Metabolic modelling. Metabolic networks, reconstruction and analysis. Esa Pitkänen Computational Methods for Systems Biology 1 December 2009

Similar documents
Introduction to Bioinformatics

Representing metabolic networks

Stoichiometric vector and matrix

Stoichiometric network analysis

Predicting rice (Oryza sativa) metabolism

Biological Pathways Representation by Petri Nets and extension

V19 Metabolic Networks - Overview

V14 extreme pathways

Chapter 7: Metabolic Networks

V15 Flux Balance Analysis Extreme Pathways

Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse

ATLAS of Biochemistry

Stoichiometric analysis of metabolic networks

New Results on Energy Balance Analysis of Metabolic Networks

Thermodynamic principles governing metabolic operation : inference, analysis, and prediction Niebel, Bastian

Flux Balance Analysis

V14 Graph connectivity Metabolic networks

METABOLIC PATHWAY PREDICTION/ALIGNMENT

Bioinformatics: Network Analysis

Systems II. Metabolic Cycles

Flux balance analysis in metabolic networks

Program for the rest of the course

Oxidative Phosphorylation versus. Photophosphorylation

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting.

Energy and Cellular Metabolism

Basic modeling approaches for biological systems. Mahesh Bule

SABIO-RK Integration and Curation of Reaction Kinetics Data Ulrike Wittig

Types of biological networks. I. Intra-cellurar networks

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February ISSN

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Optimality, Robustness, and Noise in Metabolic Network Control

86 Part 4 SUMMARY INTRODUCTION

Integrated Knowledge-based Reverse Engineering of Metabolic Pathways

Overview of Kinetics

Constraint-Based Workshops

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Cellular Automata Approaches to Enzymatic Reaction Networks

CSCE555 Bioinformatics. Protein Function Annotation

Biochemical Pathways

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai

Practical exercises INSA course: modelling integrated networks of metabolism and gene expression

Description of the algorithm for computing elementary flux modes

Dynamic modeling and analysis of cancer cellular network motifs

Unravelling the biochemical reaction kinetics from time-series data

Genomics, Computing, Economics & Society

An introduction to biochemical reaction networks

BMD645. Integration of Omics

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

Biology Kevin Dees. Chapter 8 Introduction to Metabolism

Structural Analysis of Expanding Metabolic Networks

Regulation of metabolism

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7

Computational Systems Biology Exam

Chapter 8 Introduction to Metabolism. Metabolism. The sum total of the chemical reactions that occur in a living thing.

Winter School in Mathematical & Computational Biology

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere

Exercise 3: Michaelis-Menten kinetics

Networks & pathways. Hedi Peterson MTAT Bioinformatics

Chapter 8: An Introduction to Metabolism

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

PRUNING GENOME-SCALE METABOLIC MODELS TO CONSISTENT AD FUNCTIONEM NETWORKS

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA)

Methodology article Inferring branching pathways in genome-scale metabolic networks Esa Pitkänen* 1, Paula Jouhten 2 and Juho Rousu 1

Using Light Energy to Make Organic Molecules

Bioinformatics: Network Analysis

Energy Transformation, Cellular Energy & Enzymes (Outline)

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

Bringing Genomes to Life: The Use of Genome-Scale In Silico Models

It s a Small World After All

Chapter 8: An Introduction to Metabolism

Biochemistry: A Review and Introduction

Biology Reading Assignments:

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism

Name Date Class. Photosynthesis and Respiration

v = k, [ES] Name(s): Chemistry 255

Biochemistry and Physiology ID #:

AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes Chapter 7: Photosynthesis Chapter 8: Cellular Respiration

Enzyme Kinetics: The study of reaction rates. For each very short segment dt of the reaction: V k 1 [S]

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP:

Chapter 6- An Introduction to Metabolism*

Introduction on metabolism & refresher in enzymology

System Reduction of Nonlinear Positive Systems by Linearization and Truncation

Chapter 8: An Introduction to Metabolism

Learning Outcomes. k 1

Tala Saleh. Mohammad Omari. Dr. Ma moun

In Cellular Respiration, are removed from sugar and transferred to

Quantifying thermodynamic bottlenecks of metabolic pathways. Elad Noor TAU, October 2012

Networks in systems biology

Problems of Currently Published Enzyme Kinetic Data for Usage in Modelling and Simulation

Chapter 9 Cellular Respiration Graphic Organizer Compare Contrast Table Answer Key

Merging and semantics of biochemical models

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016

Cellular Metabolic Models

Outline. Terminologies and Ontologies. Communication and Computation. Communication. Outline. Terminologies and Vocabularies.

Cellular Energy: Respiration. Goals: Anaerobic respiration

Lab 2 Worksheet. Problems. Problem 1: Geometry and Linear Equations

Transcription:

Metabolic modelling Metabolic networks, reconstruction and analysis Esa Pitkänen Computational Methods for Systems Biology 1 December 2009 Department of Computer Science, University of Helsinki Metabolic modelling p. 1

Outline: Metabolism Metabolism, metabolic networks Metabolic reconstruction Flux balance analysis A part of the lecture material has been borrowed from Juho Rousu s Metabolic modelling course! Metabolic modelling p. 2

What is metabolism? Metabolism (from Greek "Metabolismos" for "change", or "overthrow") is the set of chemical reactions that happen in living organisms to maintain life (Wikipedia) Metabolic modelling p. 3

What is metabolism? Metabolism (from Greek "Metabolismos" for "change", or "overthrow") is the set of chemical reactions that happen in living organisms to maintain life (Wikipedia) Metabolism relates to various processes within the body that convert food and other substances into energy and other metabolic byproducts used by the body. Metabolic modelling p. 3

What is metabolism? Metabolism (from Greek "Metabolismos" for "change", or "overthrow") is the set of chemical reactions that happen in living organisms to maintain life (Wikipedia) Metabolism relates to various processes within the body that convert food and other substances into energy and other metabolic byproducts used by the body. Cellular subsystem that processes small molecules or metabolites to generate energy and building blocks for larger molecules. Metabolic modelling p. 3

Why should we study metabolism? Metabolism is the ultimate phenotype Metabolic diseases (such as diabetes) Applications in bioengineering Diabetes II pathway in KEGG Lactose Ethanol pathway, 2009.igem.org Metabolic modelling p. 4

Cellular space Density of biomolecules in the cell is high: plenty of interactions! Figure: Escherichia coli cross-section Green: cell wall Blue, purple: cytoplasmic area Yellow: nucleoid region White: mrnam Image: David S. Goodsell Metabolic modelling p. 5

Enzymes Reactions catalyzed by enzymes Example: Fructose biphosphate aldolase enzyme catalyzes reaction Fructose 1,6-biphosphate D-glyceraldehyde 3-phosphate + dihydroxyacetone phosphate Enzymes are very specific: one enzyme catalyzes typically only one reaction Specificity allows regulation Aldolase (PDB 4ALD) Metabolic modelling p. 6

Fructose biphosphate aldolase Metabolic modelling p. 7

Fructose biphosphate aldolase Metabolic modelling p. 7

Metabolism: an overview Metabolic modelling p. 8

Metabolism in KEGG KEGG Pathway overview: 8049 reactions (27 Nov 2009) Metabolic modelling p. 9

Metabolism in KEGG KEGG Pathway overview: 8049 reactions (27 Nov 2009) Metabolic modelling p. 9

Metabolism in KEGG KEGG Pathway overview: 8049 reactions (27 Nov 2009) Metabolic modelling p. 9

Metabolic networks Metabolic network is a graph model of metabolism Different flavors: bipartite graphs, substrate graphs, enzyme graphs Bipartite graphs: Nodes: reactions, metabolites Edges: consumer/producer relationships between reactions and metabolites Edge labels can be used to encode stoichiometry Metabolic modelling p. 10

Metabolic networks Metabolic network is a graph model of metabolism Different flavors: bipartite graphs, substrate graphs, enzyme graphs Bipartite graphs: Nodes: reactions, metabolites Edges: consumer/producer relationships between reactions and metabolites Edge labels can be used to encode stoichiometry r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O Metabolic modelling p. 10

Stoichiometric matrix The stoichiometric coefficient s ij of metabolite i in reaction j specifies the number of metabolites produced or consumed in a single reaction step s ij > 0: reaction produces metabolite s ij < 0: reaction consumes metabolite s ij = 0: metabolite does not participate in reaction Example reaction: 2 m 1 m 2 + m 3 Coefficients: s 1,1 = 2, s 2,1 = s 3,1 = 1 Coefficients comprise a stoichiometric matrix S = (s ij ). Metabolic modelling p. 11

Systems equations Rate of concentration changes determined by the set of systems equations: dx i dt = j s ij v j, x i : concentration of metabolite i s ij : stoichiometric coefficient v j : rate of reaction j Metabolic modelling p. 12

Stoichiometric matrix: example r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 r 9 r 10 r 11 r 12 βg6p -1 0 0 0 1 0-1 0 0 0 0 0 αg6p 0 0 0 0-1 -1 0 1 0 0 0 0 βf6p 0 0 0 0 0 1 1 0 0 0 0 0 6PGL 1-1 0 0 0 0 0 0 0 0 0 0 6PG 0 1-1 0 0 0 0 0 0 0 0 0 R5P 0 0 1-1 0 0 0 0 0 0 0 0 X5P 0 0 0 1 0 0 0 0-1 0 0 0 NADP + -1 0-1 0 0 0 0 0 0 1 0 0 NADPH 1 0 1 0 0 0 0 0 0 0 1 0 H 2 O 0-1 0 0 0 0 0 0 0 0 0 1 Metabolic modelling p. 13

Modelling metabolism: kinetic models Dynamic behaviour: how metabolite and enzyme concentrations change over time Kinetic models Detailed models for individual enzymes For simple enzymes, the Michaelis-Menten equation describes the reaction rate v adequately: v = v max[s] K M + [S], where v max is the maximum reaction rate, [S] is the substrate concentration and K M is the Michaelis constant. Metabolic modelling p. 14

Kinetic models Require a lot of data to specify 10-20 parameter models for more complex enzymes Limited to small to medium-scale models Metabolic modelling p. 15

Spatial modelling Bag-of-enzymes all molecules (metabolites and enzymes) in one bag all interactions potentially allowed Compartmentalized models Models of spatial molecule distributions Metabolic modelling p. 16

Spatial modelling Increasing detail Bag-of-enzymes all molecules (metabolites and enzymes) in one bag all interactions potentially allowed Compartmentalized models Models of spatial molecule distributions Metabolic modelling p. 16

Compartments Metabolic models of eukaryotic cells are divided into compartments Cytosol Mitochondria Nucleus...and others Extracellular space can be thought as a compartment too Metabolites carried across compartment borders by transport reactions Metabolic modelling p. 17

Modelling metabolism: steady-state models Steady-state assumption: internal metabolite concentrations are constant over time, dx dt = 0 External (exchange) metabolites not constrained Metabolic modelling p. 18

Modelling metabolism: steady-state models Steady-state assumption: internal metabolite concentrations are constant over time, dx dt = 0 External (exchange) metabolites not constrained Net production of each internal metabolite i is zero: s ij v j = Sv = 0 j Is this assumption meaningful? Think of questions we can ask under the assumption! Metabolic modelling p. 18

Modelling metabolism: steady-state models Steady-state assumption: internal metabolite concentrations are constant over time, dx dt = 0 External (exchange) metabolites not constrained Net production of each internal metabolite i is zero: s ij v j = Sv = 0 j Is this assumption meaningful? Think of questions we can ask under the assumption! Steady-state reaction rate (flux) v i Holds in certain conditions, for example in chemostat cultivations Metabolic modelling p. 18

Outline: Metabolic reconstruction Metabolism, metabolic networks Metabolic reconstruction Flux balance analysis Metabolic modelling p. 19

Metabolic reconstruction Reconstruction problem: infer the metabolic network from sequenced genome Determine genes coding for enzymes and assemble metabolic network? Subproblem of genome annotation? Metabolic modelling p. 20

Metabolic reconstruction Metabolic modelling p. 21

Reconstruction process Metabolic modelling p. 22

Data sources for reconstruction Biochemistry Enzyme assays: measure enzymatic activity Genomics Annotation of open reading frames Physiology Measure cellular inputs (growth media) and outputs Biomass composition Metabolic modelling p. 23

Resources Databases KEGG BioCyc Ontologies Enzyme Classification (EC) Gene Ontology Software Pathway Tools KEGG Automatic Annotation Server (KAAS) MetaSHARK, MetaTIGER IdentiCS RAST Metabolic modelling p. 24

Annotating sequences 1. Find genes in sequenced genome (available software) GLIMMER (microbes) GlimmerM (eukaryotes, considers intron/exon structure) GENSCAN (human) 2. Assign a function to each gene BLAST, FASTA against a database of annotated sequences (e.g., UniProt) Profile-based methods (HMMs, see InterProScan for a unified interface for different methods) Protein complexes, isozymes Metabolic modelling p. 25

Assembling the metabolic network In principle: for each gene with annotated enzymatic function(s), add reaction(s) to network (gene-protein-reaction associations) Metabolic modelling p. 26

Assembling the metabolic network In principle: for each gene with annotated enzymatic function(s), add reaction(s) to network (gene-protein-reaction associations) Multiple peptides may form a single protein (top) Proteins may form complexes (middle) Different genes may encode isozymes (bottom) Metabolic modelling p. 26

Gaps in metabolic networks Assembled network often contains so-called gaps Informally: gap is a reaction missing from the network......required to perform some function. A large amount of manual work is required to fix networks Recently, computational methods have been developed to fix network consistency problems Metabolic modelling p. 27

Gaps in metabolic networks May carry steady-state flux Blocked Gap r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O Metabolic modelling p. 28

Gaps in metabolic networks May carry steady-state flux Blocked Gap r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O Metabolic modelling p. 28

Gaps in metabolic networks May carry steady-state flux Blocked Gap r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O Metabolic modelling p. 28

In silico validation of metabolic models Reconstructed genome-scale metabolic networks are very large: hundreds or thousands of reactions and metabolites Manual curation is often necessary Amount of manual work needed can be reduced with computational methods Aims to provide a good basis for further analysis and experiments Does not remove the need for experimental verification Metabolic modelling p. 29

Outline: Flux balance analysis Metabolism, metabolic networks Metabolic reconstruction Flux balance analysis Metabolic modelling p. 30

Flux Balance Analysis: preliminaries Recall that in a steady state, metabolite concentrations are constant over time, dx i dt = r j=1 s ij v j = 0, for i = 1,..., n. Stoichiometric model can be given as S = [S II S IE ] where S II describes internal metabolites - internal reactions, and S IE internal metabolites - exchange reactions. Metabolic modelling p. 31

Flux Balance Analysis (FBA) FBA is a framework for investigating the theoretical capabilities of a stoichiometric metabolic model S Analysis is constrained by 1. Steady state assumption Sv = 0 2. Thermodynamic constraints: (ir)reversibility of reactions 3. Limited reaction rates of enzymes: V min v V max Note that constraints (2) can be included in V min and V max. Metabolic modelling p. 32

Flux Balance Analysis (FBA) In FBA, we are interested in determining the theoretical maximum (minimum) yield of some metabolite, given model For instance, we may be interested in finding how efficiently yeast is able to convert sugar into ethanol Figure: glycolysis in KEGG Metabolic modelling p. 33

Flux Balance Analysis (FBA) FBA has applications both in metabolic engineering and metabolic reconstruction Metabolic engineering: find out possible reactions (pathways) to insert or delete Metabolic reconstruction: validate the reconstruction given observed metabolic phenotype Metabolic modelling p. 34

Formulating an FBA problem We formulate an FBA problem by specifying parameters c in the optimization function Z, Z = r i=1 c i v i. Examples: Set c i = 1 if reaction i produces target metabolite, and c i = 0 otherwise Growth function: maximize production of biomass constituents Energy: maximize ATP (net) production Metabolic modelling p. 35

Solving an FBA problem Given a model S, we then seek to find the maximum of Z while respecting the FBA constraints, (1) (2) (3) max v Z = max v r i=1 c i v i Sv = 0 V min v V max such that (We could also replace max with min.) This is a linear program, having a linear objective function and linear constraints Metabolic modelling p. 36

Solving a linear program General linear program formulation: max c i x i such that x i i Ax b Algorithms: simplex (worst-case exponential time), interior point methods (polynomial) Matlab solver: linprog (Statistical Toolbox) Many solvers around, efficiency with (very) large models varies Metabolic modelling p. 37

Linear programs Linear constraints define a convex polyhedron (feasible region) If the feasible region is empty, the problem is infeasible. Unbounded feasible region (in direction of objective function): no optimal solution Given a linear objective function, where can you find the maximum value? Metabolic modelling p. 38

Flux Balance Analysis: example r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O Let s take our running example... Unconstrained uptake (exchange) reactions for NADP + (r 10 ), NADPH and H 2 O (not drawn) Constrained uptake for αg6p, 0 v 8 1 Objective: production of X5P (v 9 ) c = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) Metabolic modelling p. 39

Flux Balance Analysis: example r10 NADPP r1 NADPH r3 R5P r4 X5P r9 6PG r8 ag6p r5 bg6p r7 6PGL r2 r6 bf6p H2O r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 r 9 r 10 r 11 r 12 βg6p -1 0 0 0 1 0-1 0 0 0 0 0 αg6p 0 0 0 0-1 -1 0 1 0 0 0 0 βf6p 0 0 0 0 0 1 1 0 0 0 0 0 6PGL 1-1 0 0 0 0 0 0 0 0 0 0 6PG 0 1-1 0 0 0 0 0 0 0 0 0 R5P 0 0 1-1 0 0 0 0 0 0 0 0 X5P 0 0 0 1 0 0 0 0-1 0 0 0 NADP + -1 0-1 0 0 0 0 0 0 1 0 0 NADPH 1 0 1 0 0 0 0 0 0 0 1 0 H 2 O 0-1 0 0 0 0 0 0 0 0 0 1 Metabolic modelling p. 40

Flux Balance Analysis: example Solve the linear program max v r i r i=1 c i v i = maxv 9 subject to s ij v i = 0 for all j = 1,..., 10 0 v 8 1 Hint: Matlab s linprog offers nice convenience functions for specifying equality constraints and bounds Metabolic modelling p. 41

Flux Balance Analysis: example r10 2.00 NADPP r1 1.00 NADPH r3 1.00 R5P r4 1.00 X5P r9 1.00 6PG r8 1.00 ag6p r5 0.57 bg6p r7-0.43 6PGL r2 1.00 r6 0.43 bf6p H2O Figure gives one possible solution (flux assignment v) Reaction r 7 (red) operates in backward direction Uptake of NADP + v 10 = 2v 8 = 2 How many solutions (different flux assignments) are there for this problem? Metabolic modelling p. 42

FBA validation of a reconstruction Check if it is possible to produce metabolites that the organism is known to produce Maximize production of each such metabolite at time Make sure max. production is above zero To check biomass production (growth), add a reaction to the model with stoichiometry corresponding to biomass composition Metabolic modelling p. 43

FBA validation of a reconstruction If a maximum yield of some metabolite is lower than measured missing pathway Iterative process: find metabolite that cannot be produced, fix the problem by changing the model, try again r3 0.00 R5P r4 0.00 X5P r9 0.00 NADPP 6PGL r2 0.00 6PG r1 0.00 H2O r5 0.00 bg6p r7 0.00 NADPH r8 0.00 ag6p r6 0.00 bf6p r10 2.00 NADPP r1 1.00 NADPH r3 1.00 R5P r4 1.00 X5P r9 1.00 6PG r8 1.00 ag6p r5 0.57 bg6p r7-0.43 6PGL r2 1.00 r6 0.43 bf6p H2O Metabolic modelling p. 44

FBA validation of a reconstruction FBA gives the maximum flux given stoichiometry only, i.e., not constrained by regulation or kinetics In particular, assignment of internal fluxes on alternative pathways can be arbitrary (of course subject to problem constraints) r10 2.00 NADPP r1 1.00 NADPH r3 1.00 R5P r4 1.00 X5P r9 1.00 6PG r8 1.00 ag6p r5 0.57 bg6p r7-0.43 6PGL r2 1.00 r6 0.43 bf6p H2O r10 2.00 NADPP r1 1.00 NADPH r3 1.00 R5P r4 1.00 X5P r9 1.00 6PG r8 1.00 ag6p r5 0.00 bg6p r7-1.00 6PGL r2 1.00 r6 1.00 bf6p H2O Metabolic modelling p. 45

Further reading Metabolic modelling: course material M. Durot, P.-Y. Bourguignon, and V. Schachter: Genome-scale models of bacterial metabolism:... FEMS Microbiol Rev. 33:164-190, 2009. N. C. Duarte et. al: Global reconstruction of the human metabolic network based on genomic and bibliomic data. PNAS 104(6), 2007. V. Lacroix, L. Cottret, P. Thebault and M.-F. Sagot: An introduction to metabolic networks and their structural analysis. IEEE Transactions on Computational Biology and Bioinformatics 5(4), 2008. E. Pitkänen, A. Rantanen, J. Rousu and E. Ukkonen: A computational method for reconstructing gapless metabolic networks. Proceedings of the BIRD 08, 2008. Metabolic modelling p. 46