PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS

Similar documents
The GOP analysis center: a global near real-time solution

A new Solar Radiation Pressure Model for the GPS Satellites

A new Solar Radiation Pressure Model for the GPS Satellites

The Ohio State University IGS LEO/GPS Pilot Project: Status and Future Plans

ESTIMATION OF NUTATION TERMS USING GPS

Framework for functional tree simulation applied to 'golden delicious' apple trees

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Earth gravity field recovery using GPS, GLONASS, and SLR satellites

Principles of the Global Positioning System Lecture 18" Mathematical models in GPS" Mathematical models used in GPS"

THE PERTURBATION OF THE ORBITAL ELEMENTS OF GPS AND Y-BIAS. GPS satellite and each arc of one to three days on top of the a priori radiation pressure

GNSS-specific local effects at the Geodetic Observatory Wettzell

IGS-related multi-gnss activities at CODE

Satellite baseline determination with phase cycle slip fixing over long data gaps

Lecture 2 Measurement Systems. GEOS 655 Tectonic Geodesy

IGS Reprocessing. and First Quality Assessment

Precise Point Positioning requires consistent global products

12/07/2013. Apparent sea level rise and earthquakes

Impact of the SRP model on CODE's 5- system orbit and clock solution for the MGEX

PRECISE CLOCK SOLUTIONS USING CARRIER PHASE FROM GPS RECEIVERS IN THE INTERNATIONAL GPS SERVICE

Assessment of the orbits from the 1st IGS reprocessing campaign

Introduction to geodetic VLBI

Nutation determination by means of GNSS

Accuracy of GPS Positioning in the Presence of Large Height Differences

Co-location of VLBI with other techniques in space: a simulation study

CODE's multi-gnss orbit and clock solution


Latest improvements in CODE's IGS MGEX solution

NGA GNSS Division Precise Ephemeris Parameters

The Effect of the Geocentric Gravitational Constant on Scale

RINEX Extensions to Handle Clock Information ********************************************

Publ. Astron. Obs. Belgrade No. 91 (2012), REALIZATION OF ETRF2000 AS A NEW TERRESTRIAL REFERENCE FRAME IN REPUBLIC OF SERBIA

GINS: a new tool for VLBI Geodesy and Astrometry

Vectors. Teaching Learning Point. Ç, where OP. l m n

F O R SOCI AL WORK RESE ARCH

GGSP: Realisation of the Galileo Terrestrial Reference Frame

Earth gravity field recovery using GPS, GLONASS, and SLR satellites

Torsten Mayer-Gürr Institute of Geodesy, NAWI Graz Technische Universität Graz

The Victorian Seismic Zone 2011 GNSS Campaign Data Analysis

IGS POLAR MOTION MEASUREMENTS

Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and -B

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

ETIKA V PROFESII PSYCHOLÓGA

Very Long Baseline Interferometry for Geodesy and Astrometry

Analysis of the Accuracy of GMF, NMF, and VMF1 Mapping Functions with GPT 50 a Priori Zenith Constraint in Tropospheric Delay Modelling

Sebastian Strasser, Torsten Mayer-Gürr

Impact of solar radiation pressure modeling on GNSS-derived geocenter motion

Impact of Earth Radiation Pressure on LAGEOS Orbits and on the Global Scale

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

GG S. Internal Vision of GGOS. Markus Rothacher. GFZ Potsdam

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

An Introduction to Optimal Control Applied to Disease Models

Bahnen und Schwere. Bahnen und Schwere. Adrian Jäggi. Astronomical Institute University of Bern

New velocity solutions from 13 years of BIFROST activities


ESA/ESOC Status. T. Springer, E. Schoenmann, W. Enderle. ESA/ESOC Navigation Support Office. ESA UNCLASSIFIED - For Official Use

Very Long Baseline Interferometry for Geodesy and Astrometry

3.6 ITRS Combination Centres

Determination of Current Velocity Field (Rate) of North Anatolian Fault in Izmit-Sapanca Segment

Orbit Representation

Extended Filter For Real- 0me Mul0- GNSS Orbit Determina0on

The Global Geodetic Observing System (GGOS) of the International Association of Geodesy, IAG

A S S O C I A T E A N A L Y S I S C E N T E R S

PRECISE CLOCK SOLUTIONS USING CARRIER PHASE FROM GPS RECEIVERS IN THE INTERNATIONAL GPS SERVICE

Optimal Control of PDEs

Redoing the Foundations of Decision Theory

Towards a Rigorous Combination of Space Geodetic Techniques

Accelerometers for GNSS Orbit Determination

Evaluation of the Earth Gravity Model EGM2008 in Algeria

New satellite mission for improving the Terrestrial Reference Frame: means and impacts

2 Sofia University, Sofia, Bulgaria. C Hackman 1, Guergana Guerova 2, S Byram 1, J Dousa 3 and U Hugentobler 4

Week 02. Assist. Prof. Dr. Himmet KARAMAN

The International Terrestrial Reference System and ETRS89: Part II : ITRS & ETRS89 relationship

Efficient Stochastic Orbit Modeling Techniques using Least Squares Estimators

Tectonics of the terrestrial litosphere in spherical harmonics

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following:

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Realisation of the New Zealand Geodetic Datum 2000

Hourly Updated Precise Orbit Products of Quad-constellation

Fundamental Station Wettzell - geodetic observatory -

Common Realization of Terrestrial and Celestial Reference Frame

For Peer Review Only. Performance of Real-time Precise Point Positioning (PPP) Marine Geodesy

COMBINING GPS AND VLBI MEASUREMENTS OF CELESTIAL MOTION OF THE EARTH S SPIN AXIS AND UNIVERSAL TIME. Jan VONDRÁK* and Cyril RON

Using non-tidal atmospheric loading model in space geodetic data processing: Preliminary results of the IERS analysis campaign

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

Large surface wave of the 2004 Sumatra-Andaman earthquake captured by the very long baseline kinematic analysis of 1-Hz GPS data

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

Analysis Strategies And Software For Geodetic VLBI

The conversion of Universal Time to Greenwich Mean Sidereal Time is rigorously possible and is given by a series development with time defined by

An Example file... log.txt

EPOS-RT: Software for Real-time GNSS Data Processing

Call for space geodetic solutions corrected for non-tidal atmospheric loading (NT-ATML) at the observation level

DETERMINATION OF THE STATION COORDINATES FOR QUALITY CONTROL OF THE SATELLITE LASER RANGING DATA S.

Past, present and possible updates to the IERS Conventions. J. Ray, NGS G. Petit, BIPM

IGS10, Newcastle upon Tyne England, 28 June 2 July, 2010 Combination of the reprocessed IGS Analysis Center SINEX solutions

The APREF Project: First Results and Analysis

2. GNSS Measurements

Ed S MArket. NarROW } ] T O P [ { U S E R S G U I D E. urrrrrrrrrrrv

ESTIMATING THE RESIDUAL TROPOSPHERIC DELAY FOR AIRBORNE DIFFERENTIAL GPS POSITIONING (A SUMMARY)

A priori solar radiation pressure model for QZSS Michibiki satellite

SOLAR MORTEC INDUSTRIES.

Transcription:

J. Astron. Space Sci. 18(2), 129 136 (2001) GPS,,,, PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS Hyung-Chul Lim, Pil-Ho Park, Jong-Uk Park, Jung-Ho Cho, Yong-Won Ahn GPS Research Group, Korea Astronomy Observatory E-mail: hclim@kao.re.kr (Received September 20, 2001; Accepted October 20, 2001) GPS (Global Positioning System) (Earth Orientation Parameter, EOP) כ. כ, GPS כ EOP כ. IGS (International GPS Service) 3, 15 (UTC) IGU (IGS Ultra Rapid Product). IGU 48 EOP, 24 24 כ. URP (Ultra Rapid Product). 32 IGS 48 URP, IGS EOP. ABSTRACT The accuracy of GPS applications is heavily dependent on the satellite ephemeris and earth orientation parameter. Specially applications like as the real time monitoring of troposphere and ionosphere require real time or predicted ephemeris and earth orientation parameter with very high quality. IGS is producing IGS ultra rapid product called IGU for real time applications which includes the information of ephemeris and earth orientation. IGU is being made available twice everyday at 3:00 and 15:00 UTC and covers 48 hours. The first 24 hours of it are based on actual GPS observations and the second 24 hours extrapolated. We will construct the processing strategy for yielding ultra rapid product and demonstrate the propriety through producing it using 48 hours data of 32 stations. Key words: IGS, IGU, Ultra Rapid Product corresponding author 129

130 LIM et al. 1. IGS. IGP IGU IGR IGF 17 13 1 2 260cm 71cm 25cm 5cm <5cm http://igscb.jpl.nasa.gov/components/prods.html. IGP Springer & Hugentobler (2001). 1. GPS., GPS GPS (Springer & Hugentobler 2001). EOP כ כ כ. GPS. EOP IGS, כ. 1 IGS 48 EOP. IGS 1990 IGP (IGS Predicted Product). IGP 48 EOP, 12 36 כ. IGP EOP כ כ. 1999 La Jolla IGS URP (Springer & Hugentobler 2001). 1999 10 GFZ (GeoForschungsZentrum Potsdam) URP, IGS 2000 5 5 (Analysis Centers, ACs) URP IGU. IGS GPS IGU IGF (IGS Final Product) IGR (IGS Rapid Product). IGF IGR 24 EOP. IGS ACs 1. IGU IGS GPS 1 IGS, ACs 2 URP IGS. IGS 2 55, 14 55 UTC כ 48 IGU. ACs URP 24 Fitting, 24. IGU (Zenith Path Delay) 7mm 1mm (Springer & Hugentobler 2001).

GPS SATELLITES FOR REAL TIME APPLICATIONS 131 NYA1 45 KOKB FAIR YELL DRAO ALGO NLIB GOLD MDO1 BRMU ONSA WSRT WTZR VILL MATE MAS1 BAHR KIT3 LHAS IRKT SHAO TSKB GUAM 0 KOUR FORT MALI AREQ -45 SANT OHIG KERG DAV1 Station used in this processing Station not used in this processing -90 0 90 PERT TIDB AUCK MAC1 MCM4 1. URP GPS. GPS, Bernese, Gipsy-Oasis. EOP כ URP IGU. URP. URP Bernese ACs EOP. 2. GPS (Gurtner et al. 1989). 200 IGS GPS IGS 36, 1 5,000km.,. RINEX (Receiver INdependent EXchange) URP 48 RINEX, כ כ RINEX ( 2). URP. 1. RINEX, IGS 36 24 24., RINEX L1/L2. 2. כ URP IGU EOP

132 LIM et al. Day 178.. Day 182 Day 183 Day 184 Day 185 Day 186 Obs. Data (5days) Obs. Data (2days) Station Coordinates Ultra Rapid Product Ultra Rapid Product (Priori Orbit &EOP).כ 2. Ultra Rapid Product 2.. Measurement Models Orbit Models Estimated Parameters Reference Frame RHC phase rotation correction, Ground ant. phase center calibrations, Troposphere delay, Plate motions, Tidal displacements, Earth rotation, Satellite center of mass correction, Relativity corrections Geopotential(degree 12 and order 12), Sun and moon gravity, Solar radiation pressure and Y-bias, Tidal forces, Relativity Station coordinates, Satellite clock bias, Orbital parameters, Troposphere, Integer ambiguity, Earth orientation parameters J2000 (inertial), ITRF97 (terrstrial), TDT (terrestrial dynamic time). 24 כ EOP, 24 כ Fitting כ. 3. IGR URP 5 ITRF (International Terrestrial Reference Frame) IGS SINEX (Software INdependent EXchange). 4. RINEX, L1 L2 L3 Outlier Cycle slip. 5.. 36 1,000km QIF (Quasi-Ionosphere-Free)., 2,000km QIF (Hugentobler et al. 2001). 6., כ,,. 7. EOP 48 URP. URP EOP. (variation equation) Collocation method (Hugentobler et al. 2001). 2 URP,. כ.

GPS SATELLITES FOR REAL TIME APPLICATIONS 133 3.. Fitting Prediction RMS (cm) Median (cm) RMS (cm) ROCK (T20) 76 134 161 ROCK (T20 Scaled) 72 119 151 JPL Model (Scaled) 10 45 58 ECOM 5 17 22 ) Scaled: Direct solar radiation Y-bias.,, כ. GPS ROCK (Fliegel et al. 1992). 1994 CODE (Center for Orbit Determination in Europe) 9 ECOM (Extended CODE Orbit Model) (Beutler et al. 1994). 3 ROCK 7 Fitting 2 (Springer 1999). (Montenbruck & Gill 2000). 1 2 0, 12 (UTC) radial, along-track (Springer et al. 1999). (Stochastic Orbit Parameter) כ,. כ. (x, y, z) 5mm. 1mm cm, 5mm URP IGF. 3. 2001 7 3 4 48 URP EOP. 36 IGS 32 GPS. 2001 7 2 3 32 IGS. 10 60 RINEX. כ 2000 7 2 IGU, EOP CODE., כ IGS IGS01P27 SINEX. IGS EOP 15 24 URP EOP. 3 1 (Block IIA), 2 (Block II), 3 (Block I), 13 (Block IIR) IGF. IGU IGR. 4

" s ç 134 LIM et al.! ) * ' ( % & 9 : ; ; < = >? @ A B C D E F G H I J K L M N O P +, -. / 0 1 2 3 4 5 6 7 8 r qp no m z { x y v w } ~ ƒ ˆ # $ k l t u f [ \ ] ^ _ g h ` a b c d e i j Q R S T U V W X Y Z «ª ± ² ³ µ ¹ º» ¼ ½ ¾ À â áà Þß Ý Û Ü ê ë å æ è é ã ä ì í î ï ð ñ ò ó ô õ ö ø ù ú Ÿ š œ ž Š Œ Ž Ö Ë Ì Í Î Ï Ø Ð Ñ Ò Ó Ô Õ Ù Ú Á Â Ã Ä Å Æ Ç È É Ê 3. URP (dr IGF ). 4. URP. Fitting Part (cm) Prediction Part (cm) Total (cm) IGR IGU כ IGR IGU כ IGR IGU כ 1 7.0 9.8 11.3 6.9 17.4 30.0 7.0 13.6 20.7 2 5.8 5.7 19.2 6.0 24.4 36.3 5.9 15.1 27.8 3 2.3 10.5 13.9 2.9 16.4 24.6 2.6 13.4 19.2 13 7.1 7.0 8.5 6.0 19.6 19.9 6.5 13.3 14.2 Fitting (24 ) (24 ) (48 ) IGF. IGR 24 Fitting כ., EOP IGF EOP IGU, IGR 5. URP Fitting 2 IGU. 13 IGU 1.5. Fitting 2 כ Fitting, (Propagation). URP 48 IGF 20cm GPS., EOP x, y כ IGU UT1-UTC כ. GPS EOP VLBI (Very Long Baseline Interferometry) SLR (Satellite Laser

GPS SATELLITES FOR REAL TIME APPLICATIONS 135 5. URP EOP. כ IGU IGR x pole y pole t x pole y pole t x pole y pole t (10 6 ) (10 6 ) (µsec) (10 6 ) (10 6 ) (µsec) (10 6 ) (10 6 ) (µsec) 7.3.Oh -40-610 7.7-233 -86-1.5 115-6 -2.9 7.4.Oh -130-421 13.0 472 419 1.1 72 1-3.8 t UT1-UTC Ranging). UT1-UTC 1 µsec GPS 2mm. UT1-UTC 2.6cm. 7 3, 4 x, y 5cm. 4. URP EOP. IGF 20cm. IGU 70cm IGP., EOP. URP GPS. URP 3. 5 ACs IGS. CPU Sun Ultra 2 (200MHz, 256MB) 1 כ. כ., URP כ. Beutler, G., Brockmann, E., Gurtner, W., Hugentobler, U., Mervart, L., & Rothacher, M. 1994, J. Geodesy, 19, 367 Fliegel, H. F., Gallini, T. E., & Swift, E. R. 1992, J. Geophys. Res., 97(B1), 559 Gurtner, W., Beutler, G., & Rothacher, M. 1989, Proceedings 5th International Geodetic Symposium on Satellite Positioning, 1, 362 Hugentobler, U., Schaer, S., & Fridez, P. 2001, Bernese GPS Software Version 4.2 (Berne: Univ. Berne Press), pp.136-246 Montenbruck, O., & Gill., E. 2000, Satellite Orbits(Berlin: Springer), 112 Springer, T. A. 1999, PhD Thesis, University of Berne

136 LIM et al. Springer, T. A., Beutler, G., & Rothacher, M. 1999, J. Geodesy, 73, 147 Springer, T. A., & Hugentobler, U. 2001, Phys. Chem. Earth (A), 26, 623