Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Similar documents
Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

NMR and MRI : an introduction

Physics of MR Image Acquisition

FREQUENCY SELECTIVE EXCITATION

Introduction to Biomedical Imaging

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

Field trip: Tuesday, Feb 5th

Part II: Magnetic Resonance Imaging (MRI)

NMR/MRI examination (8N080 / 3F240)

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

Lab 2: Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging

Tissue Parametric Mapping:

Sketch of the MRI Device

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Principles of Magnetic Resonance Imaging

The NMR Inverse Imaging Problem

Outlines: (June 11, 1996) Instructor:

Contrast Mechanisms in MRI. Michael Jay Schillaci

Advanced Topics and Diffusion MRI

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229.

MRI Physics I: Spins, Excitation, Relaxation

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

Bioengineering 278" Magnetic Resonance Imaging" Winter 2010" Lecture 1! Topics:! Review of NMR basics! Hardware Overview! Quadrature Detection!

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

Exam 8N080 - Introduction to MRI

Chapter 14:Physics of Magnetic Resonance

Introduction to MRI Acquisition

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

On Signal to Noise Ratio Tradeoffs in fmri

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96

Nuclear Magnetic Resonance Imaging

Part III: Sequences and Contrast

Spin Echo Imaging Sequence

Basic MRI physics and Functional MRI

MRI in Review: Simple Steps to Cutting Edge Part I

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology

MRI beyond Fourier Encoding: From array detection to higher-order field dynamics

Chemistry 431. Lecture 23

Biomedical Imaging Magnetic Resonance Imaging

Physical fundamentals of magnetic resonance imaging

Rochester Institute of Technology Rochester, New York. COLLEGE of Science Department of Chemistry. NEW (or REVISED) COURSE:

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Functional Magnetic Resonance Imaging (FMRI) is an imaging technique for

Magnetization Gradients, k-space and Molecular Diffusion. Magnetic field gradients, magnetization gratings and k-space

7.3.A. The expression for signal recovery is similar to that derived under exercise 7.2 and is given by:

Basic Pulse Sequences II - Spin Echoes. TE=12ms TE=47ms TE=106ms TE=153ms UCLA. Radiology

Utrecht University. Radiofrequency pulse design through optimal control and model order reduction of the Bloch equation

The Basics of Magnetic Resonance Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins.

Introduction to the Physics of NMR, MRI, BOLD fmri

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business

Magnetic Resonance Imaging

Chapter 15:Magnetic Resonance Imaging

ADVANCES IN SIMULATION AND THERMOGRAPHY FOR HIGH FIELD MRI

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation

Permanent magnet pre-polarization in low field MRI measurements using SQUID

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials

EE225E/BIOE265 Spring 2016 Principles of MRI. Assignment 4. Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016

Spectral Broadening Mechanisms

The physics US and MRI. Prof. Peter Bogner

SENSE & SUSCEPTIBILITY: RESPIRATION-RELATED SUSCEPTIBILITY EFFECTS AND THEIR INTERACTIONS WITH PARALLEL IMAGING. John Sexton.

Active B 1 Imaging Using Polar Decomposition RF-CDI

Correction Gradients. Nov7, Reference: Handbook of pulse sequence

BME I5000: Biomedical Imaging

Pulse Sequences: RARE and Simulations

Magnetic Resonance Imaging in a Nutshell

Pore Length Scales and Pore Surface Relaxivity of Sandstone Determined by Internal Magnetic Fields Modulation at 2 MHz NMR

Spin. Nuclear Spin Rules

Optimized Gradient Waveforms for Spiral Scanning

Chapter 1 Introduction

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. Chester F. Carlson Center for Imaging Science

NMR: Formalism & Techniques

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR

Technical University of Denmark

EPI Bildgebung. German Chapter of ISMRM. Doktorantentraining. Freiburg 30 Mai - 1 Juni 2001

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes?

Midterm Review. EE369B Concepts Simulations with Bloch Matrices, EPG Gradient-Echo Methods. B.Hargreaves - RAD 229

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Lab 1: Intro to NMR. March 10, 2014

BNG/ECE 487 FINAL (W16)

Velocity Images. Phase Contrast Technique. G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1

Magnetic Resonance Spectroscopy

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013

Fundamentals of MR Imaging

Bloch Equations & Relaxation UCLA. Radiology

Magnetic Resonance Imaging (MRI)

Transcription:

Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY

What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal I(r) r = vector of spatial coordinates (x,y,z) T Signal intensity of the image I is scalar = Image with a single frame I is a vector = Multi-channel image

The first Qu est MR image ce qu une image? Made by Paul LAUTERBUR, Nature (1973) Zeumatography comes from the Greek word zeugma, or yoke, to signify the fact that the technique links chemical and spatial information

There Qu est are 3 spatial ce qu une dimensions image? In real world, images should be in 3D Human brain V = 3 x 3 x 3 mm 3

1D or 2D Qu est images ce qu une image? The concept of «profile» ( x) = I( x, y, z)dydz I Mulkern et al, NMR in Biomed icine (1999) PMID: 10195330

Multi-channel Qu est ce images qu une? image? MRI provides different contrasts Clark et al, Journal of the Science of Food and Agriculture (1998) DOI: 10.1002/(SICI)1097-0010(199811)78:3<349::AID-JSFA125>3.0.CO;2-X

The MRI Qu est challenges ce qu une image? More sensitivity Improvement of spatial and temporal resolutions More specificity Tissue discrimination through the signature given by the signal I

How to Qu est encode ce spatial qu une information image?? The target Amplitude M T of transverse magnetization over space M T ( r) r : Spatial Cartesian coordinates r = x y z Assumptions No relaxation Uncoupled spins

Signal Qu est without ce encoding qu une image? Free induction decay RF / ACQ Flip angle t

Signal Qu est without ce encoding qu une image? FID S( r, t) MT r, ( r) exp[ iφ( t )] S Complex signal because of quadrature detection φ φ because of reception gain reception field, amplifiers ( ) t ( r, t) = 2π [ f ( r, t' ) f ] 0 0 dt' Phase accumulated during t period On-resonance signal coming from the whole sample S = S( r, t) dr M dr T ( r)

Quadrature Qu est detection ce qu une image? Components of M T in the rotating frame Phase/off-resonance information Re ( S ) Im( S ) Hoult, Concepts in Magnetic Resonance (2000)

What is Qu est a gradient ce qu une? image? Mathematical operator Vector of partial derivatives with respect to each coordinate For a 3D function fun ( r) = fun( x, y, z) gradfun ( r) = fun( r) = fun fun x y fun z ( r) ( r) ( ) r

Qu est ce qu une image? fun = magnetic field (MF) B Linearly varying magnetic fields G x,y,z in each direction G is superposed to the static field (B 0 ) ( ) 0 B = B r ( ) Gr r.... 0 0 + = + + + = B z G y G x G B B z y x = z y x G G G G

Some Qu est examples ce qu une of linearly image varying? MF B ( r) = B + G. x + G. y G z 0 x y + z. G = 3 G = 0 z = 0 x y 1 0.8 3 2 1 0-1 -2-3 1 0.5 y 0.6 0.4 0.2 0-0.2-0.4-0.6 1 0 0.5-0.8 0-0.5-0.5-1 y -1-1 -1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 x x

Some Qu est examples ce qu une of linearly image varying? MF B ( r) = B + G. x + G. y G z G = 3 G = 1 z = 0 x 0 x y + z. y 1 0.8 4 2 0-2 y 0.6 0.4 0.2 0-0.2-4 1 0.5-0.4-0.6 1 0 0.5-0.8 0-0.5-0.5-1 y -1-1 -1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 x x

Qu est ce qu une image? Gradient of the magnetic field ( ) ( ) ( ) ( ) r = G = + + + + + + + + + = z y x z y x z y x z y x G G G z z G y G x G B y z G y G x G B x z G y G x G B B......... 0 0 0 G corresponds to the gradient of the MF The gradient coils generate G

Gradient Qu est coils ce / Principles qu une image? Hidalgo-Tobon, Concepts in Magnetic Resonance (2010)

Gradient Qu est coils ce / How qu une it looks image like??

Effect Qu est of currents ce qu une image? The Biot-Savart law (1820) MF generated by a current that circulates through wires db µ dl r I 3 4 r 0 = π I = current intensity B I

Time varying Qu est ce fields qu une image? Currents = independant functions of time I ( t) = I I I x y z ( t) ( t) ( ) t G ( t) = G G G x y z ( t) ( t) ( ) t x y z 0 t

Effects Qu est of MF ce gradients qu une image on NMR? signal Time AND spatially dependent frequency B ( r ) = B + 0 G. r ( r, t) = B0 G( t)r. B + Larmor equation f ( r, t) = B0 + G( t)r. Phase of the transverse magnetization φ γ 2π t ( r t) = 2π [ f ( r, t' ) f ] dt' = γ G( t' ), 0. rdt' 0 γ 2π t 0

The k variable Qu est ce qu une image? Gradient antiderivatives φ t ( r, t) γ G( t' ). rdt' = r. γ G( t' ) dt' = r.k( t) = 0 t 0 k ( t) = γ G( t' ) t 0 dt' = k k k x y z ( t) ( t) ( t) = t γ G 0 t γ G 0 t γ G 0 x y z ( t' ) ( t' ) dt' dt' ( t' ) dt' k looks like a «wave vector»

Effects Qu est of MF ce gradients qu une image on NMR? signal Signal coming from the whole sample S = T, dr ( t) S( r, t) dr M ( r) exp[ iφ( r t) ] Using the «k» formulation S T. S ( t) M ( r) exp[ ir k( t) ] dr ( ) ( ) [ ] 1 k M r exp ir. k dr = FT ( M ( r ) T T

The k-space Qu est ce qu une image? Rearranged acquired NMR signal Time-domain NMR signal is represented as function of k Reparameterization of acquired signal S ( k) FT 1 ( M ( r) ) T [ ( )] 1 k FT FT ( ( r) ) [ M ] T M ( r) FT S = T S ( k) FT M T ( r) k-space FT -1 Image

S ( k) M T ( r) k-space Image k y FT FT -1 y k x x

S ( k) M T ( r) k-space Image k y FT FT -1 y k x x Remember S is a complex number! z is orthogonal to the slide!

How riding Qu est about ce qu une the k-space image? (1) Change the gradients with time G ( t) = G G G x y z ( t) ( t) ( ) t (2) Calculate the wave-vector = integration ( t) = G( t' ) t k γ dt' 3D trajectory 0

How filling Qu est the ce k-space qu une? image? (1) Change the gradients = displacement along the 3D trajectory (2) Acquire the signal = fill the k-space with the (complex) value of NMR signal

How filling Qu est the ce k-space qu une? image? Many ways Multi-steps / Cartesian TR n.tr and many others!

Pure «phase» encoding

90 RF ACQ k y G x k x G y G z

90 RF ACQ k y G x k x G y G z

90 RF ACQ k y G x k x G y G z

90 RF ACQ k y G x k x G y G z

90 RF ACQ k y G x k x G y G z

Pure phase Qu est encoded ce qu une imaging image? Cartesian trajectory over the k-space Gradients before the acquisition «Phase» encoding gradient pulses Encode the 3 directions Whole FID available All the chemical shift information is available! Acquisition time TA = Nx Ny Nz TR = 64.64.64. 1s = 73h

Spin Warp

90 RF ACQ k y G x k x G y G z

90 RF ACQ k y G x k x G y G z

90 RF ACQ k y G x k x G y G z

Spin warp Qu est ce qu une image? Cartesian trajectory over the k-space Gradients during the acquisition «Read» gradient pulses Encode one direction «Phase» encoding in the 2 other directions Acquisition time TA = Nx Ny Nz TR = 64.64. 1s = 1h8

Radial encoding

90 RF ACQ k y G x G y tanφ=g y /G x k x G z

90 RF ACQ k y G x k x G y G z

Radial Qu est encoding ce qu une image? Radial trajectory over the k-space Non-uniform density Gradients during the acquisition Only read-gradient pulses No phase encoding Acquisition time TA = Nφ Nθ TR = 64.64. 1s = 1h8

Echo planar

90 RF ACQ k y G x k x G y G z

Echo planar Qu est ce qu une image? (Quasi) Cartesian trajectory over the k-space Alternated read gradients during the acquisition Short phase encoding in-between the read gradients Blip Acquisition time TA = TR = 1s

Design of any trajectories t k( t) = γ G( t' ) dt' G ( t' ) 0 ( t) k = γ t Lee, Neuroimage (2010)

«Exotic» trajectories Khrapitchev, J Magn Reson (2006)

(Some) Limits

Spatial Qu est resolution ce qu une image? Signal-to-noise ratio V = voxel volume Voxel size SNR V = Δx. Δy. Δz Δx kmax Δx k 1 max High resolution = high = Strong gradients k max

Sampling Qu est ce qu une image? -100-80 -60-40 -20 0 20 40 60 80 100-100 -80-60 -40-20 0 20 40 60 80 100 Object 2 4 6 8 10 12 14 Spin warp encoding FOV = 128 mm 16 x 16 16 2 4 6 8 10 12 14 16 Spin warp encoding FOV = 128 mm 64 x 64

Aliasing Qu est ce qu une image? Field of view (FOV) should contain the object Solutions exist for reducing the object size Saturation band Selective pulse Surface coil

Off-resonance Qu est ce / Gradient qu une image imperfections? Off-resonance Frequency shift Ω( r) Trajectory perturbation Differences between experimental and theoretical gradient waveforms S T π * ( k( t ) M ( r) exp i r. k ( t) + 2 Ω( r) [ ( t) ] dr Trajectory perturbation All the off-resonance perturbations contribute

Off-resonance Qu est ce qu une image? -100-80 -60-40 -20 0 20 40 60 80 100-100 -80-60 -40-20 0 20 40 60 80 100 Object 2 4 6 8 10 12 14 Spin warp encoding FOV = 128 mm 16 x 16 No perturbations -50-40 -30-20 16 2 4 6 8 10 12 14 16-10 0 10 20 30 40 2 50-50 -40-30 -20-10 0 10 20 30 40 50 4 Off-resonance 6 8 10 12 With perturbations 14 16 2 4 6 8 10 12 14 16

Inhomogeneities Qu est ce qu une of B1 fields image? Quadrature surface coil 7 T Transmission Reception Resulting image Homogeneous phantom Wang et al, Magn Reson Med (2002) 48:362-369

Inhomogeneities Qu est ce qu une of B1 fields image? 1.5 Tesla 8 Tesla Novak et al., Magn. Reson. Imaging (2005)

Selective Qu est excitation ce qu une image? For reducing the number of directions to encode Band-limited pulse Pulse applied WITH a gradient pulse M T Off-resonance (khz)