Large Scale Parallel Wake Field Computations with PBCI

Similar documents
Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF

Lab Report TEMF - TU Darmstadt

Lab Report TEMF, TU Darmstadt

Impedance Minimization by Nonlinear Tapering

Tapered Transitions Dominating the PETRA III Impedance Model.

Wakefields in the LCLS Undulator Transitions. Abstract

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock

DESY/TEMF Meeting Status 2012

Wakefields and Impedances I. Wakefields and Impedances I

DESY/TEMF Meeting - Status 2011

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Current Status of Bunch Emission Simulation for the PITZ Gun

Title. Author(s)Fujita, Kazuhiro; Kawaguchi, Hideki; Weiland, Thomas. CitationIEEE Transactions on Nuclear Science, 56(4-3): Issue Date

modeling of space charge effects and CSR in bunch compression systems

Impedance & Instabilities

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL

Electron Emission Studies Using Enhanced QE Models

Wakefield Effects of Collimators in LCLS-II

Collimator Wakefields in the LC Context

Simulations of single bunch collective effects using HEADTAIL

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV

Igor Zagorodnov Curriculum Vitae

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code

Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010

A Directionally Dispersion-free Algorithm for the Calculation of Wake Potentials

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC

INSTABILITIES IN LINACS. Massimo Ferrario INFN-LNF

Review of proposals of ERL injector cryomodules. S. Belomestnykh

Methods and Simulation Tools for Cavity Design

High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

TERAHERTZ RADIATION FROM A PIPE WITH SMALL CORRUGATIONS a. Abstract

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE

FACET-II Design Update

IMPEDANCE THEORY AND MODELING

EMITTANCE CONTROL FOR VERY SHORT BUNCHES

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities

Impedance Computation and Measurements in Modern Storage Rings

Using Surface Impedance for Calculating Wakefields in Flat Geometry

Geometrical Wake of a Smooth Taper*

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Estimates of local heating due to trapped modes in vacuum chamber

Wakefield computations for the LCLS Injector (Part I) *

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR

arxiv: v1 [physics.acc-ph] 27 Mar 2014

Resistive wall wake with ac conductivity and the anomalous skin effect

INSTABILITIES IN LINACS

Numerical Modeling of Collective Effects in Free Electron Laser

ORBIT Code Review and Future Directions. S. Cousineau, A. Shishlo, J. Holmes ECloud07

Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Abstract

What limits the gap in a flat dechirper for an X-ray FEL?

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

Linac Driven Free Electron Lasers (III)

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Andreas Kabel Stanford Linear Accelerator Center

Towards a Low Emittance X-ray FEL at PSI

Beam Optimization with Fast Particle Tracking (FPT)

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Calculation of wakefields for plasma-wakefield accelerators

Femto-second FEL Generation with Very Low Charge at LCLS

Simulation Studies for a Polarimeter at the International Linear Collider (ILC)

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Active Medium Acceleration

Numerical modelling of photoemission for the PITZ photoinjector

Large Bandwidth Radiation at XFEL

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

BEAM INSTABILITIES IN LINEAR MACHINES 2

Coupling Impedance of Ferrite Devices Description of Simulation Approach

Cornell Injector Performance

Single-Bunch Effects from SPX Deflecting Cavities

arxiv: v1 [physics.acc-ph] 8 Nov 2017

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018

Accelerator Theory and Simulation at Rostock University

Introduction to the benchmark problem

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

Traveling Wave Undulators for FELs and Synchrotron Radiation Sources

SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS

Linac JUAS lecture summary

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

A Possible Experiment at LEUTL to Characterize Surface Roughness Wakefield Effects

Diagnostics Needs for Energy Recovery Linacs

Time-domain Amplified Spontaneous Emission Noise Model of Semiconductor Optical Amplifiers

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

Generation and characterization of ultra-short electron and x-ray x pulses

PARALLEL HIGHER-ORDER FINITE ELEMENT METHOD FOR ACCURATE FIELD COMPUTATIONS IN WAKEFIELD AND PIC SIMULATIONS

Parameter selection and longitudinal phase space simulation for a single stage X-band FEL driver at 250 MeV

Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017

A high intensity p-linac and the FAIR Project

FIELD FLATNESS AND NON-STATIONARY BEHAVIOUR OF THE 4*7-CELL-TESLA-SUPERSTRUCTURE

Transcription:

Large Scale Parallel Wake Field Computations with PBCI E. Gjonaj, X. Dong, R. Hampel, M. Kärkkäinen, T. Lau, W.F.O. Müller and T. Weiland ICAP `06 Chamonix, 2-6 October 2006 Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.temf.de

Outline Introduction Numerical Method Parallelization Strategy Modal Termination of Beam Pipes PBCI Simulation Examples Conclusions 1

Introduction Motivation for PBCI: 1. A new generation of LINACs with ultra-short electron bunches a. bunch size for ILC: 300 μm 2 b. bunch size for LCLS: 20 μm 2. Geometry of tapers, collimators far from rotational a. 8 rectangular collimators at ILC-ESA in the design process b. 30 rectangular-to to-round transitions in the undulator of LCLS 3. Many (semi-) analytical approximations become invalid a. based on rotationally symmetric geometry b. low frequency assumptions (Yokoya, Stupakov) c. detailed physics needed for high frequency wakes (Bane)

Introduction beam view side view 15.05mm 38.1mm 3 2.75mm 38.05mm 17.65mm 132.54mm Courtesy: N. Watson, Birmingham 1 m 38.05mm ILC-ESA collimator #3 ILC-ESA collimator #8 bunch length 300μm collimator length ~1.2m catch-up distance ~2.4m

Introduction vacuum vessel tube shielding PITZ diagnostics double cross gap outgoing pipe step bunch length bunch width 2.5mm 2.5mm bunch length taper length 1cm 50cm structure length 325mm Tapered transition @PETRA III vacuum slots elliptic pipe 4 Courtesy: R. Wanzenberg, DESY

Introduction There is an actual demand for: 1. Wake field simulations in arbitrary 3D-geometry 3D-codes 2. Accurate numerical solutions for high frequency fields (quasi-) dispersionless codes 3. Utilizing large computational resources for ultra-short bunches parallelized codes 4. Specialized algorithms for long accelerator structures moving window codes 5

An (incomplete) survey of available codes Introduction Dimensions Nondispersive Parallelized Moving window 1982 BCI / TBCI 2.5D No No Yes Time 2002 2006 NOVO ABCI MAFIA GdfidL ECHO PBCI 2.5D 2.5D 2.5/3D 3D 2.5/3D 3D Yes No No No Yes Yes No No No Yes No Yes No Yes No No Yes Yes 6

Outline Introduction Numerical Method Parallelization Strategy Modal Termination of Beam Pipes PBCI Simulation Examples Conclusions 7

Numerical Method The FIT discretization 8 A A V V E ds = μ H da t A H ds = ε E + J da t A μ H da= 0 εe da= Topology of FIT: V ρ dv FIT Ce = d dt M h μ d Ch = M ε e + j dt SM e q ε = SMμ h = C T = C semidiscrete energy conservation SC = SC = 0 semidiscrete charge conservation 0

Numerical Method Using the conventional leapfrog time integration n+ 1/2 1 T n 1/2 n e Δt e 1 M 1 ε C t ε n+ 1 = Δ 1 2 1 1 T n M j Δt μ Δt h M C 1 MμCMε C h 0 9 180 150 210 Behavior of numerical phase velocity vs. propagation angle 90 120 60 0.75 0.50 0.25 240 270 300 cδt 1 σ : = Δz 3 30 0 330 Stable but large dispersion z 90 120 60 1.00 150 0.75 0.50 0.25 180 210 240 270 300 cδt σ : = = 1 Δz 30 0 330 No dispersion but unstable z

Numerical Method Idea: Reduce the integration of 3D equations to a sequence of 1D / 2D integrations along the coordinate axes Longitudinal-Transversal (LT) splitting: 10 H H t l 1 T 0 Mε C t = 1 Mμ Ct 0 does not affect longitudinal waves 1 T 0 M ε Cl = 1 Mμ Cl 0 integrable in 1D without numerical dispersion n+ 1 n n Δt Δt t t t Δ 2 lδt 2 3 e = e e H H = e e e e H H + O( Δt ) modified time evolution h h h Second order Strang splitting

Numerical Method Idea: Reduce the integration of 3D equations to a sequence of 1D / 2D integrations along the coordinate axes Replace each evolution operator with Verlet-leapfrog propagators: 11 G 2 3 Δt 1 T 1 1 T Δt 1 T 1 1 T 1 Mε Clt ; MμClt ; ΔtMε Clt ; Mε Clt ; MμClt ; Mε Clt ; 2 4 Δ = 2 ( t) lt ; 2 1 Δ t 1 1 T ΔtMμClt ; 1 MμClt ; Mε Clt ; Time discrete update: n+ 1 e Δt Δt e = Gt igl( Δt) igt i h 2 2 h T. Lau, E. Gjonaj and T. Weiland, Time Integration Methods for Particle Beam Simulations with the Finite Integration Theory, FREQUENZ, Vol. 59 (2005), pp. 210 n cδt stable for: σ : = = 1 Δz

Implementing the LT splitting scheme n+ 1 e Δt Δt e = Gt igl( Δt) igt i h 2 2 h Numerical Method n 12 Numerical phase velocity and amplification vs. propagation angle 90 120 60 0.75 150 0.50 30 0.25 180 0 210 330 cδt σ : = = 1 Δz No longitudinal dispersion z 90 120 60 0.75 150 0.50 30 0.25 180 0 240 300 240 300 270 270 210 330 z Neutrally stable

Outline Introduction Numerical Method Parallelization Strategy Modal Termination of Beam Pipes PBCI Simulation Examples Conclusions 13

Parallelization Strategy A balanced domain partitioning approach total computational domain 14 W W N left right left = N N =, Nright = 2 2 N N left right intermediate subdomains processor #1 active subdomains binary tree leafs processor #2 processor #3 Equal loads assigned to each node: W = α i w Node Node i Grid Points

Parallelization Strategy Example: Tapered transition for PETRA III moving grid window Domain partitioning pattern for 7 processors 15 Total Min Max Dev. Grid points 64.481.201 9.119.943 9.292.230 < 1.0% Number of Grid Points 9.300.000 9.250.000 9.200.000 9.150.000 9.100.000 9.050.000 9.000.000 9.292.230 Distribution of grid points 9.246.000 9.246.000 9.200.000 9.211.428 9.165.600 1 2 3 4 5 6 7 Processor Number 9.119.943

Parallelization Strategy 16 Speedup 20 18 16 14 12 10 8 6 4 2 Parallel performance tests 10e5 Grid points 10e6 Grid points 50e6 Grid points 10e7 Grid points 20e7 Grid points Ideal 0 0 2 4 6 8 10 12 14 16 18 20 Number of Processors TEMF Cluster: 20 INTEL CPUs @ 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

Parallelization Strategy 1,2 Parallel performance tests 1 17 Efficiency 0,8 0,6 0,4 0,2 10e5 Grid points 10e6 Grid points 50e6 Grid points 10e7 Grid points 20e7 Grid points Ideal 0 0 2 4 6 8 10 12 14 16 18 20 Number of processors TEMF Cluster: 20 INTEL CPUs @ 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

Outline Introduction Numerical Method Parallelization Strategy Modal Termination of Beam Pipes PBCI Simulation Examples Conclusions 18

Modal Termination of Pipes y Indirect integration schemes C 2 C0 z = 0 C1 z 19 direct indirect 1 z+ s Wz() s = dzez(, z t ) Q = c 1 z+ s 1 TM s = dz Ez(, z t ) dy Gy (0, t ) Q = = c Q c C 0 2 1. Indirect integration of potential for 2D-structures (Weiland 1983, Napoly 1993) 2. Generalization for 3D-structures (A. Henke and W. Bruns, EPAC 06, July 2006, Edinburgh, UK) TM G = e E + cb + e E cb + e E TM TM TM TM ( ) ( ) x x y y y x z z C irrotational

Modal Termination of Pipes y z = 0 Modal approach C0 C1 z 20 direct 1 z+ s Wz() s = dzez(, z t ) Q = c = n modal n 1 i( ω / c) s z(, ) ω n( ω) i ω c k ω e x y d C e ( / zn, ( )) 1 z+ s 1 n = dz Ez(, z t ) ez(, x y) Wn() s Q = c Q = + = = z s i n ikn ( ω) z c dz Ez( x, y, z, t ( z s)/ c) dz dω Cn( ω) ez( x, y) e e ω + 0 0 n C 0 W () n s n-th (TM) mode contribution n spectral coefficient of n-th (TM) mode

Modal Termination of Pipes 1. Time domain integration in the inhomogeneous sections: 0 1 z+ s dz Ez (, z t ) Q = c 21 n n 2. Modal analysis at z = 0: E ( x, y,0, t) E (0, t), e ( x, y) z z z n 3. Compute spectral coefficients (FFT): E (0, t) C ( ω) 4. Compute wake potential contribution per mode (IFFT): C n ( ω) ( ω/ zn, ( ω) ) i c k W n () s 5. Compute wake potential transition in the outgoing pipe: 1 z+ s 1 n dz Ez(, z t ) ez(, x y) Wn() s Q = = c Q 0 n z n

Modal Termination of Pipes Using FD reconstruction in long intermediate pipes diagnostics cross injector section bunch 22 1mm step full Time Domain -20-10 0 10 20 E z / [kv /m] FD analysis reconstruction lowest 10 15 20 5 eigenmodes bunch

Outline Introduction Numerical Method Parallelization Strategy Modal Termination of Beam Pipes PBCI Simulation Examples Conclusions 23

Simulation Examples TESLA 9-cell cavity bunch 24-15 -10-5 0 5 10 15 E z / [kv /m] bunch length 5mm bunch charge 1nC cavity length 1.5m no. of grid points ~80e6 no. of processors 24 simulation time 3hrs

Simulation Examples TESLA 9-cell cavity 5 Longitudinal wake potential 25 Wz / [V / pc] 0-5 -10-15 -1,5 0 1,5 3 4,5 s / [cm] Bunch (a.u.) z = 20cm z = 40cm z = 60cm z = 80cm z = 100cm z = 120cm z = 140cm

PITZ diagnostics double cross Simulation Examples bunch 26-50 -25 0 25 50 E z / [kv /m] bunch size σ / Δz no. of grid points no. of processors simulation time 2.5mm 30 ~500e6 24 32hrs Vacuum Vessel Gap Beam Tube Tube Shielding Step

PITZ diagnostics double cross 1 Simulation Examples (Ackermann, Hampel, Schnepp) Wake field impact of the single components 27 W z / [V / pc] 0-1 -2-3 cross with shielding tube full model no shielding tube gap (1 mm) step (no taper) -15-10 -5 0 5 10 15 s [mm]

Simulation Examples 28 ILC-ESA collimator #8 Wz / [V / pc] 60 40 20 0-20 -40-60 -80 Convergence vs. grid step σ / Δz = 2.5 σ / Δz = 5 σ / Δz = 10 σ / Δz = 15 bunch size no. of grid points no. of processors simulation time -100-4 -3-2 -1 0 1 2 3 4 s / σ 300μm ~450e6 24 85hrs

Simulation Examples ILC-ESA collimator #8 Direct and transition wakes bunch 15.05 mm 17.65 mm 38.1 mm 132.54 mm 2.75 mm 38.05 mm 29 Wz / [V / pc] 30 Direct potential (z = 150mm) Transition potential Steady state potential 10-10 -30-50 -70-90 -4-3 -2-1 0 1 2 3 4 s / σ

Conclusions 1. PBCI: A fully 3D- code for wake field simulations a. using the moving window approach b. dispersionless in the bunch propagation direction c. massively parallelized d. using modal approach for indirect integration e. using modal approach for pipe termination 2. Work still in progress for a. including resistive wall wakes b. developing an appropriate boundary conformal discretization c. considering periodic structures of finite length 30

General split-operator schemes d dt e 1 T 0 Mε C = 1 h Mμ C 0 h e Numerical Method (homogeneous) FIT equations 32 Denote: e y =, h Solution after one time step: d y dt 0 M C H = M C 0 1 T ε, 1 μ ( H H ) + 1 HΔ 1+ 2 Δt Hiy y e iy e iy = = = A second order Strang scheme: n t n n y n H= H1+ H2 exact time evolution operator approximate time evolution operator Δt Δt H H 1 3 + 1 1 2 H2Δt 2 n = e e e i y + O( Δt )