3h4w9djdxjsz0wkqqzbpxefkcc6xmmkumckum1hxhaqmxkrpgnisggdrvq/cg6tcljxlg/l9bmzjslaqxvoafxreaqjc9relqlodj2gj/rs3vup1ov1oh0twlodbfrn1tsn+g+xyw==</latexit> Scale invariance & universality Lack of scales other than the density 0 r 0 k 1 F a!1 Dimensionful observables must get their units from powers of k F E.g. the ground-state energy E = E FG Bertsch parameter E FG = 3 5 N F F = k2 F 2 Beyond: Tan s contact, epsilon expansion, NR conformal invariance, sum rules, viscosities, Efimov effect,

8 <latexit sha1_base64="v7txgurvvocus82gw6yg/khkry4=">aaab7xicjvbns8naej3urxq/qh69lbbbu0lfug9flx4rgfnoqtlsn+3szsbstoqs+io8efdx6v/x5r9x+3fqufdbwoo9gwbmxbkubj3vw6ksla+srlxx3y3nre2d2u7enckkzbjpmpnptkwnl0jxhwvk3sk1p2ksercprqz+cm+1ezm6xxhoo5qolegeo2ilqpe8mhrpr1zvnrwzyn+kdgu0e7x3sj+xiuukmatgdjtejlfjnqom+cqnc8nzykz0wluwkppye5wzcyfkycp9kmtalkiyu79oldq1zpzgtjolodq/van4m9ctmdmpsqhyarli80vjiqlmzpo76qvngcqxjzrpyw8lbeg1zwgtcv8xgn/sugh4n6f11uuijsocwcecqxpooaxx0ayfgizgaz7g2cmdr+ffez23vpzfzd58g/p2ccrtjro=</latexit> Motivation: Nuclear physics Dilute neutron matter 6Li Neutrons r 0 a 20 Bohr 3 fm 10 4 Bohr -19 fm Bertsch Many-body X Challenge Is the unitary limit stable? If so, what is the ground-state energy?

9 Motivation: Ultracold atoms Bose-Einstein condensates (1995) Fermionic condensates (2004)

10 Motivation: Ultracold atoms Astonishing degree of control - Temperature (Superfluid transitions) - Polarization (LOFF-type phases, polarons) - Coupling (BEC-BCS crossover) - Shape of external trapping potential - Mass imbalance (different isotopes) - Dimension (highly anisotropic traps & lattices) - Bosons, fermions, mixtures: Li, K, Sr, Yb, Dy, Er, and astonishing degree of measurement/detection - Thermodynamics - Phase transitions - Collective modes - Spin response - Hydrodynamic response - Entanglement - Time-dependent dynamics -

11 A bit of history First thermodynamic measurements L. Luo et al PRL 98, (2007)

12 A bit of history Best experiments M. Ku et al Science 335, 563 (2012) Density EoS Pressure EoS

13 A bit of history Best experiments M. Ku et al Science 335, 563 (2012) Pressure-Compressibility plot

14 A bit of history On the theory side: ground-state energy The Bertsch parameter as a function of time Endres et al PRA 87, (2013)

15 A bit of history More on the theory side: finite temperature EoS Bulgac, Drut, Magierski PRL 96, (2006)

16 A bit of history and an update Drut, Lähde, Wlazłowski, Magierski PRA 85, (R) (2012)

17 The 3D BCS-BEC crossover T Normal T c Normal BCS Superfluid?? 1 k F a 1 k F a Unitarity BEC Superfluid T c 1/k F a

18 The 3D BCS-BEC crossover T Normal T c Normal BCS Superfluid?? 1 k F a Unitarity BEC Superfluid T c 1/k F a

19 The 3D BCS-BEC crossover T Normal T c Normal BCS Superfluid?? 1 k F a Unitarity BEC Superfluid T c 1/k F a

20 The 3D BCS-BEC crossover T Normal T c Normal BCS Superfluid?? 1 k F a Unitarity BEC Superfluid T c 1/k F a

21 <latexit sha1_base64="umgqeqpn2kzum1t1ojthvs3q5qg=">aaacdxicjvblswmxgmzwv62vvy9egqvqd9ztedsduptisyjrhxzzsmm2dc0msx6wuvolvphxvhhq8erdm//gdnudioidgcnmn3zjrcmjsnveh5obm19yxmovf1zw19y33m2taywmxmthggl5eyffgoxe11qzcpnkgpkikwbup5/4zvsifrx8sg9teisoy2lmmdjwct1sd57ccjsxydukseoxgpswu3beggfc3ketdivvipcb/k2kyizg6l7bpdyj4rozpfsr6qu6gcgpkwzkxggbrvke+6hlwpzylbavjllvjghjkh0yc2kp1zbtvyzgkffqmer2mkg6p356e/e3r2v0fbymke+njhxpf8wgqs3gpbvyozjgzyawicypfsvepsqr1rbbwv9k8guvk4p3evisn83ayimdsavkoaqoqb1cgabwaqz34ae8gwfn3nl0xpzx6wjomww2wtc4b5+6r5rc</latexit> Objective Explore the thermodynamics and phase transitions of the unitary Fermi gas at finite polarization. T Normal T c Normal BCS Superfluid?? 1 k F a Unitarity BEC Superfluid T c 1/k F a h <latexit sha1_base64="382/gfggvbazzhfv+bj+uvubcne=">aaab7xicjvdlsgnbeoynrxhfuy9ebopgkwxeug9blx4jucaqlgf20kmgzm4um71cwpirxjyoepv/vpk3th4hfqulgoqqbrq7olrjs77/4rwwlldw14rrpy3nre2d8u7enu0yizaqiupmk+iwldqykcsfrdqgjyofzwh0nfwb92istpqtjvmmyz7qsi8fjyc1oxesz8nuuvkr+jowv0kffmh0y++dxikygdujxa1t1/yuwpwbkklhpntjlkzcjpga245qhqmn89m5e3bklb7rj8avjjztv07kplz2heeum+y0td+9qfib186ofx7muqczorbzrf1mmury9hfwkwyfqbejxbjpbmviya0x5biq/s+e4kr6ufvvtiv1y0uartiaqziggpxbha6haqeigmedpmgzl3qp3ov3om8teiuzffgg7+0tufepfg==</latexit> h =(µ " µ # )/2

22 Btw: also interesting for QCD

23 <latexit sha1_base64="gkmgaynvtrdje9wli0zzltnlook=">aaacyxicbvfnt+mwehuclbbychdkym21ehyouoqehjaqxdghvqil2izue3fswjhoze+akujpcupezx/iuh9apkey9pzezlp9njzkwoqiz8+fmz37nr+wgcwtf19zddfwf9uimglbolcfuu7bopia2yrj4xvpepju4vv6ezrsr+7qwfnosxqwmotq1zktashr3xay50adayr/4udbtpha9av5dgkfgxucvkl34hqj+fy8aojnfcfoq25clwbmcc/h5pnrfql2inv9xv/pbdtri/sdsrphi2pg4+kfqwskgmxaf93wydmikkdnqog1nvzuulkdiskuot/kygnifvrycvbdjjapxxe98p+o6fgsmg5p4mp27uqnubxdphwdo0dsr21efqv1ksooklrqsiluynjqvilobr/lzxvsoca1daceke6uxazagcd3k4elofxxyz9be7d52ix+7twot6zpllbn9ontsrbbz8fsjf2wnhpsxzvzvrxv768f+kg/pmn1venmbntx/uy/dde2fa==</latexit> Many-body formalism Path integral formulation Z =Tr h e (Ĥ µ " ˆN " µ # ˆN# ) i

24 <latexit sha1_base64="gkmgaynvtrdje9wli0zzltnlook=">aaacyxicbvfnt+mwehuclbbychdkym21ehyouoqehjaqxdghvqil2izue3fswjhoze+akujpcupezx/iuh9apkey9pzezlp9njzkwoqiz8+fmz37nr+wgcwtf19zddfwf9uimglbolcfuu7bopia2yrj4xvpepju4vv6ezrsr+7qwfnosxqwmotq1zktashr3xay50adayr/4udbtpha9av5dgkfgxucvkl34hqj+fy8aojnfcfoq25clwbmcc/h5pnrfql2inv9xv/pbdtri/sdsrphi2pg4+kfqwskgmxaf93wydmikkdnqog1nvzuulkdiskuot/kygnifvrycvbdjjapxxe98p+o6fgsmg5p4mp27uqnubxdphwdo0dsr21efqv1ksooklrqsiluynjqvilobr/lzxvsoca1daceke6uxazagcd3k4elofxxyz9be7d52ix+7twot6zpllbn9ontsrbbz8fsjf2wnhpsxzvzvrxv768f+kg/pmn1venmbntx/uy/dde2fa==</latexit> Many-body formalism Path integral formulation Z =Tr h e (Ĥ µ " ˆN " µ # ˆN# ) i Suzuki-Trotter Hubbard-Stratonovich Z = Z D detm " [ ]detm # [ ]exp( S[ ])

25 <latexit sha1_base64="gkmgaynvtrdje9wli0zzltnlook=">aaacyxicbvfnt+mwehuclbbychdkym21ehyouoqehjaqxdghvqil2izue3fswjhoze+akujpcupezx/iuh9apkey9pzezlp9njzkwoqiz8+fmz37nr+wgcwtf19zddfwf9uimglbolcfuu7bopia2yrj4xvpepju4vv6ezrsr+7qwfnosxqwmotq1zktashr3xay50adayr/4udbtpha9av5dgkfgxucvkl34hqj+fy8aojnfcfoq25clwbmcc/h5pnrfql2inv9xv/pbdtri/sdsrphi2pg4+kfqwskgmxaf93wydmikkdnqog1nvzuulkdiskuot/kygnifvrycvbdjjapxxe98p+o6fgsmg5p4mp27uqnubxdphwdo0dsr21efqv1ksooklrqsiluynjqvilobr/lzxvsoca1daceke6uxazagcd3k4elofxxyz9be7d52ix+7twot6zpllbn9ontsrbbz8fsjf2wnhpsxzvzvrxv768f+kg/pmn1venmbntx/uy/dde2fa==</latexit> Many-body formalism Path integral formulation Z =Tr h e (Ĥ µ " ˆN " µ # ˆN# ) i Suzuki-Trotter Hubbard-Stratonovich Z = Z D detm " [ ]detm # [ ]exp( S[ ]) Big problem: Conventional QMC approaches require a constant-sign integrand

26 Methods: Stochastic quantization Langevin approach: use random force field to explore configuration space = S + S[ ]= ln P [ ] P [ ]=detm[ ]e S g[ ] Computational sampling 3 4 Langevin algorithm: Sample configuration space using random noise (closely related to hybrid Monte Carlo) 1 2

27 Methods: Complex Langevin Stochastic quantization gone complex R = Re apple S + = S + I = Im apple S Computational sampling 3 4 Complex Langevin algorithm: Make your field complex Sample configuration space using random noise 1 2

28 Methods: Complex Langevin Problems Numerical instabilities Uncontrolled excursions into the complex plane Singular drift

29 <latexit sha1_base64="rvf7k144ohjbuqzsfuai4pnjvfk=">aaab9hicjvdlsgmxfl3js9zx1awbybfcldijqu1cklpxjrucw2jhkkkzbwisgzkmwob+hxsxkm79ghf+jeljoalggquhc+7lhk6yckan6344c/mli0vluzx86tr6xmzha/tax6ki1ccxj1uzxjpyjqlvmog0msikrchpixycjf3glvwaxflkdbmacnytlgiegyvdxhtu0qmqlfc1hdyvuyh6zxcc9dcpwgz1tug93y1jkqg0hgotw56bmcddyjdc6sjftjvnmbnghm1zkrggosgmqudo3ypdfmxkjjroon69yldqeihcuymw6euf3lj8zwuljjoomiat1fbjpo+ilcmto3efqmsujyyplcfemzsvkt5wmbhbvp5/jfih5wrzvtwq1k5nbergf/bgadyoqa3ooq4+efdwae/w7nw5j86l8zpdnxnmnzvwdc7bjzxhj+g=</latexit> <latexit sha1_base64="z5yayb6iyfzuymsen5ldocls4du=">aaacd3icjvblswmxgmzwv62vvy9egkwschvbbpugfl14robqov2wbjq2oul2ycnslv4el/4vlx5uvhr15r8x3fagoubaygtmg5jmldcqtod9olmz2bn5hfxiywl5zxxnxd+4vrgrmpg4zrfsregrrgxxndwmnbjjei8yuyn652p/5pzirwnxpycjctjqctqhggkrhe5uixt4ckt2c1smqvlga7gps2m7hohm2duohm6xuvyywl9jeuxrd913m8ege6exq0o1k16igxrjttejo0llkjig3edd0rruie5ukgyfgsedq7rhj5z2cq0z9wsirvypiy/sjee6p356y/e3r2l05zhiquimjgjpluoybnumx+3anpueaza0bgfj7vsh7igjslydfv5xgl8tn5s9y8ni7wzarh5sgw1qahvwbgrgatsbdzc4aw/gctw7986j8+k8tkzzzjszcb7befsezpibxa==</latexit> <latexit sha1_base64="xn6grqklosce1k8wpnkbnbg0gdk=">aaab8nicjvdlsgnbeoz1gemr6thlyba8hv0rhwch6mwtrhbnilue2clsmmt2wuypejb8hhcpkl79gm/+jzphquxbgoaiqpsuksql0oi6h87c/mli0njppby6tr6xwdnavtozuyz7ljozakvucyls7qnayvu54jsjjg9gg8ux37znsossvcvhzsoe9lirc0brssf1j0bqydnxjt1operv3ani36qkmzq6lfegmzgt8bszpfq3ptfhskakbzn8va6m5jlla9rjbuttmnadfppmi7jvls6jm2unrtjrv14unnf6mer2m6hy1z+9sfib1zyyn4afshodpgxtr7grbdmylob0heim5dasypswwqnru0uz2prk/yvbp6yd1dybo2r9ytzgcxzhdw7agxoowxu0wacgotzaezw7xnl0xpzx6eqcm7vzgw9w3j4bdgkqlw==</latexit> <latexit sha1_base64="umgqeqpn2kzum1t1ojthvs3q5qg=">aaacdxicjvblswmxgmzwv62vvy9egqvqd9ztedsduptisyjrhxzzsmm2dc0msx6wuvolvphxvhhq8erdm//gdnudioidgcnmn3zjrcmjsnveh5obm19yxmovf1zw19y33m2taywmxmthggl5eyffgoxe11qzcpnkgpkikwbup5/4zvsifrx8sg9teisoy2lmmdjwct1sd57ccjsxydukseoxgpswu3beggfc3ketdivvipcb/k2kyizg6l7bpdyj4rozpfsr6qu6gcgpkwzkxggbrvke+6hlwpzylbavjllvjghjkh0yc2kp1zbtvyzgkffqmer2mkg6p356e/e3r2v0fbymke+njhxpf8wgqs3gpbvyozjgzyawicypfsvepsqr1rbbwv9k8guvk4p3evisn83ayimdsavkoaqoqb1cgabwaqz34ae8gwfn3nl0xpzx6wjomww2wtc4b5+6r5rc</latexit> <latexit sha1_base64="pt/z4v2kkihmgfihn6gdvyrwmai=">aaacgxicjvdnssnagnzuv1r/oh69lbbbg5rebpugfaxxifkhsyumhm1m0y7dbmluriyhz+hfv/hiqcwjnnwbt2kffquhphhm5upbnsblvcrlejdku9mzs3pl+crc4tlyirm6diwttgdi4iqloh0gsrjlxffumdjobufxwegr6j+m/ny1ezimvkkgkffi1ou0ohgplfmmbcmj6blgofum3gyr39z5zkeffq5df/5neftnql2zcsc/srvm0pdnvzdmcbytrjbdunzsk1vejosimjfhxc0ksrhuoy7pamprtksxf18bwi2thdbkhb6uykf+3chrlougdnqyrqonf3oj8tevk6nowmsptznfob4fijigvqjhpcgqcoivg2icskd6rrd3keby6tyr/yvb2a0d1qzlvwr9enjggwyatbanblap6uamniadmlgf9+arpbl3xopxblymoyvjsrmovsf4+wb4qz4/</latexit> <latexit sha1_base64="sjnqgnwoi6tai6c5vzv6qjpbbju=">aaacd3icjzbns8mwhmbt+tbrw9wjl+aqpy1oheltkijhcasbrkwkwbqfjwlnumgufqqvfhuvhls8evxmtzf7axufhwj8+t3pnyrpldkqtot+wiw5+yxfpekyvbk6tr7hbg5dqystmhg4yylsrugrrgxxnnwmtfjjei8yaub985hfvcvs0uq09calauddqwokktyodpz9zsidfdagrygnn7dq+/ymxszgueiukmv3lpj3uajt1upn3e8kooneamyquu2km+ogr1jtzmjq9jnfuot7qevazhsiexxk4w8n4z4hhrgn0hyh4zh+3cgrv2rai5pkspfut28ef/pamy5pgpyknnne4mlfccagtucohdihkmdnbmzawflzvoh7sckstyf2/0rwdsunzffqufq7m7zrbdtgfxyacqicgrgedeabdo7aa3gcz9a99wi9wk+tamga7mydb7lepgh7a5t7</latexit> <latexit sha1_base64="/cdlilv33l3xnrhogpihyz3rqyu=">aaab6xicjvdlsgnbeoynrxhfuy9ebopgkwxeug9blx4jukziqpid9czdzmexmv4hlpkelx5uvpph3vwbj4+dioifduvvn91dyaqkjd//8aoli0vlk8xv0tr6xuzwexvn1iazeriircxmluqwldqykcsfd6lbhockm+hwyui379fymegbgqxyixlfy0gktk661l2/w67uqv4u7g9sgtka3fj7u5eileznqnfrwzu/pu7odumhcfxqzxztloa8jy1hny/rdvlpqwn24jqeixljshobql8nch5bo4pd1xlzgtif3kt8zwtlfj12cqntjfcl2aiou4wsnvmb9arbqwrkcbdguluzghddbbl0sv8litiqnlx9q+nk/xyerhh2yb8ooqynuidlaeaaavrwae/w7cnv0xvxxmetbw8+swvf4l19amzqjws=</latexit> Results First, a few definitions: h =(µ " µ # )/2 µ =(µ " + µ # )/2 n 0 : noninteracting, unpolarized density Lattice parameters: N x =7, 9, 11 Continuum limit N = 160 1=` <latexit sha1_base64="xn6grqklosce1k8wpnkbnbg0gdk=">aaab8nicjvdlsgnbeoz1gemr6thlyba8hv0rhwch6mwtrhbnilue2clsmmt2wuypejb8hhcpkl79gm/+jzphquxbgoaiqpsuksql0oi6h87c/mli0njppby6tr6xwdnavtozuyz7ljozakvucyls7qnayvu54jsjjg9gg8ux37znsossvcvhzsoe9lirc0brssf1j0bqydnxjt1operv3ani36qkmzq6lfegmzgt8bszpfq3ptfhskakbzn8va6m5jlla9rjbuttmnadfppmi7jvls6jm2unrtjrv14unnf6mer2m6hy1z+9sfib1zyyn4afshodpgxtr7grbdmylob0heim5dasypswwqnru0uz2prk/yvbp6yd1dybo2r9ytzgcxzhdw7agxoowxu0wacgotzaezw7xnl0xpzx6eqcm7vzgw9w3j4bdgkqlw==</latexit> T, F L = N x` T ' 7 F ' 3

30 Results: Density EoS (check)

31 Results: Compressibility

32 <latexit sha1_base64="esvuoclnt0ztb+w5x4raqh3y7sg=">aaacdnicbvdlssnafj34rpuvdelmscguskhk0boqim5cvjc20iyymd62qycpzizccf0dn/6kgxcqbl2782+ctflo64u5hm65lzv3+dfnutn2t7g0vlk6tl7ykg5ube/smnv79zjkbawxrjwslz9i4cwevzhforuliihpoemprjo/+qbcsii8u+myviamqtznlcgtdc2tjg+k4cg+xlzllzvum6ivswnvmjgr44pld82stqeff4mtkxlkq9e1vzq9icybhipyimxbswplpuqorjlmip1eqkzoiaygrwliapbeor1ngo+10sp9sogxkjxvf0+kjjbyhpi6mybqkoe9tpzpayeqx/nsfsajgpdofvutjlwes3bwjwmgio81ivqw/vdmh0qqqnserr2cm3/yiner1ovl31zl9as8jqi6refofdnohnxrdwogf1h0ij7rk3oznowx4934mluugfnmafptxucpctiv3w==</latexit> Results: Density EoS h =0.0, 0.4, 0.8, 1.2, 1.6, 2.0

33 Results: Magnetization EoS

34 Results: Susceptibility

35 Summary & conclusions Polarized nonrelativistic matter, in particular the unitary Fermi gas (UFG), will typically have a sign problem. Complex stochastic quantization (CL) provides a way to carry out nonperturbative calculations with complex actions. However, its mathematical underpinnings remain uncertain. We have carried out multiple explorations of polarized matter at finite temperature in 1D, 2D, 3D (UFG), and other situations that have a sign problem when using AFQMC. Our calculations for the UFG heal to known answers (virial, mid/low-t) in the range explored (T > h/2). We see little or no variation in the location of the superfluid critical point, but much more needs to be done to reach that regime.

36 Thank you!

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle)

More information

Thermodynamics, pairing properties of a unitary Fermi gas

Thermodynamics, pairing properties of a unitary Fermi gas Thermodynamics, pairing properties of a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle) Joaquin E. Drut (LANL)

More information

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases Piotr Magierski Warsaw University of Technology Collaborators: A. Bulgac - University of Washington J.E. Drut - University

More information

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid? Is a system of fermions in the crossover BCS-BEC BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski

More information

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo Equilibrium and nonequilibrium properties of unitary ermi gas from Quantum Monte Carlo Piotr Magierski Warsaw University of Technology Collaborators: A. Bulgac - University of Washington J.E. Drut - University

More information

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej)

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej) Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej) 100 years of superconductivity and superfluidity in Fermi systems Discovery: H. Kamerlingh

More information

Equilibrium and nonequilibrium properties of unitary Fermi gas. Piotr Magierski Warsaw University of Technology

Equilibrium and nonequilibrium properties of unitary Fermi gas. Piotr Magierski Warsaw University of Technology Equilibrium and nonequilibrium properties of unitary Fermi gas Piotr Magierski Warsaw University of Technology Collaborators: Aurel Bulgac (U. Washington) Kenneth J. Roche (PNNL) Joaquin E. Drut (U. North

More information

New approaches to strongly interacting Fermi gases

New approaches to strongly interacting Fermi gases New approaches to strongly interacting Fermi gases Joaquín E. Drut The Ohio State University INT Program Simulations and Symmetries Seattle, March 2010 In collaboration with Timo A. Lähde Aalto University,

More information

Equation of state of the unitary Fermi gas

Equation of state of the unitary Fermi gas Equation of state of the unitary Fermi gas Igor Boettcher Institute for Theoretical Physics, University of Heidelberg with S. Diehl, J. M. Pawlowski, and C. Wetterich C o ld atom s Δ13, 11. 1. 2013 tio

More information

Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems

Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems Part A Comments on papers of E. Burovski,, N. Prokof ev ev,, B. Svistunov and M.

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

The BCS-BEC Crossover and the Unitary Fermi Gas

The BCS-BEC Crossover and the Unitary Fermi Gas Lecture Notes in Physics 836 The BCS-BEC Crossover and the Unitary Fermi Gas Bearbeitet von Wilhelm Zwerger 1. Auflage 2011. Taschenbuch. xvi, 532 S. Paperback ISBN 978 3 642 21977 1 Format (B x L): 15,5

More information

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance Dietrich Roscher [D. Roscher, J. Braun, J.-W. Chen, J.E. Drut arxiv:1306.0798] Advances in quantum Monte Carlo techniques for non-relativistic

More information

Specific heat of a fermionic atomic cloud in the bulk and in traps

Specific heat of a fermionic atomic cloud in the bulk and in traps Specific heat of a fermionic atomic cloud in the bulk and in traps Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski University of Washington, Seattle, WA Also in Warsaw Outline Some general remarks Path

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations?

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Image: Peter Engels group at WSU Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Doerte Blume and Kevin M. Daily Dept. of Physics and Astronomy, Washington State University,

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Nuclear Effective Field Theory Low Energy Nucleons: Nucleons are point particles Interactions

More information

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Aurel Bulgac,, Joaquin E. Drut and Piotr Magierski University of Washington, Seattle, WA

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

Universality in Few- and Many-Body Systems

Universality in Few- and Many-Body Systems Universality in Few- and Many-Body Systems Lucas Platter Institute for Nuclear Theory University of Washington Collaborators: Braaten, Hammer, Kang, Phillips, Ji Ultracold Gases the scattering length a

More information

What do we know about the state of cold fermions in the unitary regime?

What do we know about the state of cold fermions in the unitary regime? What do we know about the state of cold fermions in the unitary regime? Aurel Bulgac,, George F. Bertsch,, Joaquin E. Drut, Piotr Magierski, Yongle Yu University of Washington, Seattle, WA Also in Warsaw

More information

Equation of State of Strongly Interacting Fermi Gas

Equation of State of Strongly Interacting Fermi Gas he 19 th Particle and Nuclei International Conference (PANIC11) Equation of State of Strongly Interacting ermi Gas Mark Ku, Ariel Sommer, Lawrence Cheuk, Andre Schirotzek, Martin Zwierlein heory collaborators

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Deep learning quantum matter

Deep learning quantum matter Deep learning quantum matter Machine-learning approaches to the quantum many-body problem Joaquín E. Drut & Andrew C. Loheac University of North Carolina at Chapel Hill SAS, September 2018 Outline Why

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

Dimensional BCS-BEC crossover

Dimensional BCS-BEC crossover Dimensional BCS-BEC crossover Igor Boettcher Institute for Theoretical Physics, Heidelberg University ERG 2014 Outline Ultracold atoms BCS-BEC Crossover 2D Experiments with... Theory Experiment C. Wetterich

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

r 0 range of interaction a scattering length

r 0 range of interaction a scattering length The Incredible Many Facets of the Unitary Fermi Gas Aurel Bulgac University of Washington, Seattle, WA Collaborators: Joaquin E. Drut (Seattle, now in Columbus) Michael McNeil Forbes (Seattle, soon at

More information

Diagrammatic Monte Carlo

Diagrammatic Monte Carlo Sign Problems and Complex Actions, ECT*, Trento, March 2-6, 2009 Diagrammatic Monte Carlo Boris Svistunov University of Massachusetts, Amherst Nikolay Prokof ev Kris Van Houcke (Umass/Ghent) Evgeny Kozik

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

EQUATION OF STATE OF THE UNITARY GAS

EQUATION OF STATE OF THE UNITARY GAS EQUATION OF STATE OF THE UNITARY GAS DIAGRAMMATIC MONTE CARLO Kris Van Houcke (UMass Amherst & U of Ghent) Félix Werner (UMass Amherst) Evgeny Kozik Boris Svistunov & Nikolay Prokofev (UMass Amherst) (ETH

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Introduction Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Yoram Alhassid (Yale University) Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem and good-sign

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover NewSpin, College Station, 1/16/011 Strongly Interacting ermi Gases: Universal hermodynamics, Spin ransport, and Dimensional Crossover Martin Zwierlein Massachusetts Institute of echnology Center for Ultracold

More information

What ar e t e scatter engt e e ect ve range If the energy is small only the s If the energy is small only the s--wave is re wave is r levant.

What ar e t e scatter engt e e ect ve range If the energy is small only the s If the energy is small only the s--wave is re wave is r levant. The Unitary Fermi Gas: so simple yet so complex! Aurel Bulgac University of Washington, Seattle, WA Collaborators: Joaquin E. Drut (Seattle, now at OSU, Columbus) Michael McNeil Forbes (Seattle, now at

More information

What ar e t e scatter engt e e ect ve range If the energy is small only the ss--wave is r wave is e r levant.

What ar e t e scatter engt e e ect ve range If the energy is small only the ss--wave is r wave is e r levant. The Unitary Fermi Gas: so simple yet so complex! Aurel Bulgac University of Washington, Seattle, WA Collaborators: JoaquinE. Drut (Seattle, now inosu, Columbus) Michael McNeil Forbes (Seattle, now at LANL)

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Why strongly interacting fermion gases are interesting to a many-body theorist? Aurel Bulgac University of Washington, Seattle

Why strongly interacting fermion gases are interesting to a many-body theorist? Aurel Bulgac University of Washington, Seattle Why strongly interacting fermion gases are interesting to a many-body theorist? Aurel Bulgac University of Washington, Seattle People I have been lucky to work with on these problems: Clockwise (starting

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

A rigorous solution to unitary Bose Gases

A rigorous solution to unitary Bose Gases A rigorous solution to unitary Bose Gases Fei Zhou University of British Columbia, Vancouver and Canadian Institute for Advanced Research At INT cold gas workshop, University of Washington, April 16, 2015

More information

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after.

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after. Giuseppe Morandi and me PhD In Bologna years 1994-96: very fruitful and formative period. Collaboration continued for some years after. What I have learned from him Follow the beauty (and don t care too

More information

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases APCTP Focus Program on Quantum Condensation (QC12) Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases Munekazu Horikoshi Photon Science Center of University of Tokyo Grant-In-Aid

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Quantum limited spin transport in ultracold atomic gases

Quantum limited spin transport in ultracold atomic gases Quantum limited spin transport in ultracold atomic gases Searching for the perfect SPIN fluid... Tilman Enss (Uni Heidelberg) Rudolf Haussmann (Uni Konstanz) Wilhelm Zwerger (TU München) Technical University

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

Benchmarking the Many-body Problem

Benchmarking the Many-body Problem Benchmarking the Many-body Problem Precision bounds on the Equation of State Michael McNeil Forbes Institute for Nuclear Theory (INT) and the University of Washington (Seattle) 18 May 2011 1 Benchmarks

More information

Publications. Articles:

Publications. Articles: Publications Articles: 1. R. Combescot Coupling between Planes and Chains in Y Ba 2 Cu 3 O 7 : A Possible Solution for the Order Parameter Controversy, Phys. Rev. Lett. 75 (1995) 3732-3735 2. X. Leyronas

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

What ar e t e scatter engt e e ect ve range If the energy is small only the s If the energy is small only the s--wave is re wave is r levant.

What ar e t e scatter engt e e ect ve range If the energy is small only the s If the energy is small only the s--wave is re wave is r levant. Generation and Dynamics of Vortices in a Superfluid Unitary Gas Aurel Bulgac University of Washington, Seattle, WA Collaborators: Yuan Lung (Alan) Luo (Seattle) Piotr Magierski (Warsaw/Seattle) Kenneth

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter. Denis Lacroix. Outline:

Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter. Denis Lacroix. Outline: Celebration of X. Viñas retirement, Milano 19-20 Sept. 2017 Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter Outline: Denis Lacroix Brief historical

More information

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP May 2007 Cold Atom Collaborators: Qijin Chen J. Stajic (U Chicago; LANL) Yan He (U. Chicago) ChihChun Chien (U. Chicago)

More information

Universal quantum transport in ultracold Fermi gases

Universal quantum transport in ultracold Fermi gases Universal quantum transport in ultracold Fermi gases How slowly can spins diffuse? Tilman Enss (U Heidelberg) Rudolf Haussmann (U Konstanz) Wilhelm Zwerger (TU München) Aarhus, 26 June 24 Transport in

More information

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany 1 Polaron Seminar, AG Widera AG Fleischhauer, 05/06/14 Introduction to polaron physics in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany Graduate

More information

Universal Behavior of Small Two-Component Fermi Gases with Equal Masses

Universal Behavior of Small Two-Component Fermi Gases with Equal Masses Image: Peter Engels group at WSU Universal Behavior of Small Two-Component Fermi Gases with Equal Masses Doerte Blume Dept. of Physics and Astronomy, Washington State University, Pullman Collaborators:

More information

Fermionic condensation in ultracold atoms, nuclear matter and neutron stars

Fermionic condensation in ultracold atoms, nuclear matter and neutron stars Fermionic condensation in ultracold atoms, nuclear matter and neutron stars Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Prague, July 16, 2013 Collaboration

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

(Biased) Theory Overview: Few-Body Physics

(Biased) Theory Overview: Few-Body Physics Image: Peter Engels group at WSU (Biased) Theory Overview: Few-Body Physics Doerte Blume Dept. of Physics and Astronomy, Washington State University, Pullman. With graduate students Kevin M. Daily and

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

INO-CNR BEC Center

INO-CNR BEC Center Experiments @ INO-CNR BEC Center The INO-CNR team: CNR Researchers: PostDocs: Tom Bienaimé Giacomo Lamporesi, Gabriele Ferrari PhD students: Simone Serafini (INO), Eleonora Fava, Giacomo Colzi, Carmelo

More information

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED Universal Aspects of Dipolar Scattering Christopher Ticknor May 15 at INT 1 Outline of Talk Universal Dipolar Scattering Theory of a long range scattering potential D Universal and tilted dipolar scattering

More information

Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method

Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method C. N. Gilbreth In collaboration with Y. Alhassid Yale University Advances in quantum Monte Carlo techniques for non-relativistic

More information

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14 Super Efimov effect together with Yusuke Nishida and Dam Thanh Son Sergej Moroz University of Washington Few-body problems They are challenging but useful: Newton gravity Quantum atoms Quantum molecules

More information

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems Miniworkshop talk: Quantum Monte Carlo simulations of low temperature many-body systems Physics, Astrophysics and Applied Physics Phd school Supervisor: Dott. Davide E. Galli Outline Interests in quantum

More information

Population imbalance and condensate fraction with SU(3) superfluid fermions

Population imbalance and condensate fraction with SU(3) superfluid fermions Population imbalance and condensate fraction with SU(3) superfluid fermions Luca Salasnich Dipartimento di Fisica Galileo Galilei and CNISM, Università di Padova Sarajevo, July 11, 211 Main results published

More information

Od kwantowej turbulencji do rozszczepienia jądra atomowego. (Wyzwania fizyki układów kwantowych daleko od stanu równowagi.)

Od kwantowej turbulencji do rozszczepienia jądra atomowego. (Wyzwania fizyki układów kwantowych daleko od stanu równowagi.) Od kwantowej turbulencji do rozszczepienia jądra atomowego. (Wyzwania fizyki układów kwantowych daleko od stanu równowagi.) Provocative statement: In comparison to many body quantum systems, few body quantum

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Unitary Fermi Gas: Quarky Methods

Unitary Fermi Gas: Quarky Methods Unitary Fermi Gas: Quarky Methods Matthew Wingate DAMTP, U. of Cambridge Outline Fermion Lagrangian Monte Carlo calculation of Tc Superfluid EFT Random matrix theory Fermion L Dilute Fermi gas, 2 spins

More information

ASPECTS OF STRONGLY CORRELATED MANY-BODY FERMI SYSTEMS. William J. Porter III

ASPECTS OF STRONGLY CORRELATED MANY-BODY FERMI SYSTEMS. William J. Porter III ASPECTS OF STRONGLY CORRELATED MANY-BODY FERMI SYSTEMS William J. Porter III A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Schematic Phase Diagram of Dense Matter T nuclear matter µ e neutron matter? quark matter µ 2

More information

3D Hydrodynamics and Quasi-2D Thermodynamics in Strongly Correlated Fermi Gases. John E. Thomas NC State University

3D Hydrodynamics and Quasi-2D Thermodynamics in Strongly Correlated Fermi Gases. John E. Thomas NC State University 3D Hydrodynamics and Quasi-D Thermodynamics in Strongly Correlated Fermi Gases John E. Thomas NC State University JETLa Group J. E. Thomas Graduate Students: Ethan Elliot Willie Ong Chingyun Cheng Arun

More information

Tuning the Quantum Phase Transition of Bosons in Optical Lattices

Tuning the Quantum Phase Transition of Bosons in Optical Lattices Tuning the Quantum Phase Transition of Bosons in Optical Lattices Axel Pelster 1. Introduction 2. Spinor Bose Gases 3. Periodically Modulated Interaction 4. Kagome Superlattice 1 1.1 Quantum Phase Transition

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Gareth Conduit Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localized ferromagnetism: moments localised in

More information

Unitary Fermi gas in the ɛ expansion

Unitary Fermi gas in the ɛ expansion Unitary Fermi gas in the ɛ expansion Yusuke Nishida Department of Physics, University of Tokyo December 006 PhD Thesis Abstract We construct systematic expansions around four and two spatial dimensions

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 7a: Class Notes Lecture 4: Bose Condensation Ideal Bose Gas We consider an gas of ideal, spinless Bosons in three dimensions. The grand potential (T,µ,V) is given by kt = V y / ln( ze y )dy, ()

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Thermodynamic Measurements in a Strongly Interacting Fermi Gas

Thermodynamic Measurements in a Strongly Interacting Fermi Gas J Low Temp Phys (2009) 154: 1 29 DOI 10.1007/s10909-008-9850-2 Thermodynamic Measurements in a Strongly Interacting Fermi Gas Le Luo J.E. Thomas Received: 25 July 2008 / Accepted: 12 October 2008 / Published

More information

Nierównowagowe procesy w nadciekłych układach kwantowych. Piotr Magierski Wydział Fizyki PW

Nierównowagowe procesy w nadciekłych układach kwantowych. Piotr Magierski Wydział Fizyki PW Nierównowagowe procesy w nadciekłych układach kwantowych. Piotr Magierski Wydział Fizyki PW 100 years of superconductivity and superfluidity Discovery: H. Kamerlingh Onnes in 1911 cooled a metallic sample

More information

Thermodynamics of the unitary Fermi gas

Thermodynamics of the unitary Fermi gas Ludwig-Maximilians-University, Faculty of Physics, Chair of Theoretical Solid State Physics, Theresienstr. 37, 80333 Munich, Germany E-mail: O.Goulko@physik.uni-muenchen.de M. Wingate DAMTP, University

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Inhomogeneous phase formation on the border of itinerant ferromagnetism

Inhomogeneous phase formation on the border of itinerant ferromagnetism Inhomogeneous phase formation on the border of itinerant ferromagnetism Belitz et al., PRL 005 Gareth Conduit1, Andrew Green, Ben Simons1 1. University of Cambridge,. University of St Andrews Itinerant

More information