THE EIGENVALUE PROBLEM FOR DIFFERENTIAL OPERATOR WITH NONLOCAL INTEGRAL CONDITIONS

Similar documents
TIME PERIODIC PROBLEMS FOR NAVIER-STOKES EQUATIONS IN DOMAINS WITH CYLINDRICAL OUTLETS TO INFINITY

Nullity of the second order discrete problem with nonlocal multipoint boundary conditions

Application of M-matrices theory to numerical investigation of a nonlinear elliptic equation with an integral condition

INVESTIGATION OF PULSATING FLOW EFFECT ON METERS WITH ROTATING PARTS

On iterative methods for some elliptic equations with nonlocal conditions

INVESTIGATION OF THE THERMAL HYDRAULIC INTERACTION BETWEEN THE BODIES OF A DIFFERENT FORM AND A FLUID

KAUNAS UNIVERSITY OF TECHNOLOGY LITHUANIAN ENERGY INSTITUTE. Kęstutis Jasiūnas

MATHEMATICAL MODELS FOR SCIENTIFIC TERMINOLOGY AND THEIR APPLICATIONS IN THE CLASSIFICATION OF PUBLICATIONS

VILNIUS UNIVERSITY. Alma Molytė INVESTIGATION OF COMBINATIONS OF VECTOR QUANTIZATION METHODS WITH MULTIDIMENSIONAL SCALING

The minimizer for the second order differential problem with one nonlocal condition

RESEARCH AND DEVELOPMENT OF METHODS AND INSTRUMENTATION FOR THE CALIBRATION OF VERTICAL ANGLE MEASURING SYSTEMS OF GEODETIC INSTRUMENTS

VILNIAUS UNIVERSITETAS

VILNIUS UNIVERSITY MAŽVYDAS MACKEVIČIUS COMPUTER MODELING OF CHEMICAL SYNTHESIS AT HIGH TEMPERATURES

Adaptive Integration of Stiff ODE

VILNIUS UNIVERSITY LIJANA STABINGIENĖ IMAGE ANALYSIS USING BAYES DISCRIMINANT FUNCTIONS

Characteristic functions for sturm liouville problems with nonlocal boundary conditions

ELECTROMAGNETIC FIELD AND DISPERSION CHARACTERISTIC CALCULATIONS OF OPEN WAVEGUIDES MADE OF ABSORPTIVE MATERIALS

DEVELOPMENT OF THE METHODS OF BROADBAND DIELECTRIC SPECTROSCOPY BY INVESTIGATING (1-x)(Na 1/2 Bi 1/2 )TiO 3 - xla(mg 1/2 Ti 1/2 )O 3

THE ASSESSMENT OF THE CELESTIAL BODY INFLUENCE ON THE GEODETIC MEASUREMENTS

THE COMPETITIVENESS OF NATIONAL TOURISM INDUSTRY

BACTERICIDAL MATERIALS CONTAINING STARCH AND THEIR APPLICATIONS

On some problems with nonlocal integral condition

The Solution of Two-Dimensional Neutron Diffusion Equation with Delayed Neutrons

Vango algoritmo analizė

The Euler Mascheroni constant in school

RESEARCHES AND DEVELOPMENT OF CYLINDRICAL MULTICHANNEL CYCLONE WITH ADJUSTABLE HALF-RINGS

METHODS OF COMPUTATIONAL INTELLIGENCE FOR DEFLECTION YOKE TUNING

KAUNAS UNIVERSITY OF TECHNOLOGY LITHUANIAN ENERGY INSTITUTE RASA VIEDERYTĖ ECONOMIC EVALUATION OF LITHUANIAN MARITIME SECTOR CLUSTERING PRECONDITIONS

Viktor Novičenko. Development and application of phase reduction and averaging methods to nonlinear oscillators

VILNIUS UNIVERSITY. Indrė Isokaitė REGULATION OF MARITIME ZONES IN THE INTERNATIONAL LAW AND THE LAW OF THE REPUBLIC OF LITHUANIA

APPLICATION OF THE GLOBAL FIT IN PRESSURE SHIFT ASSAY METHOD REPORT

VILNIUS UNIVERSITY INSTITUTE OF PHYSICS. Justina Šapolait DYNAMICS OF RADIOACTIVE NUCLIDES IN HETEROGENEOUS DISPERSIVE SYSTEMS

STRENGTH OF LAYER STRUCTURAL ELEMENTS AND MODELLING OF FRACTURE

Reliability of One Dimensional Model of Moisture Diffusion in Wood

A general biochemical kinetics data fitting algorithm for quasi-steady-state detection

QUANTITATIVE EVALUATION OF BIOMETEOROLOGICAL CONDITIONS IN LITHUANIA

ANALYSIS OF DROUGHTS AND DRY PERIODS IN LITHUANIA

VILNIUS UNIVERSITY CENTER FOR PHYSICAL SCIENCES AND TECHNOLOGY STEPAS TOLIAUTAS ELECTRONIC EXCITATION PROCESSES OF PHOTOACTIVE ORGANIC MOLECULES

APPLICATION OF ULTRASONIC METHODS FOR INVESTIGATION OF STRONGLY ABSORBING INHOMOGENEOUS MULTILAYER STRUCTURES

A. Žukauskaitė a, R. Plukienė a, A. Plukis a, and D. Ridikas b

THOMAS FERMI AND POISSON MODELING OF GATE ELECTROSTATICS IN GRAPHENE NANORIBBON

STABILIZATION OF UNSTABLE PERIODIC ORBIT IN CHAOTIC DUFFING HOLMES OSCILLATOR BY SECOND ORDER RESONANT NEGATIVE FEEDBACK

KAUNAS UNIVERSITY OF TECHNOLOGY. Andrius Vilkauskas RESEARCH AND SIMULATION OF BALLISTICS PROCESSES OF SMALL ARMS AMMUNITION BULLETS

CALCULATION OF ELECTROMAGNETIC WAVE ATTENUATION DUE TO RAIN USING RAINFALL DATA OF LONG AND SHORT DURATION

VILNIUS UNIVERSITY EDITA STONKUTĖ CHEMICAL COMPOSITION OF KINEMATICALLY IDENTIFIED GALACTIC STELLAR GROUP

RESEARCH OF DYNAMICS OF RADIOCESIUM AND HYDROPHYSICAL PARAMETERS IN THE LITHUANIAN LAKES

SUSTAINABLE TECHNOLOGY OF POTASSIUM DIHYDROGEN PHOSPHATE PRODUCTION AND LIQUID WASTE RECOVERY

MATHEMATICAL MODELLING AND ANALYSIS

Algebraic and spectral analysis of local magnetic field intensity

Radial basis function method modelling borehole heat transfer: the practical application

STATISTICAL TESTS BASED ON N-DISTANCES

Matematikos ir informatikos institutas. Informatikos doktorantūros modulis Statistinis modeliavimas ir operacijų tyrimas

B. Čechavičius a, J. Kavaliauskas a, G. Krivaitė a, G. Valušis a, D. Seliuta a, B. Sherliker b, M. Halsall b, P. Harrison c, and E.

VILNIUS UNIVERSITY. Gintaras Žaržojus

RESEARCH AND DEVELOPMENT OF MANIPULATOR DRIVE WITH ELECTRORHEOLOGICAL FLUID

S. Tamošiūnas a,b, M. Žilinskas b,c, A. Nekrošius b, and M. Tamošiūnienė d

DALELIŲ KOMPOZITO DISKRETUSIS MODELIS

SFERINIO KEVALO OPTIMIZAVIMAS PRISITAIKOMUMO SĄLYGOMIS

REGULARITIES OF VERTICAL ELEMENT DISTRIBUTION WITHIN THE SOIL PROFILE IN LITHUANIA

Analysis of genetic risk assessment methods

KAUNAS UNIVERSITY OF TECHNOLOGY EDITA LEKNIUTĖ-KYZIKĖ MODIFIED STARCH FLOCCULANTS WITH QUATERNARY AMMONIUM GROUPS

OCCASIONAL PAPER SERIES. No 6 / 2015 A NOTE ON THE BOOTSTRAP METHOD FOR TESTING THE EXISTENCE OF FINITE MOMENTS

MUTUAL PART ALIGNMENT USING ELASTIC VIBRATIONS

ANALYSIS OF LIGAND BINDING TO RECOMBINANT HUMAN CARBONIC ANHYDRASES I, II, VII, IX AND XIII

MATHEMATICAL MODELLING AND ANALYSIS

INVESTIGATION OF LAMINATED LEATHER RHEOLOGICAL BEHAVIOUR

On the minimum of certain functional related to the Schrödinger equation

Reaction diffusion equation with nonlocal boundary condition subject to PID-controlled bioreactor

GLOBALUSIS OPTIMIZAVIMAS SU SIMPLEKSINIAIS POSRIČIAIS

The Burg Algorithm with Extrapolation for Improving the Frequency Estimation

NUOTOLINIŲ KURSŲ OPTIMIZAVIMAS

TIGHT BERNOULLI TAIL PROBABILITY BOUNDS

Parallel algorithms for three-dimensional parabolic and pseudoparabolic problems with different boundary conditions

Geometry and Motion, MA 134 Week 1

VILNIUS UNIVERSITY. Santa Ra kauskiene JOINT UNIVERSALITY OF ZETA-FUNCTIONS WITH PERIODIC COEFFICIENTS

KAUNAS UNIVERSITY OF TECHNOLOGY DAIVA TAVGENIENĖ

On the anticrowding population dynamics taking into account a discrete set of offspring

A Method for Measuring the Specific Electrical Conductivity of an Anisotropically Conductive Medium

G. Adlys and D. Adlienė

Closing of Coster Kronig transitions and variation of fluorescence and Auger yields in isonuclear sequence of tungsten

Analysis of One Model of the Immune System

I.P. Studenyak a V.V. Bilanchuk a O.P. Kokhan a Yu.M. Stasyuk a A.F. Orliukas b A. Kežionis b E. Kazakevičius b, and T. Šalkus b

Multivariate Data Clustering for the Gaussian Mixture Model

COMPUTATIONAL METHODS AND ALGORITHMS Vol. II - Numerical Algorithms for Inverse and Ill-Posed Problems - A.М. Denisov

Turinys. Geometrinės diferencialinių lygčių teorijos savokos. Diferencialinės lygties sprendiniai. Pavyzdžiai. CIt, (- 00,0) C'It, (0, (0);

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

LANDAU SĄRAŠAS: NEĮVEIKIAMI SKAIČIŲ TEORIJOS UŽDAVINIAI

Random convolution of O-exponential distributions

QUALITY ANALYSIS AND INTEGRATED ASSESSMENT OF RESIDENTIAL ENVIRONMENT OF DEVELOPING SUBURBAN SETTLEMENTS

G.P. Kamuntavičius a, A. Mašalaitė a, S. Mickevičius a, D. Germanas b, R.-K. Kalinauskas b, and R. Žemaičiūnienė c

Optimal Segmentation of Random Sequences

THE STRUCTURE OF MORPHOLOGY AND PROPERTIES OF MODIFIED POLYCHLOROPRENE ADHESIVE COMPOSITION

Discrete uniform limit law for additive functions on shifted primes

DIELECTRIC PROPERTIES OF AURIVILLIUS-TYPE Bi 4-x O 12. Ti 3 CERAMICS

Theoretical Mechanics Practicums

MATHEMATICAL MODELLING OF THE HEAT TRANSFER IN A MULTI-WIRE BUNDLE

Introduction to PDEs and Numerical Methods: Exam 1

ON THE STABILITY OF FINITE DIFFERENCE SCHEMES FOR HYPERBOLIC EQUATION WITH NONLOCAL INTEGRAL BOUNDARY CONDITIONS

VILNIAUS UNIVERSITETAS. Haroldas Giedra ĮRODYMŲ SISTEMA KORELIATYVIŲ ŽINIŲ LOGIKAI. Daktaro disertacijos santrauka Fiziniai mokslai, informatika (09P)

I. Šimkienė a,b, J. Sabataitytė a,c, M. Baran d, R. Szymczak d, J.-G. Babonas a,c, A. Rėza a,e, and A. Kaliničenko f

Transcription:

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY INSTITUTE OF MATHEMATICS AND INFORMATICS Živil JESEVIČIŪTö THE EIGENVALUE PROBLEM FOR DIFFERENTIAL OPERATOR WITH NONLOCAL INTEGRAL CONDITIONS SUMMARY OF DOCTORAL DISSERTATION PHYSICAL SCIENCES, MATHEMATICS (P) VILNIUS

Doctoral dissertation was prepared at the Institute of Mathematics and Informatics in 5 9. Scientific Supervisor Prof Dr Habil Mifodijus SAPAGOVAS (Institute of Mathematics and Informatics, Physical Sciences, Mathematics P). The dissertation is being defended at the Council of Scientific Field of Mathematics at Vilnius Gediminas Technical University: Chairman Prof Dr Habil Raimondas ČIEGIS (Vilnius Gediminas Technical University, Physical Sciences, Mathematics P). Members: Prof Dr Habil Feliksas IVANAUSKAS (Vilnius University, Physical Sciences, Mathematics P), Assoc Prof Dr Mečislavas MEILŪNAS (Vilnius Gediminas Technical University, Physical Sciences, Mathematics P), Dr Sigita PEČIULYTö (Vytautas Magnus University, Physical Sciences, Mathematics P), Prof Dr Stasys RUTKAUSKAS (Institute of Mathematics and Informatics, Physical Sciences, Mathematics P). Opponents: Prof Dr Vytautas KLEIZA (Kaunas University of Technology, Physical Sciences, Mathematics P), Assoc Prof Dr Artūras ŠTIKONAS (Institute of Mathematics and Informatics, Physical Sciences, Mathematics P). The dissertation will be defended at the public meeting of the Council of Scientific Field of Mathematics at the Institute of Mathematics and Informatics, Room 3 at p. m. on 6 February. Address: Akademijos g. 4, LT-8663 Vilnius, Lithuania. Tel.: +37 5 74 495, +37 5 74 4956; fax +37 5 7 ; e-mail: doktor@vgtu.lt The summary of the doctoral dissertation was distributed on 5 January. A copy of the doctoral dissertation is available for review at the Libraries of Vilnius Gediminas Technical University (Saul tekio al. 4, LT-3 Vilnius, Lithuania) and the Institute of Mathematics and Informatics (Akademijos g. 4, LT-8663 Vilnius, Lithuania). Živil Jesevičiūt,

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS INSTITUTAS Živil JESEVIČIŪTö TIKRINIŲ REIKŠMIŲ UŽDAVINYS DIFERENCIALINIAM OPERATORIUI SU NELOKALIOSIOMIS INTEGRALINöMIS SĄLYGOMIS DAKTARO DISERTACIJOS SANTRAUKA FIZINIAI MOKSLAI, MATEMATIKA (P) VILNIUS

Disertacija rengta 5 9 metais Matematikos ir informatikos institute. Mokslinis vadovas prof. habil. dr. Mifodijus SAPAGOVAS (Matematikos ir informatikos institutas, fiziniai mokslai, matematika P). Disertacija ginama Vilniaus Gedimino technikos universiteto Matematikos mokslo krypties taryboje: Pirmininkas prof. habil. dr. Raimondas ČIEGIS (Vilniaus Gedimino technikos universitetas, fiziniai mokslai, matematika P). Nariai: prof. habil. dr. Feliksas IVANAUSKAS (Vilniaus universitetas, fiziniai mokslai, matematika P), doc. dr. Mečislavas MEILŪNAS (Vilniaus Gedimino technikos universitetas, fiziniai mokslai, matematika P), dr. Sigita PEČIULYTö (Vytauto Didžiojo universitetas, fiziniai mokslai, matematika P), prof. dr. Stasys RUTKAUSKAS (Matematikos ir informatikos institutas, fiziniai mokslai, matematika P). Oponentai: prof. dr. Vytautas KLEIZA (Kauno technologijos universitetas, fiziniai mokslai, matematika P), doc. dr. Artūras ŠTIKONAS (Matematikos ir informatikos institutas, fiziniai mokslai, matematika P). Disertacija bus ginama viešame Matematikos mokslo krypties tarybos pos dyje m. vasario 6 d. 3 val. Matematikos ir informatikos institute, 3 auditorijoje. Adresas: Akademijos g. 4, LT-8663 Vilnius, Lietuva. Tel.: (8 5) 74 495, (8 5) 74 4956; faksas (8 5) 7 ; el. paštas doktor@vgtu.lt Disertacijos santrauka išsiuntin ta m. sausio 5 d. Disertaciją galima peržiūr ti Vilniaus Gedimino technikos universiteto (Saul tekio al. 4, LT-3 Vilnius, Lietuva) ir Matematikos ir informatikos instituto (Akademijos g. 4, LT-8663 Vilnius, Lietuva) bibliotekose. VGTU leidyklos Technika 78-M mokslo literatūros knyga. Živil Jesevičiūt,

Introduction Problem formulation In the dissertation the eigenvalue problem for a differential operator with nonlocal integral conditions and the difference analogue of this problem are analyzed. The structure of the spectrum is investigated, which is more difficult and various in comparison to the problem with classical conditions. Topicality of the problem Differential problems with nonlocal conditions are quite a widely investigated area of mathematics. The analysis of such problems stimulates physics, biology, mechanics, chemistry and other areas of science. Differential problems with nonlocal conditions are not yet completely and properly investigated, as it is a wide research area. Only some particular cases are known better. Eigenvalue problems with nonlocal conditions are one of the newest investigation areas of nonlocal differential problems. Investigations of the spectrum structure is rather important for the analysis of differential and difference problems existence and uniqueness of their solution; for the solution of difference schemes using iterative methods; for the stability analysis of difference schemes of parabolic equations. However, investigation of the spectrum structure is a separate important problem. Eigenvalue problems, investigation of the spectrum and other similar problems for differential equations with nonlocal Bitsadze Samarskii or multipoint boundary conditions are analyzed by A. Gulin, N. Ionkin, V. Morozova, G. Infante, M. Sapagovas, A. Štikonas, S. Pečiulyt ; and integral conditions by B. Cahlon, D. M. Kulkarni, P. Shi, M. Sapagovas, A. Štikonas, S. Pečiulyt, G. Infante, etc. In the first and second chapters, a nonlocal problem for the onedimensional differential equation is investigated. In the second chapter, a difference problem is investigated. In the third and fourth chapters, the eigenvalue problem for a differential operator with nonlocal integral conditions and variable coefficients is analyzed, when variable coefficients are under nonlocal integral conditions or in the differential equation. In the scientific literature there is not a large amount of such works. Just several separate cases are considered. The eigenvalue problem for a two-dimensional operator with integral conditions is quite little investigated in the literature. M. Sapagovas (8), and M. Sapagovas, O. Štikonien (9) analyzed the appropriate eigenvalue problem in their papers by investigating increased accuracy difference schemas 5

for a Poisson equation. In the fifth chapter, the eigenvalue problem for a twodimensional elliptic operator with integral conditions is considered. In the sixth chapter of the dissertation, the stability analysis of difference schemes of parabolic equations with nonlocal integral conditions is presented, obtained applying the results on the spectrum structure of difference operators with nonlocal conditions described in the previous chapters. Research object The main research object of the dissertation is the differential operator with nonlocal integral conditions, the spectrum structure of this problem, the difference schemes and the application of the results for the stability analysis of difference schemes. Aim and tasks of the work The aim of this dissertation is to investigate the spectrum structure of differential operators with nonlocal integral conditions and correspondent to it difference operators, dependence of eigenvalues on the parameters of nonlocal conditions. The main tasks of the work:. To analyze the eigenvalue problem for one-dimensional differential operators with nonlocal integral conditions and correspondent to it difference operators.. To investigate the distribution of eigenvalues of a differential operator with nonlocal conditions and variable coefficients. To explore the influence of variable coefficients on the appearance of multiple and complex eigenvalues, to determine the existence domains of these values. 3. To analyze the two-dimensional case of the eigenvalue problem for a differential operator with nonlocal conditions. To determine the influence of nonlocal integral condition parameters on the distribution of eigenvalues. 4. To investigate the stability of finite difference scheme, which approximates a nonlocal parabolic problem. Methodology of research In the work, analytical method is applied for the investigation of solutions for differential and difference equation. We analyze a general expression of the solution for differential and difference equation. The structure of spectrum is considered. We used numerical experiment and mathematical modeling method. It helps better to understand the structure of spectrum. We have applied packages Mathcad and Maple for numerical experiment. 6

Scientific novelty In the dissertation, the eigenvalue problem for a differential operator with nonlocal integral conditions is investigated. This work extends and supplements the results of other scientists in this area. The spectrum structure of a differential operator with nonlocal integral conditions is explored as well as its dependence on the parameters of nonlocal conditions and on interval of integration. In the dissertation, much attention is paid to the eigenvalue problem for a difference operator with nonlocal integral conditions. Qualitative changes in the spectrum structure of this problem are analyzed comprehensively. The eigenvalue problem with variable coefficients is less investigated. Thus, the structure of eigenvalues of a differential problem with nonlocal conditions is not clear. In this dissertation, the eigenvalue problem for a differential operator with nonlocal integral conditions and variable coefficients is analyzed, when variable coefficients are under nonlocal conditions or in a differential equation. Practical value The results obtained in the doctoral dissertation, i. e., analysis of the spectrum structure of the eigenvalue problem for a differential operator with various nonlocal integral conditions, might be applied in solving multidimensional problems of this type; also in investigating the existence and uniqueness of differential and difference problem solution; in solving the systems of difference equations by iterative methods and investigating the stability of difference schemes for parabolic equations. Mathematical models with nonlocal integral conditions are important in solving practical problems of physics, biochemistry, ecology, and other areas of science. Defended propositions. The methodology for spectrum analysis of differential and difference operators with nonlocal integral conditions. Conditions, when exist zero, negative, positive, as well as multiple and complex eigenvalues.. The method, how the obtained results could be generalized and used for investigating of the spectrum structure of a two-dimensional elliptic operator with integral conditions. 3. The method for the stability analyzing of difference schemes for parabolic equations with nonlocal integral conditions. 7

The scope of the scientific work The doctoral dissertation consists of the introduction, six chapters, conclusions, the list of references and the list of author s publications. The scope of the dissertation: 36 pages, 39 figures, 9 tables. In the work 6 references are cited. The results of doctoral dissertation are published in 8 publications. The results were presented at eight national and four international conferences. The language of the doctoral dissertation is Lithuanian.. The eigenvalue problem for a one-dimensional differential operator with nonlocal integral conditions In the first chapter of the dissertation, we formulate the eigenvalue problem for a differential operator with nonlocal integral conditions u + λ u=, < x <, (.) u( ) = γ u( x, (.) d u( ) = γ u( x, (.3) d where γ, γ are given parameters, λ is the eigenvalue, and u ( is the eigenfunction. We consider the structure of the spectrum of eigenvalues. We analyze the problem with various types of nonlocal conditions. We investigate the influence of parameters γ, γ of nonlocal integral conditions on the eigenvalues and eigenfunctions. The conditions for the existence of zero, negative and positive eigenvalues have been defined. The cases, in which there appear multiple and complex eigenvalues, were investigated. After investigating of the eigenvalue problem for a differential operator with two nonlocal integral conditions (.) (.3), we can conclude that: for any value of γ + γ, there exist infinitely many positive eigenvalues λ k =α, k=,,... of problem (.) (.3). These eigenvalues are the roots of the equation α α tg =, γ + γ i. e., these eigenvalues depend on the parameter γ + γ. 8

k The eigenvalues λ = ( πk ), k=,,..., which are roots of the equation λ sin =, do not depend on the parameter γ + γ ; if < γ + γ <, then there are no other eigenvalues, only the positive eigenvalues defined; if γ +γ, then λ = is the eigenvalue of the problem (.) (.3) = with the corresponding eigenfunction u ( = x if ; γ + γ <, then one more negative eigenvalue λ = β exists. < It corresponds to the only positive root of the equation < β β tanh =. The γ + γ corresponding eigenfunction is u( = sinhβ x. The spectrum of the eigenvalue problem for a differential operator with nonlocal conditions (.) (.3) depends only on the value of the parameter γ + γ. The eigenvalue problem (.) with one classical and one nonlocal integral condition was investigated as well 3 4 u ( ) =, u( ) = γ u( dx. (.4) Conclusions: For any value of γ there exist infinitely many positive eigenvalues λ =α, k=,,... of problem (.), (.4). These eigenvalues are roots of the k equation 4 α γ α cos = sin, that correspond to eigenfunctions of the form α 4 u ( = Csin λ x, k=,,... k k k The eigenvalues λ = ( πk ), k=,,..., which are roots of the equation λ sin =, do not depend on the parameter γ. If < γ < 4, then there are no other eigenvalues, only the positive eigenvalues defined. If γ 4, then λ = is the eigenvalue of problem (.), (.4) with the = corresponding eigenfunction u ( = x. 9

If 4 γ <, then one more negative eigenvalue λ = β exists. It < β γ β corresponds to the only positive root of the equation cosh = sinh. β 4 If 4 γ <, then there can exist multiple and complex eigenvalues. <. The difference eigenvalue problem with nonlocal integral conditions In this chapter, we investigate the eigenvalue problem for a difference operator with nonlocal integral conditions. We approximate differential problem (.) (.3) by the following difference problem ui ui + ui+ + λ u =, i i =,,..., N, (.) h u + = + u N N u + u γ h uk, = + u N N un γ h uk. (.) k= k= An exhaustive analysis of eigenvalues is presented here. Lemmas on the existence of zero, negative, and positive eigenvalues are formulated and proved. We consider the influence of the parameters γ, γ and N on the eigenvalues and compare these results with the corresponding conclusions in Section. Corollary. If h ( γ + γ ), then eigenvalue problem (.), (.) has (N ) eigenvalues (real or comple. Lemma.. The number λ= is the eigenvalue of difference problem (.), (.) if and only if γ +γ. = ( γ + γ 4 λ sinh Lemma.. If h < ), then difference problem (.), (.) has the negative eigenvalue βh = if and only if γ +γ >. h Problem (.), (.) has the positive eigenvalues positive roots in the interval (, N π) of the equations: < λ k = α k, where αk are α ) sin =, i. e., α k do not depend on the parameters γ and γ. Therefore we 4 πkh obtain that eigenvalues λ k = sin do not depend on these parameters as h well. If the number of these eigenvalues is N /, then N is an even number; if ( N )/, then N is an odd number.

α γ α αh / ) cos A sin =, where A=. This equation differs from the α 4 tg( αh / ) corresponding equation in the differential case only by the value of A. If the value A converges to one, then h tends to zero. We can conclude that, for any value of γ + γ and N, the total number of eigenvalues (zero, negative and positive) of problem (.), (.) is N, i. e., it is the same as the order of matrix A. Consequently, all the eigenvalues are real, i. e., there are no complex eigenvalues. The eigenvalue problem (.), (.4) was considered analogously. We construct a difference scheme for this problem ui ui + ui+ + λ u = i, i =,,..., N-, (.3) h u =, u + 3N / 4 = + N / 4 u3n / 4 un γ h uk. (.4) k= N / 4+ Lemma.3. The number λ= is the eigenvalue of the difference problem (.3), (.4) if and only if γ = 4. Lemma.4. Difference problem (.3), (.4) has the negative eigenvalue if and only if γ > 4. Problem (.3), (.4) has the positive eigenvalues positive roots in the interval (, N π) of the equations: λ k = α k, where αk are α ) sin =, i. e., α k do not depend on the parameters γ and γ. Therefore the 4 πkh eigenvalues λ k = sin do not depend on the parameters γ and γ as h well. α γ α αh αh αh αh ) cos = sin ctg, where ctg, if h is small enough. The α 4 complex eigenvalues can appear here. 3. The eigenvalue problem for a differential operator with variable coefficient subject to integral conditions In this chapter, an eigenvalue problem is investigated for a differential operator with nonlocal integral conditions, when variable coefficients arise under nonlocal integral conditions,

u + λ u=, < x <, (3.) u( ) = α( u( dx γ, (3.) u( ) = β( u( dx γ. (3.3) We consider the structure of the spectrum for the eigenvalue problem. We investigate how eigenvalues depend on the parameters, occurring in the nonlocal boundary conditions γ, γ, α (, and β (. The computation experiment was done and described. Case. α ( = + b x, β ( = + b x. Lemma 3.. The necessary and sufficient condition for the eigenvalue of differential problem (3.) (3.3) to be zero, λ =, is as follows: γ γ γ b b ( b b ) + + γ + = 3 3 This equation represents a hyperbola in the coordinate system ( γ, γ ). Depending on the expression of b and b, the hyperbola can degenerate to a straight line. In Lemma 3., we observe that, if the point belongs to the hyperbola (or a line), then λ = is the eigenvalue. Two branches of the hyperbola split the entire coordinate plane ( γ, γ ) into three domains. In this case, we have a line instead of the hyperbola, and afterwards it splits the plane into two unbounded domains. In the domain, there is a point ( γ =, γ = ), all the real eigenvalues are positive (Lemma 3.3). In other domains there exist one or two negative eigenvalues (Lemma 3.). Lemma 3.. Problem (3.) (3.3) has the positive eigenvalues λ k = α k, where α k are roots of the equation: b b γ γ α α ( cosα ) γ sinα cosα+ b cosα + sinα = α α in the interval α (, ).. γ sinα + sinα + cosα+ b α α

Lemma 3.3. Problem (3.) (3.3) has the negative eigenvalues where β > are roots of the equation: k λ =, k β k γγ β β ( b b ) ( coshβ ) γ sinhβ sinhβ + cosh β + b β β γ sinhβ cosh cosh β + b β + sinhβ = β β in the interval β (, ). Case. α ( =, β ( x ) = x. We consider problem (3.) with another form of nonlocal integral conditions α u( ) = γ u( dx, u( ) = γ xu( dx α. (3.4) Lemma 3.4. The necessary and sufficient condition for the eigenvalue of differential problem (3.), (3.4) to be zero, λ =, is as follows: γγ α α γ γ + αα =. 3 Lemma 3.5. Problem (3.), (3.4) has the positive eigenvalues λ k = α k, where α k are roots of the equation: sinα cosα sinα γ γ α α α + cosα sinα cosα α α α + cos sin α α cos sin cos α α + α γ α + αγ α α α α in the interval α (, ). + α α sinα = Lemma 3.6. Problem (3.), (3.4) has the negative eigenvalues λ = where β > are roots of the equation: k k β k 3

sinh cosh sinh cosh sinh cosh β β β β β β γ γ + + β β β β β β sinh cosh cosh sinh β β cosh β β α γ + β αγ + sinh = α α β β β β β in the interval β (, ). In Chapter 3, the corresponding difference problems are explored also. We present the results of the numerical experiment to obtain the zero, negative, positive, multiple and complex eigenvalues. The area, where all the eigenvalues are real and positive, has been found. 4. The differential equation with variable coefficients We consider the eigenvalue problem for a one-dimensional differential operator with variable coefficients to nonlocal integral conditions where ( C [,] d du p( + λ u=, < x <, (4.) dx dx u( ) = γ u( dx, ) = p, p ( >. u( d u( γ x, (4.) We investigate theoretically how eigenvalues depend on the type of the function p( (symmetric, monotonous increasing or monotonous decreasing). Afterwards, this problem is solved numerically. Also, we analyze how the eigenvalues depend on the parameters γ, γ. We prove some properties of the spectrum for this differential problem. Lemma 4.. The necessary and sufficient condition for the eigenvalue of differential problem (4.), (4.) to be zero, λ =, is as follows: γ u( dx+ γ u( dx =, where u ( x ), u ( are two linear independent solutions of equation (4.), as λ =. We obtain that zero eigenvalue depends on the parameters γ, γ under nonlocal integral conditions (4.) and on the type of function p(. 4

Lemma 4.. The following statements are true: if the function p( is a symmetrical function with regard to x = γ +γ (p(=p( ), then λ = is the eigenvalue, as = ; if p( is a monotonous increasing function (p ( > ), then (,) that λ = is the eigenvalue, as γ a) + γ a, /< a < ; ( = a, if p( is a monotonous decreasing function (p ( < ), then (,) a, that λ = is the eigenvalue, as γ a+ γ ( a) =, /< a <. If p( is a function with variable coefficients, we would not be able to prove theoretically the same condition on the existence of zero, negative, and positive eigenvalues. To this end, we have done a numerical experiment. An algorithm was constructed to find zero, negative, and positive eigenvalues for problem (4.), (4.). The Thomas algorithm was modified for solving a system of difference equations with nonlocal conditions. At first we approximated the differential problem by following system of difference equations p u i / i ( pi / + pi+ / ) ui + pi+ /ui+ + λ = iui, h i =,,..., N, (4.3) u + u N N u= γh + uk γl( ui ), k= (4.4) u + u N N un = γ h + uk γ l( ui ). k= (4.5) Corollary 4.. The necessary and sufficient condition for the eigenvalue of difference problem (4.3) (4.5) to be zero, λ =, is as follows i i = γ l( u ) γ l( u ) +, where u i, u i are two linear independent solutions of equation (4.3). Corollary 4.. Problem (4.3) (4.5) has the negative eigenvalue λ <, if it exists, if λ is the solution of the equation i i = γ l ( u ( λ)) γ l( u ( λ)) +. The results for a differential operator with nonlocal integral conditions obtained in Chapters 4 might be used to solve two-dimensional elliptic equations with nonlocal integral conditions and to consider the stability of finite difference schemes for parabolic equations with nonlocal integral conditions. 5

5. Two-dimensional elliptic equation with nonlocal integral conditions In Chapter 5 of the dissertation, we investigate two-dimensional elliptic equations with nonlocal integral conditions u u + + λ u=, (5.) x y in the rectangular area ( x, y) {< x<, < y< } with boundary and nonlocal conditions u ( x,) =, u ( x,) =, (5.) u γ, (5.3) (, y) = u( x, y) dx u γ. (5.4) (, y) = u( x, y) dx To find the solution for elliptic equation (5.), we obtain two one dimensional eigenvalue problems and v + η v=, v( ) = γ v( dx, v( ) = γ v( dx (5.5) w + µ w=, w ( ) =, w ( ) =. (5.6) The second problem (5.6) is an eigenvalue problem with classical conditions. The solutions of differential equation from (5.6) are known: µ = ( πl), ( y) = sinπly, l =,, 3... l w l The eigenvalue problem (5.5) is analyzed in Chapter. Let us denote the eigenvalue of problem (5.5) as η k. Then we obtain the eigenvalue of twodimensional elliptic equations with nonlocal integral conditions (5.) (5.4): λ = +, k = -,,,,..., l =,, 3... kl ηk µ l In this chapter, the eigenvalue properties are defined and analyzed. 6

Theorem 5.. If πl γ + γ =, l =,, 3..., πl tanh then problem (5.) (5.4) has a simple (not multiple) eigenvalue λ =. Theorem 5.. If the parameters γ, γ satisfy the inequality ( s ) π sπ < γ+ γ <, s =,, 3..., ( s ) π sπ tanh tanh then the two-dimensional problem with nonlocal integral conditions (5.) (5.4) has s negative eigenvalues. And there are infinitely many positive eigenvalues. π Corollary 5.. If γ + γ <, then all the eigenvalues are positive. π tanh Corollary 5.. If π π < γ + γ <, π tanhπ tanh then there exists one negative eigenvalue. Other eigenvalues are positive. 6. The stability of finite-difference scheme for parabolic equation subject to nonlocal integral conditions The stability of an implicit difference scheme for a parabolic equation subject to nonlocal integral conditions, which correspond to the quasi-static flexure of a thermoelastic rod, is considered. For the first time this type of problem was investigated by W. A. Day (98, 983). The stability analysis is based upon the spectral structure of a matrix of the difference scheme. The stability conditions obtained here are different compared to that in the articles of other authors. We investigate a parabolic equation subject to nonlocal integral conditions u u = + f ( x, t), l < x< l, t T, t x (6.) γ l u ( l, t) = α( u( x, t)dx+ µ ( t), l (6.) l 7

l γ u ( l, t) = β( u( x, t)dx+ µ ( t) l l u( x,) ϕ(, (6.3) =, (6.4) where α ( = l 3x, β ( = l+ 3x and γ, γ are given parameters. We build up a difference scheme for this problem: U j+ i j j+ j+ j+ U U U + U i i i i+ j+ = + f, τ i h i = N+, N, (6.5) j+ j+ + + N j γ h α NU N αnun j+ j+ U N = + + αiui µ, l = + i N (6.6) j+ j+ + + N j γ h β NU N βnun j+ j+ U N = + + βiui µ, l i= N+ (6.7) where h = l / N, τ =T / M. U i = ϕ, i = N, N, (6.8) i To investigate the stability of the difference scheme (6.5) (6.8), we put it into the standard form: j+ j j U = SU + f, j j j j = ( N+ N+ N where U U, U,..., U ) is the solution of the difference scheme on th the j time layer in a vector form, S = E+ τλ. The sufficient stability condition for the difference scheme (6.5) (6.8) is λ ( S) <. The computational experiment was done and its results were presented. The spectral structure of the matrix of the difference scheme was analyzed. The number of zero, negative, and positive eigenvalues for matrix S was found. The conditions, how the eigenvalues depend on the parameters occurring in the nonlocal boundary conditions γ, γ, were found. With a view to show the stability of the difference scheme, an illustrative problem was solved. General conclusions. When investigating the spectrum structure of a differential operator with nonlocal integral conditions and constant coefficients we have established that 8

the spectrum of the operator depends on one parameter γ = γ + γ. Subject to the values of this parameter, there might exist zero, one negative, and infinitely many positive eigenvalues. Analogous propositions are correct for a difference operator with nonlocal conditions, except the finite number of positive eigenvalues.. If the variable weight coefficients are in integral conditions, then complex eigenvalues might appear. In case of such a problem zero and negative γ in respect of the eigenvalues depend on the position of the point (,γ ) hyperbola. When the point ( ) γ,γ is on the hyperbola, then λ = is the eigenvalue of the analyzed problem. 3. If variable coefficients are in a differential equation, then range of eigenvalue λ = definition depends on the character of the variable coefficients. The type of variable coefficient function (symmetrical, monotonous decreasing or increasing) is important for the eigenvalue λ =. This eigenvalue might appear at higher (or lower) γ + γ values. 4. The results, obtained when investigating the spectrum structure of a differential operator with integral conditions, could be applied in analyzing the eigenvalues of two-dimensional elliptic type differential operators and investigating the stability of difference schemes for parabolic equations with nonlocal integral conditions. List of Published Works on the Topic of the Dissertation In the reviewed scientific periodical publications Čiupaila, R.; Jesevičiūt, Ž.; Sapagovas, M. 4. On the eigenvalue problem for onedimensional differential operator with nonlocal integral condition, Nonlinear Analysis: Modelling and Control 9(): 9 6. ISSN 39 53 (INSPEC, IndexCopernicus). Jesevičiūt, Ž. 6. Diferencialinio operatoriaus su nelokaliąja integraline sąlyga spektro struktūra, Matematika ir matematinis modeliavimas : 6. ISSN 8-757. Jesevičiūt, Ž. 7. Tikrinių reikšmių uždavinys diferencialiniam operatoriui su nelokaliąja integraline sąlyga, Matematika ir matematinis modeliavimas 3: 6. ISSN 8-757. Jesevičiūt, Ž.; Sapagovas, M. 8. On the stability of the finite-difference schemes for parabolic equations subject to integral conditions with applications for thermoelasticity, Computational Methods in Applied Mathematics 8(4): 36 373. ISSN 69-484 (EBSCO Publishing, Mathematical Reviews). Jachimavičien, J.; Jesevičiūt, Ž.; Sapagovas, M. 9. The stability of finite difference schemes for a pseudoparabolic equation with nonlocal conditions, Numerical Functional Analysis and Optimization 3(9 ): 988. ISSN 63-563 (Thomson ISI Master Journal List). 9

In the other editions Čiupaila, R.; Jesevičiūt, Ž.; Sapagovas, M. 3. Eigenvalue problem for ordinary differential operator subject to integral condition. Matematikos ir informatikos institutas: preprintas, 3. 7 p. Jesevičiūt, Ž. 8. On one eigenvalue problem for a differential operator with integral conditions. Matematikos ir informatikos institutas: preprintas, 4. 9 p. Jesevičiūt, Ž. 9. On one eigenvalue problem for a differential operator with integral conditions, in Proceedings of International Conference Differential equations and their applications (DETA-9), 99 5. ISBN 978-9955-5-747-9. About the author Živil Jesevičiūt was born in Kaunas on 8 of September 98. First degree in Mathematics, Faculty of Informatics, Vytautas Magnus University, 3 and certificate in Fundamentals of Business administration, Faculty of Economics and Management, 3. Master of Science in Mathematics, Faculty of Informatics, Vytautas Magnus University, 5. In 5 9 PhD student of Institute of Mathematics and Informatics. In, was working as a teacher of mathematics at the Kaunas Vaidotas secondary school and in 3 4 as a teacher of mathematics and informatics at the Kaunas S. Lozoraitis secondary School. Since 4 is working as a assistant at the Department of Physics, Mathematics and Biophysics, Kaunas University of Medicine and since 8 as a assistant at Mathematics and Statistics Department of Vytautas Magnus University. TIKRINIŲ REIKŠMIŲ UŽDAVINYS DIFERENCIALINIAM OPERATORIUI SU NELOKALIOSIOMIS INTEGRALINöMIS SĄLYGOMIS Problemos formulavimas. Disertacijoje nagrin jamas tikrinių reikšmių uždavinys diferencialiniam operatoriui su nelokaliosiomis integralin mis sąlygomis, o taip pat šio uždavinio skirtuminis analogas. Tiriama uždavinio spektro struktūra, kuri iš esm s yra sud tingesn ir įvairesn, negu tokio tipo uždavinių su klasikin mis sąlygomis. Darbo aktualumas. Diferencialiniai uždaviniai su nelokaliosiomis sąlygomis gana plačiai nagrin jama matematikos šaka. Tokių uždavinių tyrimą skatina fizikos, biologijos, mechanikos, chemijos ir kitos mokslo sritys. Tačiau diferencialiniai uždaviniai su nelokaliosiomis sąlygomis dar n ra pilnai ir išsamiai išnagrin ti, nes tai gana plati tyrin jimo sritis. Plačiau yra išnagrin ti tik atskiri atvejai.

Tikrinių reikšmių uždaviniai su nelokaliosiomis sąlygomis yra viena iš naujesnių nelokaliųjų diferencialinių uždavinių tyrin jimo sričių. Spektro struktūros tyrimas svarbus: nagrin jant diferencialinio ir skirtuminio uždavinių sprendinio egzistavimą ir vienatį; skirtuminių lygčių sistemos sprendimui iteraciniais metodais; skirtuminių schemų parabolin ms lygtims stabilumui tirti. Be to, spektro struktūros tyrimas yra atskiras svarbus uždavinys. Tikrinių reikšmių uždavinys, spektro tyrimas ir panašūs uždaviniai diferencialin ms lygtims su nelokaliosiomis Bitsadz s ir Samarskio ar daugiatašk mis kraštin mis sąlygomis analizuojami A. Gulin, N. Ionkin, V. Morozovos, G. Infantes, M. Sapagovo, A. Štikono, S. Pečiulyt s darbuose; su integralin mis sąlygomis B. Cahlon, D. M. Kulkarni, P. Shi, M. Sapagovo, A. Štikono, S. Pečiulyt s, G. Infantes ir kitų autorių darbuose. Pirmajame ir antrajame disertacijos skyriuose tiriamas nelokalusis uždavinys vienmatei diferencialinei lygčiai. Trečiajame ir ketvirtajame disertacijos skyriuose analizuojamas tikrinių reikšmių uždavinys diferencialiniam operatoriui su nelokaliosiomis integralin mis sąlygomis ir kintamais koeficientais. Tokio tipo darbų n ra gausu mokslin je literatūroje. Tikrinių reikšmių uždavinys dvimačiam operatoriui su integralin mis sąlygomis literatūroje nagrin tas gana mažai. 8 m. M. Sapagovo ir 9 m. M. Sapagovo, O. Štikonien s straipsniuose nagrin jant padidinto tikslumo skirtumines schemas Puasono lygčiai spręsti buvo nagrin tas ir atitinkamas tikrinių reikšmių uždavinys. Penktajame disertacijos skyriuje nagrin jamas tikrinių reikšmių uždavinys dvimačiam elipsiniam operatoriui su integralin mis sąlygomis. Šeštajame skyriuje pateikta parabolinių lygčių su nelokaliosiomis integralin mis sąlygomis skirtuminių schemų stabilumo analiz, taikant pirmuose skyriuose gautus rezultatus apie skirtuminių operatorių su nelokaliosiomis sąlygomis spektro struktūrą. Tyrimų objektas. Disertacijos tyrimo objektas yra diferencialinis operatorius su nelokaliosiomis integralin mis sąlygomis, šio uždavinio spektro struktūra, skirtumin s schemos, rezultatų taikymas skirtuminių schemų stabilumui tirti. Darbo tikslas ir uždaviniai. Disertacijos tikslas ištirti diferencialinio ir jam atitinkančio skirtuminio operatorių su nelokaliosiomis integralin mis sąlygomis spektro struktūrą, tikrinių reikšmių priklausomybę nuo parametrų, esančių nelokaliosiose sąlygose, reikšmių. Siekiant numatyto tikslo buvo sprendžiami šie uždaviniai:

. Išnagrin ti tikrinių reikšmių uždavinį vienmačiam diferencialiniam ir jį atitinkančiam skirtuminiam operatoriams su nelokaliosiomis integralin mis sąlygomis.. Išanalizuoti diferencialinio operatoriaus su nelokaliosiomis sąlygomis ir kintamais koeficientais tikrinių reikšmių pasiskirstymą. Ištirti kintamųjų koeficientų įtaką kartotinių ir kompleksinių tikrinių reikšmių atsiradimui, nustatyti šių reikšmių egzistavimo sritis. 3. Ištirti tikrinių reikšmių uždavinio diferencialiniam operatoriui su nelokaliosiomis sąlygomis dvimatį atvejį. Nustatyti nelokaliųjų integralinių sąlygų parametrų įtaką tikrinių reikšmių pasiskirstymui. 4. Skirtuminių schemų stabilumo parabolin ms lygtims su nelokaliosiomis integralin mis sąlygomis analiz, t. y. ištirti baigtinių skirtumų schemų, aproksimuojančių nelokalųjį parabolinį uždavinį, stabilumą. Tyrimų metodika. Darbe taikomas analizinis diferencialin s ir skirtumin s lygties sprendinių tyrimo metodas. Nagrin jama diferencialin s ir skirtumin s lygties bendrojo sprendinio išraiška, o šioje išraiškoje esančios laisvosios konstantos randamos iš nelokaliųjų sąlygų. Nagrin jama operatorių spektro struktūra. Taip pat taikomas skaitinio eksperimento bei matematinio modeliavimo metodas. Tai padeda geriau suprasti spektro struktūrą, bei šią struktūrą lemiančias priežastis. Atliekant skaitinį eksperimentą, naudotasi programų paketais Mathcad ir Maple. Darbo mokslinis naujumas ir jo reikšm. Disertacijoje išnagrin tas tikrinių reikšmių uždavinys diferencialiniam operatoriui su nelokaliosiomis integralin mis sąlygomis. Atlikto darbo rezultatai praplečia ir papildo iki šiol kitų mokslininkų gautus rezultatus tiriant šiuos ir panašius uždavinius. Ištirta diferencialinio operatoriaus su nelokaliosiomis integralin mis sąlygomis spektro struktūra, jos priklausomyb nuo parametrų reikšmių iš nelokaliųjų sąlygų ir integravimo r žių parinkimo. Disertacijoje didelis d mesys yra skiriamas tikrinių reikšmių uždaviniui skirtuminiam operatoriui su nelokaliosiomis integralin mis sąlygomis. Išsamiai ištirti šio uždavinio kokybiniai spektro struktūros pasikeitimai. Tikrinių reikšmių uždavinys su kintamais koeficientais yra mažai nagrin tas. Taigi yra neaiški diferencialinio uždavinio su nelokaliosiomis sąlygomis tikrinių reikšmių struktūra. Šioje disertacijoje analizuojamas tikrinių reikšmių uždavinys diferencialiniam operatoriui su nelokaliosiomis integralin mis sąlygomis ir kintamais koeficientais, kai kintami koeficientai yra nelokaliosiose sąlygose arba diferencialin je lygtyje.

Išnagrin jus tikrinių reikšmių uždavinį, gauti rezultatai panaudojami skirtuminių schemų parabolin ms lygtims su nelokaliosiomis sąlygomis stabilumo analizei. Darbo rezultatų praktin reikšm. Disertacijoje gauti rezultatai, t. y. tikrinių reikšmių uždavinio diferencialiniam operatoriui su įvairaus tipo nelokaliosiomis integralin mis sąlygomis spektro struktūros tyrimo rezultatai gali būti panaudojami sprendžiant daugiamačius tokio tipo uždavinius, taip pat nagrin jant diferencialinio ir skirtuminio uždavinių sprendinio egzistavimą ir vienatį, skirtuminių lygčių sistemų sprendimui iteraciniais metodais bei skirtuminių schemų parabolin ms lygtims stabilumui tirti. Matematiniai modeliai su nelokaliosiomis integralin mis sąlygomis svarbūs sprendžiant praktinius uždavinius iš fizikos, biochemijos, ekologijos ir kitų mokslo sričių. Ginamieji teiginiai. Diferencialinio ir skirtuminio operatorių su nelokaliosiomis integralin mis sąlygomis spektro tyrimo metodika. Sąlygos, su kuriomis egzistuoja nulin, neigiamos, teigiamos, taip pat kartotin s ir kompleksin s tikrin s reikšm s.. Gautų rezultatų apibendrinimas ir taikymas dvimačio elipsinio operatoriaus su integralin mis sąlygomis spektro stuktūrai tirti. 3. Skirtuminių schemų parabolin ms lygtims su nelokaliosiomis integralin mis sąlygomis stabilumo nagrin jimo būdas. Darbo rezultatų aprobavimas. Disertacijos tema paskelbti 8 straipsniai. Vienas iš ju yra referuojamas ISI Master Journal List duomenų baz je. Disertacijos tema perskaityti 4 pranešimai tarptautin se ir 8 respublikin se konferencijose. Disertacijos struktūra. Disertaciją sudaro įvadas, 6 skyriai, išvados, literatūros sąrašas ir autor s publikacijų disertacijos tema sąrašas. Bendra disertacijos apimtis 36 puslapiai, 39 grafikai, 9 lentel s. Darbe cituojami 6 literatūros šaltiniai. Disertacijos rezultatai skelbti 8 publikacijose. Pirmajame ir antrajame disertacijos skyriuose nagrin jami tikrinių reikšmių uždaviniai paprastajam diferencialiniam ir skirtuminiam operatoriams su nelokaliosiomis integralin mis sąlygomis atitinkamai. Trečiajame ir ketvirtajame skyriuose analizuojami tikrinių reikšmių uždaviniai diferencialiniam operatoriui su nelokaliosiomis integralin mis sąlygomis ir kintamais koeficientais, kai kintami koeficientai yra nelokaliosiose sąlygose ar diferencialin je lygtyje. Penktajame skyriuje nagrin jama dvimačio elipsinio operatoriaus su integralin mis sąlygomis spektro struktūra. Šeštajame skyriuje 3

pateikta parabolinių lygčių su nelokaliosiomis integralin mis sąlygomis skirtuminių schemų stabilumo analiz. Bendrosios išvados. Nagrin jant diferencialinio operatoriaus su nelokaliosiomis integralin mis sąlygomis ir pastoviais koeficientais spektro struktūrą nustatyta, kad šio operatoriaus spektras priklauso nuo vieno parametro γ = γ + γ. Priklausomai nuo šio parametro reikšmių gali egzistuoti nulin, viena neigiama ir be galo daug teigiamų tikrinių reikšmių. Analogiški teiginiai teisingi ir skirtuminiam operatoriui su nelokaliosiomis sąlygomis, tik teigiamų tikrinių reikšmių yra baigtinis skaičius.. Kai integralin se sąlygose yra kintami svorio koeficientai, tai gali atsirasti kompleksin s tikrin s reikšm s. Šio uždavinio atveju nulin ir γ pad ties hiperbol s neigiamos tikrin s reikšm s priklauso nuo taško (,γ ) atžvilgiu. Kai taškas ( ) γ,γ priklauso hiperbolei, tai λ = yra nagrin jamo uždavinio tikrin reikšm. 3. Kai diferencialin je lygtyje yra kintami koeficientai, tai tikrin s reikšm s λ = apibr žimo sritis priklauso nuo kintamųjų koeficientų pobūdžio, t. y. nulin tikrin reikšm gali atsirasti prie didesnių (ar mažesnių) γ + γ reikšmių, priklausomai nuo kintamojo koeficiento (simetrin, monotoniškai did janti ar monotoniškai maž janti funkcija) tipo. 4. Rezultatus, gautus tiriant diferencialinių operatorių su integralin mis sąlygomis spektro struktūrą, galime pritaikyti dvimačių elipsinio tipo diferencialinių operatorių tikrin ms reikšm ms nagrin ti bei parabolinių lygčių su nelokaliosiomis integralin mis sąlygomis skirtuminių schemų stabilumo analizei. Trumpos žinios apie autorę Živil Jesevičiūt gim 98 m. rugs jo 8 d. Kaune. 3 m. įgijo matematikos bakalauro laipsnį Vytauto Didžiojo universiteto Informatikos fakultete bei verslo administravimo gretutinę specialybę. 5 m. baig Taikomosios matematikos magistrantūros studijų programą ir įgijo matematikos magistro kvalifikacinį laipsnį Vytauto Didžiojo universiteto Informatikos fakultete. 5 9 m. studijavo matematikos krypties doktorantūroje Matematikos ir informatikos institute. m. dirbo Kauno Vaidoto pagrindin je mokykloje matematikos mokytoja. 3 4 m. dirbo Kauno Stasio Lozoraičio vidurin je mokykloje informatikos ir matematikos mokytoja. Nuo 4 m. dirba asistente Kauno medicinos universiteto Fizikos, matematikos ir biofizikos katedroje. Nuo 8 m. dirba asistente Vytauto Didžiojo universiteto Matematikos ir statistikos katedroje. 4

Živil JESEVIČIŪTö THE EIGENVALUE PROBLEM FOR DIFFERENTIAL OPERATOR WITH NONLOCAL INTEGRAL CONDITIONS Summary of Doctoral Dissertation Physical Sciences, Mathematic (P) Živil JESEVIČIŪTö TIKRINIŲ REIKŠMIŲ UŽDAVINYS DIFERENCIALINIAM OPERATORIUI SU NELOKALIOSIOMIS INTEGRALINöMIS SĄLYGOMIS Daktaro disertacijos santrauka Fiziniai mokslai, matematika (P) 5.,5 sp. l. Tiražas 7 egz. Vilniaus Gedimino technikos universiteto leidykla Technika, Saul tekio al., 3 Vilnius, http://leidykla.vgtu.lt Spausdino UAB Baltijos kopija, Kareivių g. 3B, 99 Vilnius http://www.kopija.lt