CORRELATION COEFFICIENTS A & B

Similar documents
Precision Measurements of Neutron Beta Decay with NoMoS at PERC

CKM Unitarity and Neutron Beta Decay Measuring V ud in Neutron Beta Decay

Investigating Parity Violation in Neutron Decay

A quantum bouncing ball gravity spectrometer

Neutron lifetime experiment HOPE

Electroweak Physics: Lecture V

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Standard Model Theory of Neutron Beta Decay

High-precision studies in fundamental physics with slow neutrons. Oliver Zimmer Institut Laue Langevin

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Neutron ββ-decay Angular Correlations

UCN supersource at PNPI and fundamental physics program А.P. Serebrov

Lecture 11. Weak interactions

Electroweak Theory: 2

Fundamental interactions experiments with polarized trapped nuclei

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Collider Searches for Dark Matter

Low Energy Precision Tests of Supersymmetry

Recent results from rare decays

BACKGROUND LHC Physics Program Summary LHC PHYSICS. Andrés G. Delannoy 1. 1 Vanderbilt University. 2014/07/21 1

the role of atom and ion traps

Beyond Standard Model Effects in Flavour Physics: p.1

Lecture 18 - Beyond the Standard Model

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

Neutron Beta-Decay. Christopher B. Hayes. December 6, 2012

Elementary Particles, Flavour Physics and all that...

The Antineutrino Electron Angular Correlation Coefficient a in the Decay of the Free Neutron

Weak interactions and vector bosons

Physics opportunities with an upgraded LHCb detector in the HL-LHC era

Lecture 11: Weak Interactions

Present status and future prospects of nedm experiment of PNPI-ILL-PTI collaboration

Physics at Hadron Colliders

Nab: a precise measurement of the a and b parameters in neutron decay

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Contents. Preface to the First Edition Preface to the Second Edition

Intense Slow Muon Physics

Searches for New Physics in quarkonium decays at BaBar/Belle

M. Beck. Institut für Physik, Johannes Gutenberg-Universität Mainz for the aspect collaboration. The aspect experiment. an overview and latest results

The weak interaction Part II

Weak Decays, CKM, Anders Ryd Cornell University

Marcello A. Giorgi. Università di Pisa & INFN Pisa La Biodola May 30, 2011 XVII SuperB Workshop and Kick off Meeting

Flavour Physics at hadron machines

Results from B-Physics (LHCb, BELLE)

Searches for Beyond SM Physics with ATLAS and CMS

Finding the Higgs boson

Weak Interactions Cabbibo Angle and Selection Rules

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Precision measurement of

Weak Interactions: towards the Standard Model of Physics

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

SUPERSYMETRY FOR ASTROPHYSICISTS

Tales From The Dark Side of Particle Physics (The Dark-Light Connection) William J. Marciano

Models of Neutrino Masses

Electroweak measurements at HERA

Polarized muon decay asymmetry measurement: status and challenges

Lecture 6:Feynman diagrams and QED

Standard Model of Particle Physics SS 2013

Recent CP violation measurements

Advances in Open Charm Physics at CLEO-c

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

solenoid and time projection chamber for neutron lifetime measurement LINA

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

arxiv:hep-ph/ v1 17 Apr 2000

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

CKM Matrix and CP Violation in Standard Model

Standard Model of Particle Physics SS 2013

Hyperon physics in NA48

P.M. King Ohio University for the MOLLER Collaboration

Standard Model of Particle Physics SS 2013

Parity violation. no left-handed ν$ are produced

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Matter, antimatter, colour and flavour in particle physics

Introduction to Supersymmetry

Space-Time Symmetries

Weak interactions, parity, helicity

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Introduction to particle physics Lecture 12: Weak interactions

A first trip to the world of particle physics

PoS(FPCP2009)057. Chloé Malbrunot (for the PIENU collaboration ) University of British Columbia Vancouver, Canada

LHCb results and prospects

Standard Model of Particle Physics SS 2012

Sven Schumann. DPG Spring Meeting

Beyond the Standard Model

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

The Search for the Neutron Electric Dipole Moment

Flavour physics Lecture 1

arxiv: v1 [hep-ex] 5 Sep 2014

CP Violation at the LHC - workshop 2017

Searching for sneutrinos at the bottom of the MSSM spectrum

Overview of LHCb Experiment

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

Nuclear electric dipole moment in the Gaussian expansion method

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course?

8.882 LHC Physics. High Energy Physics Overview. [Lecture 16, April 6, 2009] Experimental Methods and Measurements

Searches for (non-susy) Exotics at HERA

Beyond the MSSM (BMSSM)

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

Transcription:

Neutron Beta Decay: CORRELATION COEFFICIENTS A & B Hartmut Abele Solvay Workshop 2014 Hartmut Abele, Technische Universität Wien

Standard Model and Neutron Decay Neutron β-decay n pe ν lifetime τ ~ 15 min β-endpoint: E max = 782 kev e CKM-Matrix: d Vud Vus V d ub s = Vcd Vcs V s cb b b td ts tb V V V V-A Theory: Vector coupling: g V = G F V ud f 1 (q 2 0) Axial vector coupling: g A = G F V ud g 1 (q 2 0) ratio λ = g A / g V = -1.276 Standard Model: V ud, λ, e iθ = -1 2

Parameters Strength: G F Quark mixing: V ud Ratio: λ = g A /g V τ Neutron Alphabet deciphers the SM R f m c = V G (1 + 3 λ ) 2 π h 1 2 2 2 ud F Electron 5 4 e 3 7 A ϑ a R C Q Proton D Neutron Spin B N R Neutrino Observables Lifetime τ Correlation A Correlation B Correlation C Correlation a Correlation D Correlation N Correlation Q Correlation R Beta Spectrum Proton Spectrum Beta Helicity Hartmut Abele, Atominstitut, TU Wien High Precision - Low Energy 3

Neutron Alphabet deciphers the SM a,a λ = g A / g V A + τ V ud from CKM matrix A + B + τ Right Handed Currents (RHC)? W L W R H. Abele, NIM A 611 (2009) 193 197 4

Neutron Alphabet deciphers the SM D, R? T-odd CP-violation CP Candidate models for scalar couplings (at tree-level): Charged Higgs exchange Slepton exchange (R-parity violating super symmetric models) Vector and scalar leptoquark exchange The only candidate model for tree-level tensor contribution (in renormalizable gauge theories) is: Scalar leptoquark exchange Courtesy of K. Bodek See P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413. 5

Characteristics of Experiments Using Magnetic Fields (Dubbers 1980s) PERKEO I ϑ A, B, C Hartmut Abele, Technische Universität München 6 Method: P. Bopp et al., NIM A 267 (1988) 436.

Why ratio λ = g A / g V from Neutrons? Processes with the same Feynman-Diagram Courtesy of D. Dubbers 7

Spectrometer Perkeo II precise electron spectroscopy up: A exp = N N N + N down: A exp = N N + N N Principle: 2x2π- Detection two hemispheres backscattering suppression low background strong beam PF1: - count rate systematic v Aexp = A Pf c A λ( λ + 1) = 2 1 3 2 + λ zum beamstop λ= g A /g V Method see also: H. Abele et al., 17 kev Neutrino PLB 316 26 1993 8

a bit history: λ from neutron β-decay -1.1900(200), PDG (1960) -1.2500(200), PDG (1975) -1.2610(40), PDG (1990) -1.2594(38), Gatchina (1997) -1.2660(40), M, ILL (1997) -1.2740(30), PERKEO II (1997) -1.2686(47), Gatchina, ILL (2001) -1.2739(19), PERKEO II (2002) 1.27590(+409)( 445), UCNA (2011) -1.2756(30), UCNA (2013) -1.2748 +13-14 PERKEO II (2013) 9

Error Budget A 10

a bit history: λ from neutron β-decay -1.1900(200), PDG (1960) -1.2500(200), PDG (1975) -1.2610(40), PDG (1990) -1.2594(38), Gatchina (1997) -1.2660(40), M, ILL (1997) -1.2740(30), PERKEO II (1997) -1.2686(47), Gatchina, ILL (2001) -1.2739(19), PERKEO II (2002) 1.27590(+409)( 445), UCNA (2011) -1.2756(30), UCNA (2013) -1.2748 +13-14 PERKEO II (2013) 11

UCNA (2013) λ = -1.2756(30), UCNA (2013) 12

Recent Results: PERKEO Collaboration Electron Asymmetry A: Neutrino Asymmetry B: A =-0.1197(6) PERKEO II combined: A PII = 0.1193(5) λ PII = 1.2748(13) error: 1 10 3 PRL 110, 172502 (2013) B = 0.9802(50) Schumann et a. PRL 99, 191803 (2007) Proton Asymmetry C: first precision measurement C = 0.2377(36) Schumann et al., PRL 100, 151801 (2008) 13 13

Coefficient B,C Proton detector Proton C foil Scintillator n-spin Proton detection: Measure electron energy Wait for proton Convert proton into electron signal H. Abele, NIM A 611 (2009) 193 197 14

M. Schumann,M. Kreuz, M. Deissenroth,F. Glück,J. Krempel, B. Märkisch,D Mund, A. Petoukhov, 15 T. Soldner, H. Abele, PRL 100, 151801 (2008) M. Schumann: The Neutrino-Asymmetry B Systematically clean method: Integration over two hemispheres Electron and Proton in same hemisphere low dependence on energy calibration and energy resolution higher sensitivity due to larger exp. asymmetry Electron Neutron Spin Proton B exp = N N N + N Neutrino Electron and Proton in opposite hemispheres more statistics since this case occurs for ~78% of the events Electron Neutron Spin Neutrino B exp = N N N + N Proton

Coefficient B, Serebrov et al. H. Abele, TU Wien 16

B. Maerkisch et al.: Spectrometer PERKEO III electron tracks detector detector B = 150 mt B = 90 mt active volume ~2m, 15x15cm² Magnetic field : neutron beam 54 water-cooled copper coils Total Weight: 8 t Total Length: 8 m Electric: 300 kw, 540 A B. Maerkisch et al., Bastian NIM Märkisch 611 (2009) 216 218 alignment of n spin guide e, p onto detectors 2 x 2 π detector separation into hemispheres 17

Error Budget Uni HD Maerkisch et al., ILL: Soldner et al. TU Wien: Wang et al. Source Correction A/A (10-4 ) Uncertainty A/A (10-4 ) Predecessor Neutron beam Polarisation separate analysis / 1.4 < 10 Spin flip efficiency Background / 7 Undetected 1 Time variation -1 1 Electrons Magnetic mirror effect separate analysis 4 A Lost backscatter energy 1,4 Detector A Deadtime * -5 2 Non-linearity 4 / 4.6 Non-uniformity 3 λ Stability * 2 Calibration 0,5 Theory Radiative corr. * -1,1 2 Total Systematics 12,4 / 3.2 Statistics 13,9 / 2.7 Total 18,6 Result: = 1.9 10 3 λ = 4.8 10 4 Factor 4 improvement over PDG 2013 average 18

Close to Publication acorn @ NIST aspect @ Mz, ILL, TUW PERKEO III @ UHD, ILL, TUW: A (B,C not so close) New Instruments Nab, PERC Hartmut Abele, Atominstitut, Vienna University of Technology 19

R. Feynman Hart 20

Standard Model of Particle Physics Input: Principia: - Gauge principle U(1) x SU(2) x SU(3) D. Dubbers 2007 - Lorentz invariance : x = Lx - CPT,...Invariance Output: - Interactions - Equation of motion Maxwell, Schrödinger, Dirac - Existence of Photons, Gluons, W ±, Z 0 (carriers of interaction) - Charge conservation (Source of interaction) Conclusion: SM very successful - e.g. as basis for technology, chemistry, biology, mol.biologie 22

Weak Magnetism form factor f 2 Neutron Decay Transition Matrix: G T = V p γ (1 γ ) n ( νγ (1 γ ) e) F µ fi 5 5 2 ud µ f ( k ) V p [ f ( k ) k if ( k ) k ] n 2 2 2 ν 2 µ = 1 γµ + σµν + 3 µ 2mp Electron Asymmetry: f 2 Weak Magnetism Form Factor (SM prediction) 2 % additional E dependence of A 23

Beyond SM A search for - right-handed admixtures to the left-handed feature of the Standard model. They are forbidden in the Standard-Model, but, as a natural consequence of symmetry breaking in the early universe, they should be found in neutron-decay. Signatures are a W R mass with mixing angle z. - scalar and tensor admixtures g S and g T to the electroweak interaction. g S and g T are also forbidden in the Standard model but supersymmetry contributions to correlation coefficients or the Fierz interference term b can approach the 10 3 level. A precision measurement of - the weak-magnetism form factor f 2 prediction of electroweak theory. Such an experiment would be one of the rare occasions, where a strong test of the underlying structure itself of the Standard model becomes available. Supersymmetry search in the LHC era: - one could expect small deviations in the low-energy tests, such as deviations from CKM unitarity, but no effect at the LHC, especially if the supersymmetry spectrum is below one TeV, but the spectrum is compressed, or if some of the superpartners are light and others are heavy (a variant on the split-susy scenario) Hartmut Abele, Atominstitut, TU Wien 24

DFG/FWF Priority Programme 1491 : Precision experiments in particle- and astrophysics with cold and ultracold neutrons, Participating Institutions: IST Braunschweig Univ. Heidelberg ILL Univ. Jena Univ. Mainz Exzellenzcluster Universe München Techn. Univ. München * PTB Berlin Vienna University of Technology * Priority Areas CP-symmetry violation and particle physics in the early universe. The structure and nature of weak interaction and possible extensions of the Standard Model. Tests of gravitation with quantum objects Charge quantization and the electric neutrality of the neutron. New Infrastructure (UCN-Source, cold Neutrons) - * Coordinators first round (S. Paul, H.A. )

Priority Programme 1491 Research Area A: CP-symmetry violation and particle physics in the early universe - Neutron EDM E = 10-23 ev Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model - Neutron β-decay V A Theory Research Area C: Test of gravitation with quantum interference - Neutron bound gravitational quantum states Research Area D: Charge quantization and the electric neutrality of the neutron - Neutron charge Research Area E: New measuring techniques - Particle detection - Magnetometry - Neutron optics

Priority area B (first 3 years round): Novel experiments on neutron beta-decay Experiment PERC - PERC, a clean, bright and versatile source of neutron decay products (Maerkisch) - Proton spectroscopy (Heil, Zimmer) - Electron spectroscopy (Abele) - Neutron polarisation + analysis with 10-4 accuracy (Soldner) - design of the beam line for PERC (Soldner, Jericha) - Development of a non-depolarising neutron guide needed for PERC (Schmidt) Measurement of the neutron lifetime - O. Zimmer et al. Measurement of n -> H - S. Paul et al.

SM tests on 10-4 level Theory - Recalculation of corrections induced by the weak magnetism, the proton recoil and the radiative corrections. - A. Ivanov, M. Pitschmann, and N. Troitskaya, Phys.Rev. D88, 073002 (2013), 1212.0332. Experiment PERC - High statistic measurements: - Today: High Average Flux: Φ = 2 x 10 10 cm -2 s -1 - Decay rate of 1 MHz / metre - Thesis C. Klauser (2013) Polarizer P/P = 10-4, Spin Flipper f/f = 10-4 Hartmut Abele, Atominstitut, Vienna University of Technology 28

Proton Electron Radiation Channel: B. Maerkisch =0.5T cold Versatile: A, B, C, a, b, κ, Sensitivity: improved by up to 2 orders of magnitude high phase space density Systematics: 10-4 (for e - ) precise cuts in dω e : Requirements: no local field minima adiabaticity criterion sinθ sinθ = 0 0 B 1 homogeneity 10-4 in e/p beam B B D. Dubbers et al., NIM A 596 (2008) 238 and arxiv:0709.4440 G. Konrad et al. (for the PERC collaboration), J. Phys.: Conf. Ser. 340 (2012) 012048

SOURCE OF ERROR non-uniform n-beam COMMENT for ΔΦ/Φ = 10 % over 1 cm width SIZE OF CORRECT. SIZE OF ERROR: 2.5 10 4 5 10 5 other edge effects on e/p-window for worst case at max. energy 4 10 4 1 10 4 magn. mirror effect, contin's n-beam 1.4 10 2 2 10 4 magn. mirror effect, pulsed n-beam for ΔB/B = 10 % over 8 m length 5 10 5 <10 5 non-adiabatic e/p-transport 5 10 5 5 10 5 background from n-guide 2 10 3 1 10 4 }is separately measurable background from n-beam stop 2 10 4 1 10 5 backscattering off e/p-window 2 10 5 1 10 5 backscattering off e/p-beam dump 5 10 5 1 10 5 backscatt. off plastic scintillator 2 10 3 4 10 4 }for worst case ~ same with active e/p-beam dump 1 10 4 neutron polarisation present status 3 10 4 1 10 4 Hartmut Dubbers, Abele, Baessler, Technische Märkisch, Universität Schumann, München Soldner, Zimmer, H.A., arxiv 2007 30

Reserva Hartmut Abele, Atominstitut, Vienna University of Technology 31

M. Pitschmann, A. Ivanov, Atominstitut, Vienna University of Technology 32

M. Pitschmann, A. Ivanov, Atominstitut, Vienna University of Technology 33

M. Pitschmann, A. Ivanov, Atominstitut, Vienna University of Technology 34

35

36

37

Coefficient A Hartmut Abele, Vienna University of Technology 38

Coefficient C Hartmut Abele, Vienna University of Technology 39

Error budget B

Error Budget C 41

G. Konrad: R x B Spectrometer 42

R B Drift Momentum Spectroscopy Detector RxB v d qr²b² p 1 1 D = vddt = α (cos θ + ) T qb 2 cosθ D D B R Tilted Coils B 3 =0.15T α B 2 =0.5T Last Coil of PERC e - /p + beam Aperture y x z Protons y z x Electrons + Adiabatic transport of particles + Low momentum measurements + Large acceptance of θ 0 + Small corrections for θ 0 Small drift distances O(cm) Xiangzun Wang, G. Konrad et al., NIM A (2012), DOI 10.1016/ j.nima.2012.10.071