C. Giunti Sterile Neutrino Mixing NOW Sep /25

Similar documents
Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino

Sterile Neutrinos. Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

Status of the Sterile Neutrino(s) Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti

Critical Review on Neutrino Anomalies. Carlo Giunti

Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos. Carlo Giunti

Sterile Neutrinos in July 2010

Short-Baseline Neutrino Anomalies Carlo Giunti. Selected Puzzles in Particle Physics Laboratori Nazionali di Frascati December 2016

Status of Sterile Neutrinos Carlo Giunti

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

NEUTRINO OSCILLATIONS AND STERILE NEUTRINO C. Giunti

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

Impact of light sterile!s in LBL experiments "

Analysis of Neutrino Oscillation experiments

On indications for sterile neutrinos at the ev scale. Invisibles 14 workshop, July 2014, Paris Thomas Schwetz

Stefano Gariazzo. Light sterile neutrino: the 2018 status. IFIC, Valencia (ES) CSIC Universitat de Valencia

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Overview of Reactor Neutrino

Sterile neutrino oscillations

Two hot issues in neutrino physics

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

ev-scale Sterile Neutrinos

Sterile neutrinos: to be or not to be?

Neutrinos in Supernova Evolution and Nucleosynthesis

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

Status and prospects of neutrino oscillations

Phenomenological Status of Neutrino Mixing

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

The Reactor Antineutrino Anomaly

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Anomalies & CEνNS

Updated three-neutrino oscillation parameters from global fits

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Neutrino Physics: Lecture 12

Precise Determination of the 235 U Reactor Antineutrino Cross Section per Fission Carlo Giunti

On Minimal Models with Light Sterile Neutrinos

Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, Guangdong, , China

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Short baseline neutrino oscillation experiments at nuclear reactors

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

Neutrino physics. Evgeny Akhmedov. Max-Planck-Institut für Kernphysik, Heidelberg & Kurchatov Institute, Moscow

Solar and atmospheric ν s

NEUTRINOS II The Sequel

Particle Physics: Neutrinos part II

Neutrino Oscillation Physics

Particle Physics: Neutrinos part II

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

- Future Prospects in Oscillation Physics -

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Sterile neutrinos at future long-baseline experiments

Updating the Status of Neutrino Physics

Neutrino oscillation phenomenology

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

Probing Neutrino Oscillations At Very Short Baselines with Reactors and Radioactive Sources

The future of neutrino physics (at accelerators)

Sterile Neutrinos. Patrick Huber. Center for Neutrino Physics Virginia Tech

The Effect of Cancellation in Neutrinoless Double Beta Decay

Sinergie fra ricerche con neutrini da acceleratore e atmosferici

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino

PoS(ICRC2017)1024. First Result of NEOS Experiment. Kim Siyeon. Affiliation:Chung-Ang University. On behalf of NEOS Collaboration

1 Neutrinos. 1.1 Introduction

The Leptonic Dirac CP-Violating Phase from Sum Rules

Is nonstandard interaction a solution to the three neutrino tensions?

The Daya Bay Reactor Neutrino Experiment

CP Violation Predictions from Flavour Symmetries

Neutrino Oscillations

arxiv: v1 [hep-ph] 15 Apr 2019

Frontiers in Neutrino Physics

Neutrino Physics Theory and Phenomenology

Long baseline experiments

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

The Short Baseline Neutrino Program at Fermilab

Future prospects of neutrino oscillation study Osamu Yasuda Tokyo Metropolitan University April 27, IPMU

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

Solar Neutrino Road Map. Carlos Pena Garay IAS

Short baseline experiments and sterile neutrinos. Nick van Remortel Solvay-Francqui Workshop on Neutrinos May

Neutrino Oscillations

New interactions: past and future experiments

How to make the short baseline sterile neutrino compatible with cosmology

Largeθ 13 Challenge and Opportunity

Reactor Neutrino Oscillation Experiments: Status and Prospects

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Daya Bay and joint reactor neutrino analysis

Neutrinos as a Unique Probe: cm

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

PROSPECT: Precision Reactor Oscillation and SPECTrum Experiment

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL


Introduction to Neutrino Physics

Transcription:

Sterile Neutrino Mixing NOW and in the Next Years Carlo Giunti INFN, Sezione di Torino NOW 06 Neutrino Oscillation Workshop 4- September 06 Otranto, Lecce, Italy C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 /5

Indications of SBL Oscillations Beyond 3ν C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 /5

C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 3/5 LSND [PRL 75 (995) 650; PRC 54 (996) 685; PRL 77 (996) 308; PRD 64 (00) 07] ν µ ν e 0 MeV E 60 MeV Well-known source of ν µ µ at rest e ν e ν µ L 30 m ν e p n e Well-known detection process of ν e But signal not seen by KARMEN at L 8 m with the same method [PRD 65 (00) 0] 3.8σ excess m SBL 0. ev m ATM m SOL

Gallium Anomaly C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 4/5 Gallium Radioactive Source Experiments: GALLEX and SAGE ν e Sources: e 5 Cr 5 V ν e e 37 Ar 37 Cl ν e E 0.75 MeV E 0.8 MeV Test of Solar ν e Detection: ν e 7 Ga 7 Ge e R =N exp N cal 0.7 0.8 0.9.0. GALLEX SAGE Cr Cr R = 0.84 ± 0.05 GALLEX SAGE Cr Ar L GALLEX =.9 m L SAGE = 0.6 m.9σ deficit m SBL ev m ATM m SOL [SAGE, PRC 73 (006) 045805; PRC 80 (009) 05807] [Laveder et al, Nucl.Phys.Proc.Suppl. 68 (007) 344; MPLA (007) 499; PRD 78 (008) 073009; PRC 83 (0) 065504] 3 He 7 Ga 7 Ge 3 H cross section measurement [Frekers et al., PLB 706 (0) 34] E th (ν e 7 Ga 7 Ge e ) = 33.5 ±. kev [Frekers et al., PLB 7 (03) 33]

Reactor Electron Antineutrino Anomaly C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 5/5 [Mention et al, PRD 83 (0) 073006] New reactor ν e fluxes [Mueller et al, PRC 83 (0) 05465; Huber, PRC 84 (0) 0467] R = N exp N cal 0.5 0.6 0.7 0.8 0.9.0.. Bugey 3 Bugey 4 Rovno9 Gosgen ILL Krasno Rovno88 SRP Chooz Palo Verde Double Chooz Daya Bay R = 0.936 ± 0.0 Nucifer Neutrino 4 RENO 3 L [m] 3.σ deficit m SBL 0.5 ev m ATM m SOL

C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 6/5 Effective 3 SBL Oscillation Probabilities Appearance (α β) ( ) m P SBL ( ) sin ϑ ν ( ) αβ sin 4 L α ν β 4E Disappearance ( ) m P SBL ( ) sin ϑ ν ( ) αα sin 4 L α ν α 4E sin ϑ αβ = 4 U α4 U β4 sin ϑ αα = 4 U α4 ( U α4 ) U e U e U e3 U e4 U µ U µ U µ3 U µ4 U = U τ U τ U τ3 U τ4 U s U s U s3 U s4 SBL 6 mixing angles 3 Dirac CP phases 3 Majorana CP phases CP violation is not observable in SBL experiments! Observable in LBL accelerator exp. sensitive to matm [de Gouvea et al, PRD 9 (05) 053005, PRD 9 (05) 0730, arxiv:605.09376; Palazzo et al, PRD 9 (05) 07307, PLB 757 (06) 4; Gandhi et al, JHEP 5 (05) 039] and solar exp. sensitive to m SOL [Long, Li, CG, PRD 87, 3004 (03) 3004]

Rea Gal νec Sun TK Global ν e and ν e Disappearance νe & νe DIS β decay [ev ] [ev ] m 4 m 4 νe & νe DIS νe & νe DIS β 90% CL 95% CL 90% CL 95% CL sin ϑ ee KARMEN LSND ν e C N g.s. e [Conrad, Shaevitz, PRD 85 (0) 0307] [CG, Laveder, PLB 706 (0) 00] solar ν e KamLAND ν e ϑ 3 [CG, Li, PRD 80 (009) 3007] [Palazzo, PRD 83 (0) 303; PRD 85 (0) 07730] [CG, Laveder, Li, Liu, Long, PRD 86 (0) 304] TK Near Detector ν e disappearance [TK, PRD 9 (05) 05] sin ϑ ee Mainz Troitsk Tritium β decay [Mainz, EPJC 73 (03) 33] [Troitsk, JETPL 97 (03) 67; JPG 4 (04) 0500] No Osc. excluded at.8σ ( χ /NDF =.8/) 6 cm Losc 4 E [MeV] 6 m C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 7/5 (σ)

The Race for ν e and ν e Disappearance CeSOX shape (95% CL) STEREO (yr, 95% CL) PROSPECT phase (3yr, 3σ) CeSOX rate (95% CL) SoLiD phase (yr, 95% CL) PROSPECT phase (3yr, 3σ) CeSOX rateshape (95% CL) SoLiD phase (3yr, 3σ) DANSS (yr, 95% CL) BEST (95% CL) Neutrino 4 (yr, 95% CL) NEOS (0.5yr, 95% CL) IsoDAR@KamLAND (5yr, 3σ) IsoDAR@C ADS (5yr, 3σ) KATRIN σ KATRIN σ [ev ] [ev ] m 4 m 4 νe & νe DIS β νe & νe DIS β 90% CL 95% CL 90% CL 95% CL sin ϑ ee CeSOX (Gran Sasso, Italy) 44 Ce ν e BOREXINO: L 5-m [Vivier@TAUP05] BEST (Baksan, Russia) 5 Cr ν e L 5-m [PRD 93 (06) 07300] IsoDAR@KamLAND (Kamioka, Japan) 8 Li ν e L 6m [arxiv:5.0530] IsoDAR@C-ADS (Guangdong, China) 8 Li ν e L 5m [JHEP 60 (06) 004] sin ϑ ee STEREO (ILL, France) L 8-m [arxiv:60.00568] SoLid (SCK-CEN, Belgium) L 5-8m [arxiv:5.07835] Neutrino-4 (RIAR, Russia) L 6-m [JETP (05) 578] PROSPECT (ORNL, USA) L 7-m [arxiv:5.00] DANSS (Kalinin, Russia) L -m [arxiv:606.0896] NEOS (Hanbit, Korea) L 4m [Oh@WIN05] KATRIN (Karlsruhe, Germany) 3 H ν e [Mertens@TAUP05] C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 8/5

NEOS@ICHEP06 C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 9/5

data / (H M) 0.90 0.94 0.98.0.06. Our Analysis of NEOS@ICHEP06 Spectrum Best Fit: m 4 =. ev, sin ϑ ee = 0.9.0.0 3.0 4.0 5.0 6.0 7.0 8.0 Prompt Energy [MeV] We did not use the NEOS spectrum data in the 5 MeV bump region. The calculated spectrum may need corrections also elsewhere. To be safe we added 5% uncorrelated uncertainties to all the bins. [CG & Marco Laveder] [ev ] m 4 NEOS Spectrum 68.7% CL (σ) 95.45% CL (σ) 99.73% CL (3σ) sin ϑ ee We fitted the NEOS spectrum with a free normalization constant determined by the fit. χ null χ osc = 3.44 C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 /5 (.3σ)

Reactor Rates Bugey-3 and NEOS Spectra C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 /5 Combined Without NEOS 90% CL 95% CL Combined 90% CL 95% CL With NEOS [ev ] m 4 [ev ] m 4 Reactor Rates Bugey 3 Spectrum 3 Best Fit: sin ϑ ee χ null χ osc =. { m 4 =.7 ev sin ϑ ee = 0.3 (.7σ) Reactor Rates Bugey 3 Spectrum NEOS Spectrum 3 Best Fit: sin ϑ ee χ null χ osc =.9 { m 4 = 3.0 ev sin ϑ ee = 0.3 (.9σ)

ν µ ν e and ν µ ν e Appearance LSND MiniBooNE KARMEN NOMAD BNL E776 ICARUS OPERA [ev ] m 4 ν µ ν e 90% CL 95% CL 3 sin ϑ eµ C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 /5

ν µ and ν µ Disappearance CDHSW: ν µ ATM: ν µ ν µ SciBooNE MiniBooNE: ν µ SciBooNE MiniBooNE: ν µ MINOS: ν µ IceCube: ν µ ν µ m 4 [ev ] 3 sin ϑ µµ C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 3/5

3 Appearance-Disappearance Tension ν e DIS sin ϑ ee 4 U e4 ν µ ν e APP ν µ DIS sin ϑ µµ 4 U µ4 sin ϑ eµ = 4 U e4 U µ4 4 sin ϑ ee sin ϑ µµ [Okada, Yasuda, IJMPA (997) 3669; Bilenky, CG, Grimus, EPJC (998) 47] 3σ ν e DIS ν µ DIS DIS APP ν µ ν e is quadratically suppressed! [ev ] m 4 Similar constraint in 3, 33,..., 3N s [CG, Zavanin, MPLA 3 (05) 650003] 3 GLO σ σ 3σ 4 3 Update of [Gariazzo, CG, Laveder, Li, Zavanin, JPG 43 (06) 03300] with improved treatment of the MiniBooNE background disappearance due to neutrino oscillations according to information from Bill Louis (thanks!) sin ϑ eµ C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 4/5

C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 5/5 Collin, Arguelles, Conrad, Shaevitz [NPB 908 (06) 354] Our Fit Update of [Gariazzo, CG, Laveder, Li, Zavanin, JPG 43 (06) 03300] 3 GLO 90% CL [ev ] m 4 Best Fit: m 4 =.75 ev U e4 = 0.07 U µ4 = 0.04 GoF = 57% (χ min /NDF = 306.8/3) GoF null = 4.4% (χ /NDF = 359./35) χ /NDF = 5.3/3 ( 6.7σ) 4 3 sin ϑ eµ Best Fit: m 4 =.6 ev U e4 = 0.08 U µ4 = 0.04 GoF = 6% (χ min /NDF = 304.0/68) GoF null = 0.04% (χ /NDF = 355./7) χ /NDF = 5./3 ( 6.6σ)

C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 6/5 Kopp, Machado, Maltoni, Schwetz [JHEP 305 (03) 050] Our Fit Update of [Gariazzo, CG, Laveder, Li, Zavanin, JPG 43 (06) 03300] APP 90.00% CL APP 99.00% CL APP 99.73% CL DIS 90.00% CL DIS 99.00% CL DIS 99.73% CL [ev ] m 4 4 3 Best Fit: m 4 = 0.93 ev U e4 = 0.03 U µ4 = 0.09 GoF = 9% (χ min /NDF = 7/680) GoF PG = 0.0% (χ PG /NDF = 8.0/) sin ϑ eµ Best Fit: m 4 =.6 ev U e4 = 0.08 U µ4 = 0.04 GoF = 6% (χ min /NDF = 304.0/68) GoF PG = 0.06% (χ /NDF = 5.0/)

MiniBooNE Low-Energy Anomaly C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 7/5 ν µ ν e [PRL (009) 80] ν µ ν e [PRL (03) 680] LSND signal LSND signal Fit of MB Low-Energy Excess requires small m 4 and large sin ϑ eµ, in contradiction with disappearance data MB low-energy excess is the main cause of bad APP-DIS GoF PG = 0.06% Multinucleon effects in neutrino energy reconstruction are not enough to solve the problem [Martini et al, PRD 85 (0) 0930; PRD 87 (03) 03009; PRD 93 (06) 073008] Pragmatic Approach: discard the Low-Energy Excess because it is likely not due to oscillations [CG, Laveder, Li, Long, PRD 88 (03) 073008] MicroBooNE is crucial for checking the MiniBooNE Low-Energy Anomaly and the consistency of different short-baseline data

Global Pragmatic C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 8/5 3σ DIS APP GLO APP PrGLO [ev ] m 4 4 3 sin ϑ eµ APP-GLO: all MiniBooNE data APP-PrGLO: only MiniBooNE E > 475 MeV data (Pragmatic)

Pragmatic Global 3 Fit Update of [Gariazzo, CG, Laveder, Li, Zavanin, JPG 43 (06) 03300] ( ) ν e ( ) ν e 3 PrGLO σ σ 3σ ( ) ν µ ( ) ν e 3 PrGLO σ σ 3σ ( ) ν µ ( ) ν µ 3 PrGLO σ σ 3σ [ev ] m 4 [ev ] m 4 [ev ] m 4 3σ ν e DIS 3σ APP DIS 4 3 ν µ DIS (99.73% CL) IceCube () MINOS (95% CL) sin ϑ ee GoF = 4% PGoF = 7% No Osc. disfavored at 6.σ χ /NDF = 46.6/3 sin ϑ eµ Not yet included: IceCube, arxiv:605.0990 MINOS, arxiv:607.076 C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 9/5 sin ϑ µµ

SBL IceCube C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 0/5 [Collin, Arguelles, Conrad, Shaevitz, arxiv:607.000] SBL SBL IceCube Red: 90% CL Blue: 3 m 4 U e4 U µ4 U τ4 N bins χ min χ null χ (dof) SBL.75 0.63 0.7-35 306.8 359.5 5.34 (3) SBLIC.75 0.64 0.9 0.00 54 58.59 568.84 50.6 (4) IC 5.6-0.34-09 07. 09.69.58 ()

The Race for the Light Sterile ( ) ν e ( ) ν e KATRIN σ ( ) ν µ ( ) ν e SBN (3yr, 3σ) nuprism (3σ) JSNS (3σ) ( ) ν µ ( ) ν µ SBN (3yr, 3σ) KPipe (3yr, 3σ) [ev ] m 4 [ev ] m 4 [ev ] m 4 CeSOX (95% CL) Neutrino 4 (yr, 95% CL) BEST (95% CL) PROSPECT phase (3yr, 3σ) IsoDAR@KamLAND (5yr, 3σ) PROSPECT phase (3yr, 3σ) IsoDAR@C ADS (5yr, 3σ) SoLiD phase (yr, 95% CL) DANSS (yr, 95% CL) SoLiD phase (3yr, 3σ) NEOS (0.5yr, 95% CL) STEREO (yr, 95% CL) sin ϑ ee 3 PrGLO σ σ 3σ 4 3 sin ϑ eµ 3 PrGLO σ σ 3σ sin ϑ µµ C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 /5

C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 /5 Effects of light sterile neutrinos should also be seen in: β Decay Experiments [Hannestad et al, JCAP (0) 0, PRC 84 (0) 045503; Formaggio, Barrett, PLB 706 (0) 68; Esmaili, Peres, PRD 85 (0) 730; Gastaldo et al, JHEP 606 (06) 06] Neutrinoless Double-β Decay Experiments [Rodejohann et al, JHEP 7 (0) 09; Li, Liu, PLB 706 (0) 406; Meroni et al, JHEP 3 (03) 46, PRD 90 (04) 05300; Pascoli et al, PRD 90 (04) 093005; CG, Zavanin, JHEP 507 (05) 7; Guzowski et al, PRD 9 (05) 00] Long-baseline Neutrino Oscillation Experiments [de Gouvea et al, PRD 9 (05) 053005, PRD 9 (05) 0730, arxiv:605.09376; Palazzo et al, PRD 9 (05) 07307, PLB 757 (06) 4, arxiv:60.05995, arxiv:603.03759, arxiv:605.0499; Gandhi et al, JHEP 5 (05) 039; Pant et al, arxiv:509.04096, Choubey, Pramanik, arxiv:604.0473] Solar neutrinos [Dooling et al, PRD 6 (000) 0730, Gonzalez-Garcia et al, PRD 6 (000) 03005; Palazzo, PRD 83 (0) 303, PRD 85 (0) 07730; Li et al, PRD 80 (009) 3007, PRD 87, 3004 (03), JHEP 308 (03) 056; Kopp et al, JHEP 305 (03) 050] Atmospheric neutrinos [Goswami, PRD 55 (997) 93; Bilenky et al, PRD 60 (999) 073007; Maltoni et al, NPB 643 (00) 3, PRD 67 (003) 030; Choubey, JHEP 07 (007) 04; Razzaque, Smirnov, JHEP 7 (0) 084, PRD 85 (0) 0930; Gandhi, Ghoshal, PRD 86 (0) 03730; Barger et al, PRD 85 (0) 030; Esmaili et al, JCAP (0) 04, JCAP 307 (03) 048, JHEP 3 (03) 04; Rajpoot et al, EPJC 74 (04) 936; Lindner et al, JHEP 60 (06) 4; Behera et al, arxiv:605.08607] Supernova neutrinos [Caldwell, Fuller, Qian, PRD 6 (000) 3005; Peres, Smirnov, NPB 599 (00); Sorel, Conrad, PRD 66 (00) 033009; Tamborra et al, JCAP (0) 03; Wu et al, PRD 89 (04) 06303; Esmaili et al, PRD 90 (04) 03303] Cosmic neutrinos [Cirelli et al, NPB 708 (005) 5; Donini, Yasuda, arxiv:0806.309; Barry et al, PRD 83 (0) 30] Indirect dark matter detection [Esmaili, Peres, JCAP 5 (0) 00] Cosmology [see: Wong, ARNPS 6 (0) 69; Archidiacono et al, AHEP 03 (03) 947]

C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 3/5 Effective 3 LBL Oscillation Probabilities [de Gouvea et al, PRD 9 (05) 053005, PRD 9 (05) 0730, arxiv:605.09376; Palazzo et al, PRD 9 (05) 07307, PLB 757 (06) 4, arxiv:60.05995, arxiv:603.03759, arxiv:605.0499; Gandhi et al, JHEP 5 (05) 039] U e3 sin ϑ 3 0.5 ε = ε 0.03 U e4 sin ϑ 4 0.7 ε U µ4 sin ϑ 4 0. ε α m m 3 7 5 0.03 ε.4 3 At order ε 3 : [Klop, Palazzo, PRD 9 (05) 07307] kj m kj L/4E P LBL ν µ ν e 4 sin ϑ 3 sin ϑ 3 sin 3 ε sin ϑ 3 sin ϑ sin ϑ 3 (α 3 ) sin 3 cos( 3 δ 3 ) ε 3 4 sin ϑ 3 sin ϑ 4 sin ϑ 4 sin ϑ 3 sin 3 sin( 3 δ 3 δ 4 ) ε 3

C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 4/5.0 CP Violation in TK and NOνA [Capozzi, CG, Laveder, Palazzo, in preparation, with TK and NOνA data presented at Neutrino 06] 3ν 4ν.0 3ν 4ν δπ 3 δπ 3 0.5 0.0 0.5.0.0 0.5 0.0 0.5 Rea. θ 3 68% 90% 90% 0.095 0. 0.090.0 0.00 0.05 0. 0.5 0.0 0.00 0.05 0. 0.5 0.0 0.085 sin θ 3 sin θ3 0.08 sin 0.09 0.080 Normal hierarchy Inverted hierarchy 0.075.0 0.5 0.0 0.5.0.0 θ 3 sin δπ 3 0.5 0.0 0.5.0.0 0.5 δπ 3 0. 0.0 LBL Reactors.0 0.5 Normal hierarchy 68% 90% 0.09 68% 68%.0 0.07 0.08 0.09 0. 0.07 0.08 0.09 0. sin θ 90% 3 sin θ3 90% 0.08 0.07.0 0.5 0.0 0.5.0.0.0 Inverted hierarchy Normal hierarchy Inverted hierarchy 0.5 0.5 0.5 0.5 Normal Ordering δπ 3 0.0 0.5 0.0 δπ 3 0.0 0.5 0.5 0.0 0.5 Inverted Ordering.0.0.0.0.0 0.5 0.075 0.095 0.09 0.0 0.5.0.0 0.0800.08 0.5 0.085 0.09 0.090 0.5 0..0 0.07 0.08 δπ 4 sin θ 3 δπ 4 sin θ 3 Inverted Ordering: Better agreement of LBL & Reactors for δ 4 π/

C. Giunti Sterile Neutrino Mixing NOW 06 9 Sep 06 5/5 Conclusions Exciting indications of light sterile neutrinos at the ev scale: LSND νµ ν e signal. Gallium νe disappearance. Reactor νe disappearance. Vigorous experimental program to check conclusively in a few years: νe and ν e disappearance with reactors and radioactive sources. νµ ν e transitions with accelerator neutrinos. ν µ disappearance with accelerator neutrinos. Possibilities for the next years: Reactor and source experiments ν e and ν e observe SBL oscillations: big excitement and explosion of the field. Because of 5 MeV bump we know that the calculated spectrum must be corrected: oscillations must be observed as a function of distance! Otherwise: still marginal interest to check the LSND appearance signal. In any case the possibility of the existence of sterile neutrinos related to New Physics beyond the Standard Model will continue to be studied (e.g kev sterile neutrinos: see the talk by A. Merle). Sterile neutrinos will always be allowed at all mass scales below the existing mixing bounds.