APPENDIX D: Model Parameter Binning

Similar documents
APPENDIX D: Binning BSIM3v3 Parameters

APPENDIX A: Parameter List

APPENDIX A: Parameter List

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon)

Study of MOSFET circuit

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded)

Integrated Circuit Design: OTA in 0.5µm Technology

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model

num1a ** num_1a.sp **SAM *circuit description * bias conditions vds vgs * Mosfet circuit M nch L=.5u w=8u R page 1

MITLL Low-Power FDSOI CMOS Process

Page 1 of (2 pts) What is the purpose of the keeper transistor in a dynamic logic gate?

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

Chapter 5: BSIM3v3 Characterization

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

BSIM4v4.7 MOSFET Model

The Devices. Devices

Reference. [1] Michael S. Adler, King W. Owyang, B. Jayant Baliga, Richard A. Kokosa,

BSIM4.6.4 MOSFET Model

USC-ISI. The MOSIS Service. BSIM3v3.1 Model. Parameters Extraction and Optimization. October 2000

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Generation and classification of Kerwin Huelsman Newcomb circuits using the DVCC

BSIM3v3 Manual. (Final Version) Department of Electrical Engineering and Computer Sciences. University of California, Berkeley, CA 94720

CHAPTER 3 - CMOS MODELS

ESE 570 MOS TRANSISTOR THEORY Part 2

UNIVERSITY OF SOUTHERN CALIFORNIA. FALL EE Comparisons Between Ripple-Carry Adder and Carry-Look-Ahead Adder

Chapter 5 g m /I D -Based Design

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

BSIM4.6.0 MOSFET Model

BSIM4.3.0 MOSFET Model

N Channel MOSFET level 3

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Modeling and Parameter Extraction Technique for Uni-Directional HV MOS Devices

BSIM3v3.2.2 MOSFET Model

Stochastic Simulation Tool for VLSI

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

MOSFET Capacitance Model

LEVEL 61 RPI a-si TFT Model

Chapter 5 MOSFET Theory for Submicron Technology

ELECTRONICS RESEARCH LABORATORY. College of Engineering University of California, Berkeley, CA Users' Manual. BSIM3v3.

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Fig The electron mobility for a-si and poly-si TFT.

ELECTRONICS RESEARCH LABORATORY

ECE 342 Electronic Circuits. 3. MOS Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

EE 560 MOS TRANSISTOR THEORY

Lecture #27. The Short Channel Effect (SCE)

MOSFET: Introduction

ECE 497 JS Lecture - 12 Device Technologies

MOS Transistor Theory

MOS Amplifiers Dr. Lynn Fuller Webpage:

Diode Model (PN-Junction Diode Model)

EKV MOS Transistor Modelling & RF Application

The Devices. Jan M. Rabaey

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Quarter-micrometre surface and buried channel PMOSFET modelling for circuit simulation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Class 05: Device Physics II

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Transfer Gate and Dynamic Logic Dr. Lynn Fuller Webpage:

Integrated Circuits & Systems

Device Models (PN Diode, MOSFET )

High Speed Logic Circuits Dr. Lynn Fuller Webpage:

Lecture 3: CMOS Transistor Theory

A Multi-Gate CMOS Compact Model BSIMMG

MOS Transistor I-V Characteristics and Parasitics

Long Channel MOS Transistors

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Characterization and modeling of RF-MOSFETs in the millimeter-wave frequency domain. Sadayuki Yoshitomi, Fumie Fujii

Lecture 12: MOS Capacitors, transistors. Context

The Devices: MOS Transistors

ECE 546 Lecture 10 MOS Transistors

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Device Models (PN Diode, MOSFET )

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 5: CMOS Transistor Theory

MOS Transistor Theory

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

BSIM4.3.0 Model. Enhancements and Improvements Relative to BSIM4.2.1

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Conduction in Semiconductors -Review

Technology file available in the CD-Rom length. Table 1-xxx: correspondence between technology and the value of lambda in µm

SOI/SOTB Compact Models

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

Philips Research apple PHILIPS

Combinatorial and Sequential CMOS Circuits Dr. Lynn Fuller Webpage:

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

MOSFET Internal Capacitance Dr. Lynn Fuller Webpage:

CMOS Digital Integrated Circuits Analysis and Design

Vrg Qgd Gdg Vrd Gate Rg Rd Vgd Vgs Qds Ids = f(vds,vgs,t Qgs Ids Vds Idiode_f = f(vds Idiode_r = f(vdiode_r,t Ggs Qds = f(vds,t Qgs = f(vgs,t Vrs Rs Q

Lecture 11: MOS Transistor

ECE-305: Fall 2017 MOS Capacitors and Transistors

Enhancement and Technical Notes

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Transcription:

APPENDIX D: Model Parameter Binning Below is the information on parameter binning regarding which model parameters can or cannot be binned. All those parameters which can be binned follow this implementation: P PL P + L = 0 eff P + W W eff + L eff P W eff For example, for the parameter k1: P 0 = k1, P L = lk1, P W = wk1, P P = pk1. binunit is a bining unit selector. If binunit = 1, the units of L eff and W eff the binning above have the units of microns; therwise in meters. For example, for a device with L eff = 0.5µm and W eff = 10µm. If binunit = 1, the parameter values for vsat are 1e5, 1e4, 2e4, and 3e4 for vsat, lvsat, wvsat, and pvsat, respectively. Therefore, the effective value of vsat for this device is vsat = 1e5 + 1e4/0.5 + 2e4/10 + 3e4/(0.5*10) = 1.28e5 To get the same effective value of vsat for binunit = 0, the values of vsat, lvsat, wvsat, and pvsat would be 1e5, 1e-2, 2e-2, 3e-8, respectively. Thus, vsat = 1e5 + 1e-2/0.5e6 + 2e-2/10e-6 + 3e-8/(0.5e-6 * 10e-6) = 1.28e5 BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-1

Model Control Parameters D.1 Model Control Parameters None level The model selector None version Model version selector None binunit Bining unit selector None param- Parameter value check Chk mobmod mobmod Mobility model selector capmod capmod Flag for the short channel capacitance model nqsmod nqsmod Flag for NQS model noimod noimod Flag for Noise model D.2 DC Parameters Vth0 vth0 Threshold voltage @V bs =0 for Large L. VFB vfb Flat band voltage K1 k1 First order body effect coefficient K2 k2 Second order body effect coefficient D-2 BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley

DC Parameters K3 k3 Narrow width coefficient K3b k3b Body effect coefficient of k3 W0 w0 Narrow width parameter Nlx nlx Lateral non-uniform doping parameter Dvt0 dvt0 first coefficient of short-channel effect on Vth Dvt1 dvt1 Second coefficient of shortchannel effect on Vth Dvt2 dvt2 Body-bias coefficient of shortchannel effect on Vth Dvt0w dvt0w First coefficient of narrow width effect on Vth for small channel length Dvt1w dvtw1 Second coefficient of narrow width effect on Vth for small channel length Dvt2w dvt2w Body-bias coefficient of narrow width effect for small channel length µ0 u0 Mobility at Temp = Tnom NMOSFET PMOSFET Ua ua First-order mobility degradation coefficient Ub ub Second-order mobility degradation coefficient BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-3

DC Parameters Uc uc Body-effect of mobility degradation coefficient νsat vsat Saturation velocity at Temp = Tnom A0 a0 Bulk charge effect coefficient for channel length Ags ags gate bias coefficient of Abulk B0 b0 Bulk charge effect coefficient for channel width B1 b1 Bulk charge effect width offset Keta keta Body-bias coefficient of bulk charge effect A1 a1 First non0saturation effect parameter A2 a2 Second non-saturation factor Rdsw rdsw Parasitic resistance per unit width Prwb prwb Body effect coefficient of Rdsw Prwg prwg Gate bias effect coefficient of Rdsw Wr wr Width Offset from Weff for Rds calculation Wint wint Width offset fitting parameter from I-V without bias Lint lint Length offset fitting parameter from I-V without bias BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-4

DC Parameters dwg dwg Coefficient of Weff s gate dependence dwb dwb Coefficient of Weff s substrate body bias dependence Voff voff Offset voltage in the subthreshold region for large W and L Nfactor nfactor Subthreshold swing factor Eta0 eta0 DIBL coefficient in subthreshold region Etab etab Body-bias coefficient for the subthreshold DIBL effect Dsub dsub DIBL coefficient exponent in subthreshold region Cit cit Interface trap capacitance Cdsc cdsc Drain/Source to channel coupling capacitance Cdscb cdscb Body-bias sensitivity of Cdsc Cdscd cdscd Drain-bias sensitivity of Cdsc Pclm pclm Channel length modulation parameter Pdiblc1 pdiblc1 First output resistance DIBL effect correction parameter Pdiblc2 pdiblc2 Second output resistance DIBL effect correction parameter Pdiblcb pdiblcb Body effect coefficient of DIBL correction parameters BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-5

DC Parameters Drout drout L dependence coefficient of the DIBL correction parameter in Rout Pscbe1 pscbe1 First substrate current bodyeffect parameter Pscbe2 pscbe2 Second substrate current bodyeffect parameter Pvag pvag Gate dependence of Early voltage δ delta Effective Vds parameter Ngate ngate poly gate doping concentration α0 alpha0 The first parameter of impact ionization current α1 alpha1 Isub parameter for length scaling β0 beta0 The second parameter of impact ionization current Rsh rsh Source drain sheet resistance in ohm per square Js0 js Source drain junction saturation current per unit area ijth ijth Diode limiting current BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-6

AC and Capacitance Parameters D.3 AC and Capacitance Parameters Xpart xpart Charge partitioning rate flag CGS0 cgso Non LDD region source-gate overlap capacitance per channel length CGD0 cgdo Non LDD region drain-gate overlap capacitance per channel length CGB0 cgbo Gate bulk overlap capacitance per unit channel length Cj cj Bottom junction per unit area Mj mj Bottom junction capacitance grating coefficient Mjsw mjsw Source/Drain side junction capacitance grading coefficient Cjsw cjsw Source/Drain side junction capacitance per unit area Pb pb Bottom built-in potential Pbsw pbsw Source/Drain side junction built-in potential CGS1 cgs1 Light doped source-gate region overlap capacitance CGD1 cgd1 Light doped drain-gate region overlap capacitance BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-7

AC and Capacitance Parameters CKAPPA ckappa Coefficient for lightly doped region overlap capacitance Fringing field capacitance Cf cf fringing field capacitance CLC clc Constant term for the short channel model CLE cle Exponential term for the short channel model DLC dlc Length offset fitting parameter from C-V DWC dwc Width offset fitting parameter from C-V Vfbcv vfbcv Flat-band voltage parameter (for capmod = 0 only) noff noff CV parameter in Vgsteff,CV for weak to strong inversion voffcv voffcv CV parameter in Vgsteff,CV for weak to strong inversion acde acde Exponential coefficient for charge thickness in capmod=3 for accumulation and depletion regions moin moin Coefficient for the gate-bias dependent surface potential BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-8

NQS Parameters D.4 NQS Parameters Elm elm Elmore constant of the channel D.5 dw and dl Parameters Wl wl Coefficient of length dependence for width offset Wln wln Power of length dependence of width offset Ww ww Coefficient of width dependence for width offset Wwn wwn Power of width dependence of width offset Wwl wwl Coefficient of length and width cross term for width offset Ll ll Coefficient of length dependence for length offset Lln lln Power of length dependence for length offset BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-9

dw and dl Parameters Lw lw Coefficient of width dependence for length offset Lwn lwn Power of width dependence for length offset Lwl lwl Coefficient of length and width cross term for length offset Llc Llc Coefficient of length dependence for CV channel length offset Lwc Lwc Coefficient of width dependence for CV channel length offset Lwlc Lwlc Coefficient of length and widthdependence for CV channel length offset Wlc Wlc Coefficient of length dependence for CV channel width offset Wwc Wwc Coefficient of widthdependence for CV channel width offset Wwlc Wwlc Coefficient of length and widthdependence for CV channel width offset BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-10

Temperature Parameters D.6 Temperature Parameters Tnom tnom Temperature at which parameters are extracted µte ute Mobility temperature exponent Kt1 kt1 Temperature coefficient for threshold voltage Kt1l kt1l Channel length dependence of the temperature coefficient for threshold voltage Kt2 kt2 Body-bias coefficient of Vth temperature effect Ua1 ua1 Temperature coefficient for Ua Ub1 ub1 Temperature coefficient for Ub Uc1 uc1 Temperature coefficient for Uc At at Temperature coefficient for saturation velocity Prt prt Temperature coefficient for Rdsw nj nj Emission coefficient XTI xti Junction current temperature exponent coefficient BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-11

Flicker Noise Model Parameters tpb tpb Temperature coefficient of Pb tpbsw tpbsw Temperature coefficient of Pbsw tpbswg tpbswg Temperature coefficient of Pbswg tcj tcj Temperature coefficient of Cj tcjsw tcjsw Temperature coefficient of Cjsw tcjswg tcjswg Temperature coefficient of Cjswg D.7 Flicker Noise Model Parameters Noia noia Noise parameter A Noib noib Noise parameter B Noic noic Noise parameter C Em em Saturation field Af af Flicker noise exponent BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-12

Process Parameters Ef ef Flicker noise frequency exponent Kf kf Flicker noise parameter D.8 Process Parameters Tox tox Gate oxide thickness Toxm toxm Tox at which parameters are extracted Xj xj Junction Depth γ1 gamma1 Body-effect coefficient near the surface γ2 gamma2 Body-effect coefficient in the bulk Nch nch Channel doping concentration Nsub nsub Substrate doping concentration Vbx vbx Vbs at which the depletion region width equals xt Vbm vbm Maximum applied body bias in Vth calculation Xt xt Doping depth BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-13

Geometry Range Parameters D.9 Geometry Range Parameters Lmin lmin Minimum channel length Lmax lmax Maximum channel length Wmin wmin Minimum channel width Wmax wmax Maximum channel width binunit binunit Binning unit selector BSIM3v3.2.2 Manual Copyright 1999 UC Berkeley D-14