ECEN620: Network Theory Broadband Circuit Design Fall 2014

Similar documents
High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

Introduction to Control Systems

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

Lecture 30: Frequency Response of Second-Order Systems

EECE 301 Signals & Systems Prof. Mark Fowler

State space systems analysis

Last time: Ground rules for filtering and control system design

Last time: Completed solution to the optimum linear filter in real-time operation

The Performance of Feedback Control Systems

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

CONTROL ENGINEERING LABORATORY

ECEN620: Network Theory Broadband Circuit Design Fall 2018

Brief Review of Linear System Theory

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun

Voltage controlled oscillator (VCO)

Professor: Mihnea UDREA DIGITAL SIGNAL PROCESSING. Grading: Web: MOODLE. 1. Introduction. General information

Time Response. First Order Systems. Time Constant, T c We call 1/a the time constant of the response. Chapter 4 Time Response

EE 508 Lecture 6. Scaling, Normalization and Transformation

Jitter Transfer Functions For The Reference Clock Jitter In A Serial Link: Theory And Applications

Lecture 11. Course Review. (The Big Picture) G. Hovland Input-Output Limitations (Skogestad Ch. 3) Discrete. Time Domain

Automatic Control Systems

EE 508 Lecture 6. Dead Networks Scaling, Normalization and Transformations

Fig. 1: Streamline coordinates

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

ECM Control Engineering Dr Mustafa M Aziz (2013) SYSTEM RESPONSE

Analog Filter Design. Part. 3: Time Continuous Filter Implementation. P. Bruschi - Analog Filter Design 1

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

TESTS OF SIGNIFICANCE

STABILITY OF THE ACTIVE VIBRATION CONTROL OF CANTILEVER BEAMS

Adaptive control design for a Mimo chemical reactor

EE Control Systems

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Homework Assignment No. 3 - Solutions

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

Gain-scheduling of Acceleration Estimator for Low-velocity Measurement with Encoders

ELEC 372 LECTURE NOTES, WEEK 1 Dr. Amir G. Aghdam Concordia University

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

Sinusoidal Steady-state Analysis

Chapter #5 EEE Control Systems

Digital Signal Processing, Fall 2010

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

EE 435. Lecture 25. Data Converters. Architectures. Characterization

Diversity Combining Techniques

Chapter 5. Root Locus Techniques

Analysis of Stability &

Reliable Decentralized PID Stabilization of MIMO Systems

Special Notes: Filter Design Methods

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Dynamic Response of Linear Systems

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

EE 435. Lecture 25. Data Converters

Pendulums and Elliptic Integrals. 1. Introduction. 2. Where Hence Elliptic Integrals? James A. Crawford = (1) dv d dϕ dt dt dt. = mr dt.

2.004 Dynamics and Control II Spring 2008

Optical Disk Drive Servo System Using Dual Disturbance Observer

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

A Single-Phase Shunt Active Power Filter Based on Cycle Discrete Control for DC Bus Voltage

Isolated Word Recogniser

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

Homework 12 Solution - AME30315, Spring 2013

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

Chapter 7: The z-transform. Chih-Wei Liu

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

Statistical Inference Procedures

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w:

IntroEcono. Discrete RV. Continuous RV s

Introduction to Signals and Systems, Part V: Lecture Summary

Crash course part 2. Frequency compensation

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

CDS 101: Lecture 8.2 Tools for PID & Loop Shaping

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to:

21. Control Systems. Easy: Incremental Linear: P PI PID Intuitive: Fuzzy Logic. It says to cook your food until burned food!

CDS 101: Lecture 5.1 Controllability and State Space Feedback

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Frequency Domain Filtering

Module 4: Time Response of discrete time systems Lecture Note 1

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 6 - Small Signal Stability

EE 4343 Lab#4 PID Control Design of Rigid Bodies

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t,

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Appendix: The Laplace Transform

EE422G Homework #13 (12 points)

Performance-Based Plastic Design (PBPD) Procedure

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Solution of EECS 315 Final Examination F09

Butterworth LC Filter Designer

Chapter (a) ζ. ω. 5 2 (a) Type 0 (b) Type 0 (c) Type 1 (d) Type 2 (e) Type 3 (f) Type 3. (g) type 2 (h) type (a) K G s.

Wave Phenomena Physics 15c

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Transcription:

ECE60: etwork Theory Broadbad Circuit Deig Fall 04 Lecture 3: PLL Aalyi Sam Palermo Aalog & Mixed-Sigal Ceter Texa A&M Uiverity

Ageda & Readig PLL Overview & Applicatio PLL Liear Model Phae & Frequecy Relatiohip PLL Trafer Fuctio PLL Order & Type Readig Chapter, 3, 5, & of Phaelock Techique, F. Garder, Joh Wiley & So, 005.

Referece M. Perrott, High Speed Commuicatio Circuit ad Sytem Coure, MIT Ope Coureware Chapter of Phae-Locked Loop, 3 rd Ed., R. Bet, McGraw-Hill, 997. Chapter, 3, 5, & of Phaelock Techique, F. Garder, Joh Wiley & So, 005. 3

PLL Block Diagram [Perrott] A phae-locked loop (PLL) i a egative feedback ytem where a ocillator-geerated igal i phae AD frequecy locked to a referece igal 4

PLL Applicatio PLL applicatio Frequecy ythei Multiplyig a 00MHz referece clock to 0GHz Skew cacellatio Phae aligig a iteral clock to a I/O clock Clock recovery Extract from icomig data tream the clock frequecy ad optimum phae of high-peed amplig clock Modulatio/De-modulatio Wirele ytem Spread-pectrum clockig 5

Forward Clock I/O Circuit TX PLL TX Clock Ditributio Replica TX Clock Driver Chael Forward Clock Amplifier RX Clock Ditributio De-Skew Circuit DLL/PI Ijectio-Locked Ocillator 6

Embedded Clock I/O Circuit TX PLL TX Clock Ditributio CDR Per-chael PLL-baed Dual-loop w/ Global PLL & Local DLL/PI Local Phae-Rotator PLL Global PLL require RX clock ditributio to idividual chael 7

Liear PLL Model Phae i geerally the key variable of iteret Liear mall-igal aalyi i ueful for udertad PLL dyamic if PLL i locked (or ear lock) Iput phae deviatio amplitude i mall eough to maitai operatio i lock rage 8

Phae Detector φ ref φ e φ fb Detect phae differece betwee feedback clock ad referece clock The loop filter will filter the phae detector output, thu to characterize phae detector gai, extract average output voltage (or curret for charge-pump PLL) 9

Loop Filter VDD I Chargig Cotrol Voltage I VSS Dichargig C R C F() Lowpa filter extract average of phae detector error pule 0

Voltage-Cotrolled Ocillator ω 0 0 VDD/ VDD Time-domai phae relatiohip ( t) ( t) dt v ( t) φ out ω out c dt ω ( t) ω ω ( t) v ( t) out 0 out ω 0 Laplace Domai Model c φ out (t)

Loop Divider φ out (t) φ fb (t) [Perrott] Time-domai model ω fb ω ( t) ( t) out φ fb out ( t) ω ( t) dt φ ( t) out

Phae & Frequecy Relatiohip Agular Frequecy i the firt derivative (rate of chage v time) of phae dφ dt ( t) ω ( t) Coider a iuoid u Phae Step u φ ( t) Φu( t) ( t) ( ω ( t) Φu( t) ) i φ t ( t) ω( ) o d ( t) with agular frequecy ω ( t) ad phaeφ ( t) u ( t) i( ω ( t) t φ ( t) ) [Bet] o chage i frequecy Φ 3

Phae & Frequecy Relatiohip Frequecy Step ω( t) u ( t) i( ω t ωt) i( ω t φ ( t) ) 0 where ω ω φ 0 ( t) ωt 0 A frequecy tep produce a ramp i phae [Bet] φ ( t) t ω 4

Phae & Frequecy Relatiohip Frequecy Ramp u ( t) ω0 ω t t ( t) i 0 d i 0t t ω ω ω ω i( ω0t φ( t) ) 0 ω [Bet] where φ ( t) ω t A frequecy ramp produce a quadratic chage i phae ω0 ω 0 ω t φ ω t ( t ) 5

Udertadig PLL Frequecy Repoe Liear mall-igal aalyi i ueful for udertad PLL dyamic if PLL i locked (or ear lock) Iput phae deviatio amplitude i mall eough to maitai operatio i lock rage Frequecy domai aalyi ca tell u how well the PLL track the iput phae a it chage at a certai frequecy PLL trafer fuctio i differet depedig o which poit i the loop the output i repodig to Iput phae repoe output repoe [Fichette] 6

Ope-Loop PLL Trafer Fuctio G ( ) Φ Φ ( ) ( ) out e F ( ) Ope-loop repoe geerally decreae with frequecy 7

Cloed-Loop PLL Trafer Fuctio Sytem Determiat l Forward Path Gai G Loop Gai F Forward Path Determiat ( ) ( ) G( ) G 0 ( ) G( ) 0 H ( ) Φ Φ out ref ( ) ( ) G G ( ) F( ) ( ) F ( ) Low-pa repoe whoe overall order i et by F() 8

PLL Error Trafer Fuctio l Sytem Determiat Forward Path Gai Loop Gai F Forward Path Determiat ( ) G( ) G 0 ( ) G( ) 0 E ( ) Φ Φ e ref ( ) ( ) G( ) F( ) Ideally, we wat thi to be zero Phae error geerally icreae with frequecy due to thi high-pa repoe 9

PLL Order ad Type The PLL order refer to the umber of pole i the cloed-loop trafer fuctio Thi i typically oe greater tha the umber of loop filter pole The PLL type refer to the umber of itegrator withi the loop A PLL i alway at leae Type due to the itegrator ote, the order ca ever be le tha the type 0

Firt-Order PLL F ( ) Simple firt-order lowpa trafer fuctio Cloed-loop badwidth i equal to the DC loop gai magitude Forward Path Gai : G DC Loop Gai Magitude : Trafer Fuctio : H Error Fuctio : E ( ) ( ) ( ) DC 3dB Cloed - Loop Badwidth : ω G lim 0 ( ) ω ω ω 3dB 3dB 3dB DC DC DC DC DC

Firt-Order PLL Trackig Repoe The PLL trackig behavior, or how the phae error repod to a iput phae chage, varie with the PLL type Phae Step Repoe [Bet] u φ ( t) Φu( t) ( t) ( ω ( t) Φu( t) ) i o chage i frequecy The fial value theorem ca be ued to fid the teady-tate phae error Φ lim 0 ( E( ) ) lim 0 0 Φ All PLL hould have o teady-tate phae error with a phae tep error ote, thi aume that the frequecy of operatio i the ame a the ceter frequecy (V ctrl 0). Workig at a frequecy other tha the ceter frequecy i coidered havig a frequecy offet (tep). DC

Firt-Order PLL Trackig Repoe Frequecy Offet (Step) u ω ( t) ( t) i( ω t ωt) i( ω t φ ( t) ) 0 where ω ω φ 0 ( t) ωt 0 [Bet] A frequecy tep produce a ramp i phae The fial value theorem ca be ued to fid the teadytate phae error ω lim ( E( ) ) 0 0 ω lim DC ω With a frequecy offet (tep), a firt-order PLL will lock with a teady-tate phae error that i iverely proportioal to the loop gai DC 3

Firt-Order PLL Iue The DC loop gai directly et the PLL badwidth o degree of freedom I order to have low phae error, a large loop gai i eceary, which implie a wide badwidth Thi may ot be deired i applicatio where we would like to filter iput referece clock phae oie Firt-order PLL offer o filterig of the phae detector output Without thi filterig, the may ot be well approximated by a imple factor Multiplier have a ecod-harmoic term Digital output quare pule that eed to be filtered 4

Secod-Order Type- PLL w/ Paive Lag-Lead Filter Paive Lag-Lead Loop Filter [Alle] F ( ) ( ) R C R C 5

( ) ( ) R C R C F Secod-Order Type- PLL w/ Paive Lag-Lead Filter ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 Error Fuctio : : Dampig Factor Frequecy : atural Trafer Fuctio : lim DC Loop Gai Magitude : Forward Path Gai : DC DC DC DC DC E H G G ω ζω ω ω ζ ω ω ζω ω ω ζ ω 6

Secod-Order Type- PLL Trackig Repoe Phae Step Repoe ω Φ Φ lim ( ( )) lim E 0 0 ζω ω 0 Agai, phae error hould be zero with a phae tep Frequecy Offet (Step) ω lim ( E( ) ) ω ω lim ζω 0 0 ω ω DC A ecod-order type- PLL will till lock with a phae error if there i a frequecy offet! 7

Secod-Order Type- PLL Propertie While the ecod-order type- PLL will till lock with a phae error with a frequecy offet, it i much more ueful tha a firt-order PLL There are ufficiet deig parameter (degree of freedom) to idepedetly et ω, ζ, ad DC The loop filter coditio the phae detector output for proper cotrol Loop tability eed to be coidered for the ecod-order ytem 8

Secod-Order Type- PLL w/ Paive Serie-RC Lag-Lead Filter Paive Serie-RC Loop Filter F ( ) R RC ote, thi type of loop filter i typically ued with a chargepump drivig it. Thu, the filter trafer fuctio i equal to the impedace. 9

Secod-Order Type- PLL w/ Paive Serie-RC Lag-Lead Filter F ( ) R RC DC Loop Gai Magitude : Forward Path Gai : G ( ) DC (ideally) R RC Trafer Fuctio : H ( ) R RC R C ω ζω ζ ζω ω atural Frequecy: ω ω Dampig Factor : ζ RC Error Fuctio : E ζω ω ( ) C 30

Secod-Order Type- PLL Trackig Repoe Phae Step Repoe Φ Φ lim ( E( ) ) lim 0 0 ζω ω 0 Agai, phae error hould be zero with a phae tep Frequecy Offet (Step) ω ω lim 0 0 ζω ω ( E( ) ) lim 0 A ecod-order type- PLL will lock with o phae error with a frequecy offet! 3

Secod-Order Type- PLL Propertie A big advatage of the type- PLL i that it ha zero phae error eve with a frequecy offet Thi i why type- PLL are very popular A type- PLL require a zero i the loop filter for tability. ote, thi i ot required i a type- PLL Thi zero ca caue extra peakig i the frequecy repoe Importat to miimize thi i ome applicatio, uch a cacaded CDR ytem 3

ext Time PLL Sytem Aalyi PLL Stability oie Trafer Fuctio Traiet Repoe 33