Flatness based analysis and control of distributed parameter systems Elgersburg Workshop 2018

Similar documents
Backstepping design for parabolic systems with in-domain actuation and Robin boundary conditions

Chapter 6. Differentially Flat Systems

COMBINED ADAPTIVE CONTROLLER FOR UAV GUIDANCE

Discrete-time flatness-based control of an electromagnetically levitated rotating shaft

WELL-FORMED DYNAMICS UNDER QUASI-STATIC STATE FEEDBACK

Motion planning for two classes of nonlinear systems with delays depending on the control

Infinite-dimensional nonlinear predictive controller design for open-channel hydraulic systems

Optimal thickness of a cylindrical shell under dynamical loading

Funnel control in mechatronics: An overview

A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF 3RD-ORDER UNCERTAIN NONLINEAR SYSTEMS

A conjecture on sustained oscillations for a closed-loop heat equation

Control of 2 2 Linear Hyperbolic Systems: Backstepping-Based Trajectory Generation and PI-Based Tracking

Differential Equation Types. Moritz Diehl

Trajectory planning in the regulation of a stepping motor: A combined sliding mode and flatness approach

A NEW COMPUTATIONAL METHOD FOR OPTIMAL CONTROL OF A CLASS OF CONSTRAINED SYSTEMS GOVERNED BY PARTIAL DIFFERENTIAL EQUATIONS

Output tracking control of a exible robot arm

Index. A 1-form, 42, 45, 133 Amplitude-frequency tradeoff, 14. Drift field perturbation, 66 Drift vector field, 42

ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT

Linear Hyperbolic Systems

Stability of Linear Distributed Parameter Systems with Time-Delays

Passive Control of Overhead Cranes

ON FLATNESS OF NONLINEAR IMPLICIT SYSTEMS

ASTATISM IN NONLINEAR CONTROL SYSTEMS WITH APPLICATION TO ROBOTICS

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory

The Role of Exosystems in Output Regulation

Chap. 3. Controlled Systems, Controllability

Optimal Control of Nonlinear Systems: A Predictive Control Approach

The Behavioral Approach to Systems Theory

Baer s extension problem for multidimensional linear systems

Introduction to constructive algebraic analysis

Stability and output regulation for a cascaded network of 2 2 hyperbolic systems with PI control

Global output regulation through singularities

TRACKING CONTROL OF WHEELED MOBILE ROBOTS WITH A SINGLE STEERING INPUT Control Using Reference Time-Scaling

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

Convergence Rate of Nonlinear Switched Systems

Pattern generation, topology, and non-holonomic systems

Observer Design for a Flexible Robot Arm with a Tip Load

A Novel Integral-Based Event Triggering Control for Linear Time-Invariant Systems

Analytical Multi-Point Trajectory Generation for Differentially Flat Systems with Output Constraints

DETC99/VIB-8223 FLATNESS-BASED CONTROL OF UNDERCONSTRAINED CABLE SUSPENSION MANIPULATORS

554 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 2, FEBRUARY and such that /$ IEEE

Contraction Based Adaptive Control of a Class of Nonlinear Systems

Introduction to Dynamic Path Inversion

then the substitution z = ax + by + c reduces this equation to the separable one.

NONLINEAR CONTROLLER DESIGN FOR ACTIVE SUSPENSION SYSTEMS USING THE IMMERSION AND INVARIANCE METHOD

EE C128 / ME C134 Feedback Control Systems

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

Design and Control of Variable Stiffness Actuation Systems

Robust Fault Diagnosis of Uncertain One-dimensional Wave Equations

State observers for invariant dynamics on a Lie group

Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification

Gramian-based Reachability Metrics for Bilinear Networks

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani

Optimizing Economic Performance using Model Predictive Control

The Rationale for Second Level Adaptation

A Notion of Zero Dynamics for Linear, Time-delay System

Energy-based Swing-up of the Acrobot and Time-optimal Motion

CIS 4930/6930: Principles of Cyber-Physical Systems

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Pfadverfolgung Von Normalformen zu prädiktiven Reglern

An Approach of Robust Iterative Learning Control for Uncertain Systems

Explicit approximate controllability of the Schrödinger equation with a polarizability term.

Event-based Stabilization of Nonlinear Time-Delay Systems

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables

DIFFERENTIAL FLATNESS AND ABSOLUTE EQUIVALENCE OF NONLINEAR CONTROL SYSTEMS

Consensus Protocols for Networks of Dynamic Agents

The first order quasi-linear PDEs

Lecture Notes of EE 714

Adaptive Tracking and Estimation for Nonlinear Control Systems

Modeling nonlinear systems using multiple piecewise linear equations

EE C128 / ME C134 Final Exam Fall 2014

The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications

Ph.D. Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2) EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified.

Boundary Control of an Anti-Stable Wave Equation With Anti-Damping on the Uncontrolled Boundary

BUMPLESS SWITCHING CONTROLLERS. William A. Wolovich and Alan B. Arehart 1. December 27, Abstract

An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted pendulum

LTI Systems (Continuous & Discrete) - Basics

16.30 Estimation and Control of Aerospace Systems

CHAPTER 1. Introduction

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN

Passivity-based Stabilization of Non-Compact Sets

Introduction to Nonlinear Control Lecture # 4 Passivity

Regulating Web Tension in Tape Systems with Time-varying Radii

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization)

Nonlinear tracking control of a dc motor via a boost-converter using linear dynamic output feedback

Networked Control Systems, Event-Triggering, Small-Gain Theorem, Nonlinear

Approximation-Free Prescribed Performance Control

Nonlinear Tracking Control of Underactuated Surface Vessel

An efficient and accurate MEMS accelerometer model with sense finger dynamics for applications in mixed-technology control loops

Defect-based a-posteriori error estimation for implicit ODEs and DAEs

Normally hyperbolic operators & Low Regularity

Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays

The Scalar Conservation Law

Parametrization of All Strictly Causal Stabilizing Controllers of Multidimensional Systems single-input single-output case

On at systems behaviors and observable image representations

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

On the convergence of normal forms for analytic control systems

Event-based control of input-output linearizable systems

Optimization-Based Control

Transcription:

Flatness based analysis and control of distributed parameter systems Elgersburg Workshop 2018 Frank Woittennek Institute of Automation and Control Engineering Private University for Health Sciences, Medical Informatics and Technology (UMIT) Hall in Tirol, Austria 01.03.2018 F. Woittennek Flatness of d.p.s Elgersburg 1 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 2 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 3 / 40

Flatness of finite dimensional systems Several abstract definitions: Nonlinear systems: differential algebraic [2] and differential geometric definitions [1] Linear systems: simple algebraic and geometric definitions (state space, polynomial matrices, modules over polynomial rings) Essence of the definitions: for the engineer system described by a set of (non-)linear differential equations involving several variables Flat output is a function of the system variables and derivatives. System variables can be expressed by flat output and derivatives No nontrivial differential equation in the components of the flat output. F. Woittennek Flatness of d.p.s Elgersburg 4 / 40

Flatness of a linear gantry crane model Linear model: for small deflections (angles) momentum balance for the cart: M D(t) = u(t) + mgθ(t) momentum balance for the load: mÿ(t) = mgθ(t) geometrical constraint: y(t) = D(t) + lθ(t) Flat output of the linear model: load position y θ(t) = 1 g ÿ(t), D(t) = y(t) + l Ml ÿ(t), u(t) = g g y(4) (t) + (m + M)ÿ(t) F. Woittennek Flatness of d.p.s Elgersburg 5 / 40

Flatness of a linear gantry crane model Linear model: for small deflections (angles) momentum balance for the cart: M D(t) = u(t) + mgθ(t) momentum balance for the load: mÿ(t) = mgθ(t) geometrical constraint: y(t) = D(t) + lθ(t) Flat output of the linear model: load position y θ(t) = 1 g ÿ(t), D(t) = y(t) + l Ml ÿ(t), u(t) = g g y(4) (t) + (m + M)ÿ(t) F. Woittennek Flatness of d.p.s Elgersburg 5 / 40

Flatness based open loop control design Control design: with cart position as input Prescribed: load position t y d (t) Apply computed input trajectory Computed: cart position t D d (t) = y d (t) + l g ÿd(t) F. Woittennek Flatness of d.p.s Elgersburg 6 / 40

Flatness based open loop control design Control design: with cart position as input 1.0 Flacher Ausgang y 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Zeit t Prescribed: load position t y d (t) Computed: cart position Apply computed input trajectory t D d (t) = y d (t) + l g ÿd(t) F. Woittennek Flatness of d.p.s Elgersburg 6 / 40

Flatness based open loop control design Control design: with cart position as input 1.0 1.0 Flacher Ausgang y 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Zeit t Prescribed: load position t y d (t) Wagenposition D 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Zeit t Computed: cart position Apply computed input trajectory t D d (t) = y d (t) + l g ÿd(t) F. Woittennek Flatness of d.p.s Elgersburg 6 / 40

Flatness based open loop control design Control design: with cart position as input 1.0 1.0 Flacher Ausgang y 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Zeit t Prescribed: load position t y d (t) Wagenposition D 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Zeit t Computed: cart position Apply computed input trajectory t D d (t) = y d (t) + l g ÿd(t) F. Woittennek Flatness of d.p.s Elgersburg 6 / 40

Feedback design Assumption: Reference trajectory t y d (t) for flat output already planned Introduce: Tracking error e(t) = y(t) y d (t) Prescribe: Desired dynamics for tracking error: ë(t) + k 1 ė(t) + k 0 e(t) = 0, k 0, k 1 0 Control law: Solve for ÿ substitute into input-parametrization: D(t) = y(t) + l g ÿ(t) = y(t) + l g (ÿ d(t) k 1 ė(t) k 0 e(t)) F. Woittennek Flatness of d.p.s Elgersburg 7 / 40

Feedback design Assumption: Reference trajectory t y d (t) for flat output already planned Introduce: Tracking error e(t) = y(t) y d (t) Prescribe: Desired dynamics for tracking error: ë(t) + k 1 ė(t) + k 0 e(t) = 0, k 0, k 1 0 Control law: Solve for ÿ substitute into input-parametrization: D(t) = y(t) + l g ÿ(t) = y(t) + l g (ÿ d(t) k 1 ė(t) k 0 e(t)) F. Woittennek Flatness of d.p.s Elgersburg 7 / 40

Feedback design Assumption: Reference trajectory t y d (t) for flat output already planned Introduce: Tracking error e(t) = y(t) y d (t) Prescribe: Desired dynamics for tracking error: ë(t) + k 1 ė(t) + k 0 e(t) = 0, k 0, k 1 0 Control law: Solve for ÿ substitute into input-parametrization: D(t) = y(t) + l g ÿ(t) = y(t) + l g (ÿ d(t) k 1 ė(t) k 0 e(t)) F. Woittennek Flatness of d.p.s Elgersburg 7 / 40

Feedback design Assumption: Reference trajectory t y d (t) for flat output already planned Introduce: Tracking error e(t) = y(t) y d (t) Prescribe: Desired dynamics for tracking error: ë(t) + k 1 ė(t) + k 0 e(t) = 0, k 0, k 1 0 Control law: Solve for ÿ substitute into input-parametrization: D(t) = y(t) + l g ÿ(t) = y(t) + l g (ÿ d(t) k 1 ė(t) k 0 e(t)) F. Woittennek Flatness of d.p.s Elgersburg 7 / 40

Feedback design Assumption: Reference trajectory t y d (t) for flat output already planned Introduce: Tracking error e(t) = y(t) y d (t) Prescribe: Desired dynamics for tracking error: ë(t) + k 1 ė(t) + k 0 e(t) = 0, k 0, k 1 0 Control law: Solve for ÿ substitute into input-parametrization: D(t) = y(t) + l g ÿ(t) = y(t) + l g (ÿ d(t) k 1 ė(t) k 0 e(t)) F. Woittennek Flatness of d.p.s Elgersburg 7 / 40

Feedback design Assumption: Reference trajectory t y d (t) for flat output already planned Introduce: Tracking error e(t) = y(t) y d (t) Prescribe: Desired dynamics for tracking error: ë(t) + k 1 ė(t) + k 0 e(t) = 0, k 0, k 1 0 Control law: Solve for ÿ substitute into input-parametrization: D(t) = y(t) + l g ÿ(t) = y(t) + l g (ÿ d(t) k 1 ė(t) k 0 e(t)) F. Woittennek Flatness of d.p.s Elgersburg 7 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 8 / 40

Extensions to more general systems Flatness: structural property of ordinary differential equations Extensions: several extensions for models of different structure available (e.g., delay differential systems, more general convolutional systems) Problems: Different model structures require different notions some phenomena can be described by models of different structure (definition of flatness should no depend on it) no rigorous definition for boundary value problems available Alternative: definition on the basis of the trajectories F. Woittennek Flatness of d.p.s Elgersburg 9 / 40

Trajectory definition Willems behavioral approach: associate dynamic system with the set B of its trajectories the behavior Time invariant linear systems: B is a shift invariant (w.r.t. t) vector-space Equivalence of dynamic systems: behaviors are isomorphic Concatenability of trajectories: trajectories τ 1, τ 2 B are concatenable in time T if there exists τ B such that { τ 1 (t), for t < 0 τ(t) = τ 2 (t), for t > T Concatenability of behaviors: trajectories are concatenable behavior is concatenable if any pair of Flatness: B is isomorphic to behavior B concatenable in any time ɛ > 0 (corresponds to controllability of B in time ɛ > 0 à la Willems) F. Woittennek Flatness of d.p.s Elgersburg 10 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 11 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 12 / 40

String with boundary load Normalized wave equation on [0, 1]: 2 x z 2 (z, t) 2 x (z, t) = 0, z [0, 1] (1a) t2 Left boundary: momentum balance for point mass m x(0, t) = y(t), Right boundary: force control: Behavior: x z (0, t) = m 2 t y(t) x (1, t) = u(t) z (1c) (1b) B = { (x, u, y) H 1 loc([0, l] R) (L 2 loc(r)) 2 is a limit of classical solutions of (1) } F. Woittennek Flatness of d.p.s Elgersburg 13 / 40

Parametrization by boundary trajectories Characteristics: lines in (z, t)-plane with slope +1 resp. 1 Riemann-Invariants: sum and difference of space and time-derivatives r 1 (z, t) = x (z, t) + ẋ(z, t), r 2 (z, t) = x (z, t) ẋ(z, t) are constant along the characteristics Consequences: Riemann-Invariants determined by its boundary values r 1 (z, t z) = x (z, t z) + ẋ(z, t z) = x (0, t) + ẋ(0, t) r 2 (z, t + z) = x (z, t + z) ẋ(z, t + z) = x (0, t) ẋ(0, t) Displacement profile: integration of x = r 1 + r 2 w.r.t. space x(z, t) = 1 2 ( x(0, t + z) + x(0, t z) ) + 1 2 z z x (0, t + σ)dσ Conclusion: Solution of the wave equation determined by boundary values (x(0, ), x (0, )) H 1 loc (R) L2 loc (R) F. Woittennek Flatness of d.p.s Elgersburg 14 / 40

Parametrization by boundary trajectories Characteristics: lines in (z, t)-plane with slope +1 resp. 1 Riemann-Invariants: sum and difference of space and time-derivatives r 1 (z, t) = x (z, t) + ẋ(z, t), r 2 (z, t) = x (z, t) ẋ(z, t) are constant along the characteristics Consequences: Riemann-Invariants determined by its boundary values r 1 (z, t z) = x (z, t z) + ẋ(z, t z) = x (0, t) + ẋ(0, t) r 2 (z, t + z) = x (z, t + z) ẋ(z, t + z) = x (0, t) ẋ(0, t) Displacement profile: integration of x = r 1 + r 2 w.r.t. space x(z, t) = 1 2 ( x(0, t + z) + x(0, t z) ) + 1 2 z z x (0, t + σ)dσ Conclusion: Solution of the wave equation determined by boundary values (x(0, ), x (0, )) H 1 loc (R) L2 loc (R) F. Woittennek Flatness of d.p.s Elgersburg 14 / 40

Parametrization by boundary trajectories Characteristics: lines in (z, t)-plane with slope +1 resp. 1 Riemann-Invariants: sum and difference of space and time-derivatives r 1 (z, t) = x (z, t) + ẋ(z, t), r 2 (z, t) = x (z, t) ẋ(z, t) are constant along the characteristics Consequences: Riemann-Invariants determined by its boundary values r 1 (z, t z) = x (z, t z) + ẋ(z, t z) = x (0, t) + ẋ(0, t) r 2 (z, t + z) = x (z, t + z) ẋ(z, t + z) = x (0, t) ẋ(0, t) Displacement profile: integration of x = r 1 + r 2 w.r.t. space x(z, t) = 1 2 ( x(0, t + z) + x(0, t z) ) + 1 2 z z x (0, t + σ)dσ Conclusion: Solution of the wave equation determined by boundary values (x(0, ), x (0, )) H 1 loc (R) L2 loc (R) F. Woittennek Flatness of d.p.s Elgersburg 14 / 40

Parametrization by boundary trajectories Characteristics: lines in (z, t)-plane with slope +1 resp. 1 Riemann-Invariants: sum and difference of space and time-derivatives r 1 (z, t) = x (z, t) + ẋ(z, t), r 2 (z, t) = x (z, t) ẋ(z, t) are constant along the characteristics Consequences: Riemann-Invariants determined by its boundary values r 1 (z, t z) = x (z, t z) + ẋ(z, t z) = x (0, t) + ẋ(0, t) r 2 (z, t + z) = x (z, t + z) ẋ(z, t + z) = x (0, t) ẋ(0, t) Displacement profile: integration of x = r 1 + r 2 w.r.t. space x(z, t) = 1 2 ( x(0, t + z) + x(0, t z) ) + 1 2 z z x (0, t + σ)dσ Conclusion: Solution of the wave equation determined by boundary values (x(0, ), x (0, )) H 1 loc (R) L2 loc (R) F. Woittennek Flatness of d.p.s Elgersburg 14 / 40

Parametrization by boundary trajectories Characteristics: lines in (z, t)-plane with slope +1 resp. 1 Riemann-Invariants: sum and difference of space and time-derivatives r 1 (z, t) = x (z, t) + ẋ(z, t), r 2 (z, t) = x (z, t) ẋ(z, t) are constant along the characteristics Consequences: Riemann-Invariants determined by its boundary values r 1 (z, t z) = x (z, t z) + ẋ(z, t z) = x (0, t) + ẋ(0, t) r 2 (z, t + z) = x (z, t + z) ẋ(z, t + z) = x (0, t) ẋ(0, t) Displacement profile: integration of x = r 1 + r 2 w.r.t. space x(z, t) = 1 2 ( x(0, t + z) + x(0, t z) ) + 1 2 z z x (0, t + σ)dσ Conclusion: Solution of the wave equation determined by boundary values (x(0, ), x (0, )) H 1 loc (R) L2 loc (R) F. Woittennek Flatness of d.p.s Elgersburg 14 / 40

Parametrization by boundary trajectories Characteristics: lines in (z, t)-plane with slope +1 resp. 1 Riemann-Invariants: sum and difference of space and time-derivatives r 1 (z, t) = x (z, t) + ẋ(z, t), r 2 (z, t) = x (z, t) ẋ(z, t) are constant along the characteristics Consequences: Riemann-Invariants determined by its boundary values r 1 (z, t z) = x (z, t z) + ẋ(z, t z) = x (0, t) + ẋ(0, t) r 2 (z, t + z) = x (z, t + z) ẋ(z, t + z) = x (0, t) ẋ(0, t) Displacement profile: integration of x = r 1 + r 2 w.r.t. space x(z, t) = 1 2 ( x(0, t + z) + x(0, t z) ) + 1 2 z z x (0, t + σ)dσ Conclusion: Solution of the wave equation determined by boundary values (x(0, ), x (0, )) H 1 loc (R) L2 loc (R) F. Woittennek Flatness of d.p.s Elgersburg 14 / 40

Boundary conditions and flat output Starting point: Parametrization by x(, 0), x (, 0) H 1 loc (R) L2 loc (R) x(z, t) = 1 2 ( ) 1 z x(0, t + z) + x(0, t z) + x (0, t + σ)dσ 2 z Left boundary: boundary gradient and displacement from load position x(0, t) = y(t), x (0, t) = mÿ(t) Displacement profile: parametrization by load position y H 2 loc (R) x(z, t) = 1 2 ( ) m y(t + z) + y(t z) + (ẏ(t + z) ẏ(t z)) 2 Control input: evaluate solution at right boundary u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Conclusion: load position y Hloc 2 (R) is flat output F. Woittennek Flatness of d.p.s Elgersburg 15 / 40

Boundary conditions and flat output Starting point: Parametrization by x(, 0), x (, 0) H 1 loc (R) L2 loc (R) x(z, t) = 1 2 ( ) 1 z x(0, t + z) + x(0, t z) + x (0, t + σ)dσ 2 z Left boundary: boundary gradient and displacement from load position x(0, t) = y(t), x (0, t) = mÿ(t) Displacement profile: parametrization by load position y H 2 loc (R) x(z, t) = 1 2 ( ) m y(t + z) + y(t z) + (ẏ(t + z) ẏ(t z)) 2 Control input: evaluate solution at right boundary u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Conclusion: load position y Hloc 2 (R) is flat output F. Woittennek Flatness of d.p.s Elgersburg 15 / 40

Boundary conditions and flat output Starting point: Parametrization by x(, 0), x (, 0) H 1 loc (R) L2 loc (R) x(z, t) = 1 2 ( ) 1 z x(0, t + z) + x(0, t z) + x (0, t + σ)dσ 2 z Left boundary: boundary gradient and displacement from load position x(0, t) = y(t), x (0, t) = mÿ(t) Displacement profile: parametrization by load position y H 2 loc (R) x(z, t) = 1 2 ( ) m y(t + z) + y(t z) + (ẏ(t + z) ẏ(t z)) 2 Control input: evaluate solution at right boundary u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Conclusion: load position y Hloc 2 (R) is flat output F. Woittennek Flatness of d.p.s Elgersburg 15 / 40

Boundary conditions and flat output Starting point: Parametrization by x(, 0), x (, 0) H 1 loc (R) L2 loc (R) x(z, t) = 1 2 ( ) 1 z x(0, t + z) + x(0, t z) + x (0, t + σ)dσ 2 z Left boundary: boundary gradient and displacement from load position x(0, t) = y(t), x (0, t) = mÿ(t) Displacement profile: parametrization by load position y H 2 loc (R) x(z, t) = 1 2 ( ) m y(t + z) + y(t z) + (ẏ(t + z) ẏ(t z)) 2 Control input: evaluate solution at right boundary u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Conclusion: load position y Hloc 2 (R) is flat output F. Woittennek Flatness of d.p.s Elgersburg 15 / 40

Boundary conditions and flat output Starting point: Parametrization by x(, 0), x (, 0) H 1 loc (R) L2 loc (R) x(z, t) = 1 2 ( ) 1 z x(0, t + z) + x(0, t z) + x (0, t + σ)dσ 2 z Left boundary: boundary gradient and displacement from load position x(0, t) = y(t), x (0, t) = mÿ(t) Displacement profile: parametrization by load position y H 2 loc (R) x(z, t) = 1 2 ( ) m y(t + z) + y(t z) + (ẏ(t + z) ẏ(t z)) 2 Control input: evaluate solution at right boundary u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Conclusion: load position y Hloc 2 (R) is flat output F. Woittennek Flatness of d.p.s Elgersburg 15 / 40

Boundary conditions and flat output Starting point: Parametrization by x(, 0), x (, 0) H 1 loc (R) L2 loc (R) x(z, t) = 1 2 ( ) 1 z y(t + z) + y(t z) + x (0, t + σ)dσ 2 z Left boundary: boundary gradient and displacement from load position x(0, t) = y(t), x (0, t) = mÿ(t) Displacement profile: parametrization by load position y H 2 loc (R) x(z, t) = 1 2 ( ) m y(t + z) + y(t z) + (ẏ(t + z) ẏ(t z)) 2 Control input: evaluate solution at right boundary u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Conclusion: load position y Hloc 2 (R) is flat output F. Woittennek Flatness of d.p.s Elgersburg 15 / 40

Boundary conditions and flat output Starting point: Parametrization by x(, 0), x (, 0) H 1 loc (R) L2 loc (R) x(z, t) = 1 2 ( ) 1 z y(t + z) + y(t z) + x (0, t + σ)dσ 2 z Left boundary: boundary gradient and displacement from load position x(0, t) = y(t), x (0, t) = mÿ(t) Displacement profile: parametrization by load position y H 2 loc (R) x(z, t) = 1 2 ( ) m y(t + z) + y(t z) + (ẏ(t + z) ẏ(t z)) 2 Control input: evaluate solution at right boundary u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Conclusion: load position y Hloc 2 (R) is flat output F. Woittennek Flatness of d.p.s Elgersburg 15 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 16 / 40

State associated with flat parametrization Starting point: equivalent System y Hloc 2 (R) with input u = Uy given by u(t) = Uy = 1 2 (ẏ(t+1) ẏ(t 1))+ m (ÿ(t+1)+ÿ(t 1)). (*) 2 State space (w.r.t. u): portion of system behavior independent of u Ȳ = ker U (does not depended on the representative of equivalence class) State: projection of system behavior to the state space Observation: initial value problem associated with (*) when prescribing y on[ 1, 1]: y(θ) = ȳ 0 (θ), θ [ 1, 1], ȳ 0 H 2 [ 1, 1] Consequence: ȳ = H 2 [ 1, 1] is a state space and the restriction of y to [ 1, 1] is a state F. Woittennek Flatness of d.p.s Elgersburg 17 / 40

Controllability as interpolation problem Starting point: input-state system with input u and state ȳ Controllability problem: given T > 0 and initial and final states ȳ 0, ȳ T y find a control u L 2 loc ([0, T ]) that drives the system from ȳ 0 to ȳ T in time T Solution: compute y H 2 ([ 1, T + 1]) that coincides with ȳ 0 on [ 1, 1] and with ȳ T on [T 1, T + 1] Initial state Transition Final state 1 0 1 T 1 T T + 1 Consequence: exact controllability of the system with input u for T > 2 F. Woittennek Flatness of d.p.s Elgersburg 18 / 40

Transf. to physical coordinates State variables: x t = ( x 1 t, ȳ 1 t, x 2 t, ȳ 2 t ) = (x(, t), y(t), ẋ(, t), ẏ(t)) X State space X = X 1 X 2 X 1 = { ( x 1, ȳ 1 ) H 1 ([0, 1]) R : x 1 (0) = ȳ 1}, Map ϕ : Ȳ X from flat parametrization: x 1 (z) = 1 2 (ȳ(z)+y( z))+ m 2 ( ȳ(z) ȳ( z)) x 2 (z) = 1 2 ( ȳ(z)+ẏ( z))+ m 2 ( ȳ(z) ȳ( z)) ȳ 1 (z) = ȳ(0) ȳ 2 (z) = ȳ(0) Inverse map as solution of inhomogeneous linear o.d.e.: { ȳ + (θ), t > 0 ȳ(θ) = ȳ (θ), t < 0 with X2 = L p ([0, 1]) R ȳ+ (θ) = ȳ 1 + m(1 e θ/m )ȳ 2 + θ 0 (1 e (θ τ)/m )( x 1 (τ) + x 2 (τ))dτ ȳ (θ) = ȳ 1 + m(e θ/m 1)ȳ 2 + θ 0 (e(θ τ)/m 1)( x 1 ( τ) x 2 ( τ))dτ. Result: transformation to physical state x F. Woittennek Flatness of d.p.s Elgersburg 19 / 40

State transformation (illustration) displacement profiles (bottom) correspond with restriction of load trajectory (above) on moving interval (blue) F. Woittennek Flatness of d.p.s Elgersburg 20 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 21 / 40

Flatness based control design Starting point: parametrization of input u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Desired dynamics: (mit k 0, k 1 > 0 und α < 1) 0 = ÿ α (t) + k 1 ẏ α (t) + k 0 y α (t), y α (t) = y(t + 1) + αy(t 1) Feedback: solve desired dynamics for ÿ(t + 1) and use in input parametrization u(t) = 1 2 ((1 mk 1)ẏ(t+1) (1+mαk 1 )ẏ(t 1))+ m 2 ((1 α)ÿ(t 1) k 0y α (t)) As state feedback: with ȳ(θ, t) = y(t + θ) Unbounded part in physical coordinates: mȳ ( 1, t) = x (1, t) ẋ(1, t) + ȳ ( 1, t) = u(t) ẋ(1, t) + ȳ ( 1, t) State feedback: unbounded collocated feedback extended by bounded terms u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, F. Woittennek Flatness of d.p.s Elgersburg 22 / 40

Flatness based control design Starting point: parametrization of input u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Desired dynamics: (mit k 0, k 1 > 0 und α < 1) 0 = ÿ α (t) + k 1 ẏ α (t) + k 0 y α (t), y α (t) = y(t + 1) + αy(t 1) Feedback: solve desired dynamics for ÿ(t + 1) and use in input parametrization u(t) = 1 2 ((1 mk 1)ẏ(t+1) (1+mαk 1 )ẏ(t 1))+ m 2 ((1 α)ÿ(t 1) k 0y α (t)) As state feedback: with ȳ(θ, t) = y(t + θ) Unbounded part in physical coordinates: mȳ ( 1, t) = x (1, t) ẋ(1, t) + ȳ ( 1, t) = u(t) ẋ(1, t) + ȳ ( 1, t) State feedback: unbounded collocated feedback extended by bounded terms u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, F. Woittennek Flatness of d.p.s Elgersburg 22 / 40

Flatness based control design Starting point: parametrization of input u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Desired dynamics: (mit k 0, k 1 > 0 und α < 1) 0 = ÿ α (t) + k 1 ẏ α (t) + k 0 y α (t), y α (t) = y(t + 1) + αy(t 1) Feedback: solve desired dynamics for ÿ(t + 1) and use in input parametrization u(t) = 1 2 ((1 mk 1)ẏ(t+1) (1+mαk 1 )ẏ(t 1))+ m 2 ((1 α)ÿ(t 1) k 0y α (t)) As state feedback: with ȳ(θ, t) = y(t + θ) Unbounded part in physical coordinates: mȳ ( 1, t) = x (1, t) ẋ(1, t) + ȳ ( 1, t) = u(t) ẋ(1, t) + ȳ ( 1, t) State feedback: unbounded collocated feedback extended by bounded terms u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, F. Woittennek Flatness of d.p.s Elgersburg 22 / 40

Flatness based control design Starting point: parametrization of input u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Desired dynamics: (mit k 0, k 1 > 0 und α < 1) 0 = ÿ α (t) + k 1 ẏ α (t) + k 0 y α (t), y α (t) = y(t + 1) + αy(t 1) Feedback: solve desired dynamics for ÿ(t + 1) and use in input parametrization u(t) = 1 2 ((1 mk 1)ẏ(t+1) (1+mαk 1 )ẏ(t 1))+ m 2 ((1 α)ÿ(t 1) k 0y α (t)) As state feedback: with ȳ(θ, t) = y(t + θ) Unbounded part in physical coordinates: mȳ ( 1, t) = x (1, t) ẋ(1, t) + ȳ ( 1, t) = u(t) ẋ(1, t) + ȳ ( 1, t) State feedback: unbounded collocated feedback extended by bounded terms u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, F. Woittennek Flatness of d.p.s Elgersburg 22 / 40

Flatness based control design Starting point: parametrization of input u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Desired dynamics: (mit k 0, k 1 > 0 und α < 1) 0 = ÿ α (t) + k 1 ẏ α (t) + k 0 y α (t), y α (t) = y(t + 1) + αy(t 1) Feedback: solve desired dynamics for ÿ(t + 1) and use in input parametrization u(t) = 1 2 ((1 mk 1)ẏ(t+1) (1+mαk 1 )ẏ(t 1))+ m 2 ((1 α)ÿ(t 1) k 0y α (t)) As state feedback: with ȳ(θ, t) = y(t + θ) Unbounded part in physical coordinates: mȳ ( 1, t) = x (1, t) ẋ(1, t) + ȳ ( 1, t) = u(t) ẋ(1, t) + ȳ ( 1, t) State feedback: unbounded collocated feedback extended by bounded terms u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, F. Woittennek Flatness of d.p.s Elgersburg 22 / 40

Flatness based control design Starting point: parametrization of input u(t) = 1 2 (ẏ(t+1) ẏ(t 1))+ m 2 (ÿ(t+1)+ÿ(t 1)) Desired dynamics: (mit k 0, k 1 > 0 und α < 1) 0 = ÿ α (t) + k 1 ẏ α (t) + k 0 y α (t), y α (t) = y(t + 1) + αy(t 1) Feedback: solve desired dynamics for ÿ(t + 1) and use in input parametrization u(t) = 1 2 ((1 mk 1)ẏ(t+1) (1+mαk 1 )ẏ(t 1))+ m 2 ((1 α)ÿ(t 1) k 0y α (t)) As state feedback: with ȳ(θ, t) = y(t + θ) Unbounded part in physical coordinates: mȳ ( 1, t) = x (1, t) ẋ(1, t) + ȳ ( 1, t) = u(t) ẋ(1, t) + ȳ ( 1, t) State feedback: unbounded collocated feedback extended by bounded terms u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, F. Woittennek Flatness of d.p.s Elgersburg 22 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 23 / 40

Numerical implementation Starting point: Control law u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, Approximation of the state: sum of N ansatz functions ϕ N,k x N (t) = N x k (t)ϕ N,k, k=1 x(t) = lim N x N(t) State in flat coordinates: transformation of ansatz functions N ȳ N (t) = x k (t)ψ N,k, ȳ(t) = lim N ȳn (t), ψ N,k = Φ 1 (ϕ N,k ) k=1 Approximated feedback: u(t) = N k=1 x k (t)r k 1 α t) 1 + αẋ(1, with real gains R k = 1 1 + α ((1 mk 1)ψ k(1) α(1 + mk 1 )ψ k( 1) mk 0 (ψ k (1) + αψ k ( 1)) Implementation: simple if pairs ψ N,k = Φ(ϕ N,k ) are known F. Woittennek Flatness of d.p.s Elgersburg 24 / 40

Numerical implementation Starting point: Control law u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, Approximation of the state: sum of N ansatz functions ϕ N,k x N (t) = N x k (t)ϕ N,k, k=1 x(t) = lim N x N(t) State in flat coordinates: transformation of ansatz functions N ȳ N (t) = x k (t)ψ N,k, ȳ(t) = lim N ȳn (t), ψ N,k = Φ 1 (ϕ N,k ) k=1 Approximated feedback: u(t) = N k=1 x k (t)r k 1 α t) 1 + αẋ(1, with real gains R k = 1 1 + α ((1 mk 1)ψ k(1) α(1 + mk 1 )ψ k( 1) mk 0 (ψ k (1) + αψ k ( 1)) Implementation: simple if pairs ψ N,k = Φ(ϕ N,k ) are known F. Woittennek Flatness of d.p.s Elgersburg 24 / 40

Numerical implementation Starting point: Control law u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, Approximation of the state: sum of N ansatz functions ϕ N,k x N (t) = N x k (t)ϕ N,k, k=1 x(t) = lim N x N(t) State in flat coordinates: transformation of ansatz functions N ȳ N (t) = x k (t)ψ N,k, ȳ(t) = lim N ȳn (t), ψ N,k = Φ 1 (ϕ N,k ) k=1 Approximated feedback: u(t) = N k=1 x k (t)r k 1 α t) 1 + αẋ(1, with real gains R k = 1 1 + α ((1 mk 1)ψ k(1) α(1 + mk 1 )ψ k( 1) mk 0 (ψ k (1) + αψ k ( 1)) Implementation: simple if pairs ψ N,k = Φ(ϕ N,k ) are known F. Woittennek Flatness of d.p.s Elgersburg 24 / 40

Numerical implementation Starting point: Control law u(t) = 1 1 + α ((1 mk 1)ȳ (1, t) α(1+mk 1 )ȳ ( 1, t) mk 0 y α (t)) 1 α t) 1 + αẋ(1, Approximation of the state: sum of N ansatz functions ϕ N,k x N (t) = N x k (t)ϕ N,k, k=1 x(t) = lim N x N(t) State in flat coordinates: transformation of ansatz functions N ȳ N (t) = x k (t)ψ N,k, ȳ(t) = lim N ȳn (t), ψ N,k = Φ 1 (ϕ N,k ) k=1 Approximated feedback: u(t) = N k=1 x k (t)r k 1 α t) 1 + αẋ(1, with real gains R k = 1 1 + α ((1 mk 1)ψ k(1) α(1 + mk 1 )ψ k( 1) mk 0 (ψ k (1) + αψ k ( 1)) Implementation: simple if pairs ψ N,k = Φ(ϕ N,k ) are known F. Woittennek Flatness of d.p.s Elgersburg 24 / 40

Simulation: Controller Controller parameters: α = 0.0, k 0 = 4, k 1 = 4 Simulation model: modal approximation using 20 modes Feedback law: approximation with 5 eigenfunctions (late lumping) F. Woittennek Flatness of d.p.s Elgersburg 25 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 26 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 27 / 40

Spatially dependent coefficients Point of depart: hyperbolic p.d.e. a i,j (z) j i w t j z i (z, t) = 0, a 0,2(z) < 0, a 0,2 (z) > 0 i+j 2 coupled with differentially flat system n w(0, t) = l i,1 y (i) (t), w (0, t) = i=0 n l i,2 y (i) (t) i=0 ( ) w Control input: u(t) = r T (L, t) ẇ(l, t) Flat output: flat output y Hloc n (R) of boundary system F. Woittennek Flatness of d.p.s Elgersburg 28 / 40

Gantry: Distributed parameter model Inner force: weight of the remaining rope σ(s) = g(m + sρ) Horizontal part: F (s, t) = σ(s) x s (s, t) Momentum balance: ϱ 2 x F (s, t) = (s, t) t2 s Eliminate force: second order p.d.e. Boundary conditions: ϱ 2 x t 2 (s, t) = s (σ(s) x (s, t)) s Free end: momentum balance for load m 2 x (0, t) = F (0, t) = σ(0) x(0, t) t2 s Top: control via horizontal force u(t) = σ(l) x (l, t) s F. Woittennek Flatness of d.p.s Elgersburg 29 / 40

Gantry: Distributed parameter model Inner force: weight of the remaining rope σ(s) = g(m + sρ) Horizontal part: F (s, t) = σ(s) x s (s, t) Momentum balance: ϱ 2 x F (s, t) = (s, t) t2 s Eliminate force: second order p.d.e. Boundary conditions: ϱ 2 x t 2 (s, t) = s (σ(s) x (s, t)) s Free end: momentum balance for load m 2 x (0, t) = F (0, t) = σ(0) x(0, t) t2 s Top: control via horizontal force u(t) = σ(l) x (l, t) s F. Woittennek Flatness of d.p.s Elgersburg 29 / 40

Gantry: Distributed parameter model Inner force: weight of the remaining rope σ(s) = g(m + sρ) Horizontal part: F (s, t) = σ(s) x s (s, t) Momentum balance: ϱ 2 x F (s, t) = (s, t) t2 s Eliminate force: second order p.d.e. Boundary conditions: ϱ 2 x t 2 (s, t) = s (σ(s) x (s, t)) s Free end: momentum balance for load m 2 x (0, t) = F (0, t) = σ(0) x(0, t) t2 s Top: control via horizontal force u(t) = σ(l) x (l, t) s F. Woittennek Flatness of d.p.s Elgersburg 29 / 40

Gantry: Distributed parameter model Inner force: weight of the remaining rope σ(s) = g(m + sρ) Horizontal part: F (s, t) = σ(s) x s (s, t) Momentum balance: ϱ 2 x F (s, t) = (s, t) t2 s Eliminate force: second order p.d.e. Boundary conditions: ϱ 2 x t 2 (s, t) = s (σ(s) x (s, t)) s Free end: momentum balance for load m 2 x (0, t) = F (0, t) = σ(0) x(0, t) t2 s Top: control via horizontal force u(t) = σ(l) x (l, t) s F. Woittennek Flatness of d.p.s Elgersburg 29 / 40

Gantry: Distributed parameter model Inner force: weight of the remaining rope σ(s) = g(m + sρ) Horizontal part: F (s, t) = σ(s) x s (s, t) Momentum balance: ϱ 2 x F (s, t) = (s, t) t2 s Eliminate force: second order p.d.e. Boundary conditions: ϱ 2 x t 2 (s, t) = s (σ(s) x (s, t)) s Free end: momentum balance for load m 2 x (0, t) = F (0, t) = σ(0) x(0, t) t2 s Top: control via horizontal force u(t) = σ(l) x (l, t) s F. Woittennek Flatness of d.p.s Elgersburg 29 / 40

Gantry: Distributed parameter model Inner force: weight of the remaining rope σ(s) = g(m + sρ) Horizontal part: F (s, t) = σ(s) x s (s, t) Momentum balance: ϱ 2 x F (s, t) = (s, t) t2 s Eliminate force: second order p.d.e. Boundary conditions: ϱ 2 x t 2 (s, t) = s (σ(s) x (s, t)) s Free end: momentum balance for load m 2 x (0, t) = F (0, t) = σ(0) x(0, t) t2 s Top: control via horizontal force u(t) = σ(l) x (l, t) s F. Woittennek Flatness of d.p.s Elgersburg 29 / 40

Gantry: Distributed parameter model Inner force: weight of the remaining rope σ(s) = g(m + sρ) Horizontal part: F (s, t) = σ(s) x s (s, t) Momentum balance: ϱ 2 x F (s, t) = (s, t) t2 s Eliminate force: second order p.d.e. Boundary conditions: ϱ 2 x t 2 (s, t) = s (σ(s) x (s, t)) s Free end: momentum balance for load m 2 x (0, t) = F (0, t) = σ(0) x(0, t) t2 s Top: control via horizontal force u(t) = σ(l) x (l, t) s F. Woittennek Flatness of d.p.s Elgersburg 29 / 40

Gantry: Distributed parameter model Inner force: weight of the remaining rope σ(s) = g(m + sρ) Horizontal part: F (s, t) = σ(s) x s (s, t) Momentum balance: ϱ 2 x F (s, t) = (s, t) t2 s Eliminate force: second order p.d.e. Boundary conditions: ϱ 2 x t 2 (s, t) = s (σ(s) x (s, t)) s Free end: momentum balance for load m 2 x (0, t) = F (0, t) = σ(0) x(0, t) t2 s Top: control via horizontal force u(t) = σ(l) x (l, t) s F. Woittennek Flatness of d.p.s Elgersburg 29 / 40

Flatness based control F. Woittennek Flatness of d.p.s Elgersburg 30 / 40

Simulation F. Woittennek Flatness of d.p.s Elgersburg 31 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 32 / 40

Simple network: Coupled strings m 2 x x 2 (z 2, t) m 1 x 1 (z 1, t) 0 Normalized wave equations: z 1 z 2 1 u z zx 2 i (z, t) t 2 x i (z, t) = 0, i = 1, 2, z [0, 1] Left boundaries: Momentum balances for the loads m 1 t 2 x 1 (0, t) = z x 1 (0, t), m 2 t 2 x 2 (0, t) = z x 2 (0, t) Right boundary: strings joined to each other x 1 (1, t) x 2 (1, t) = 0 force control u z x 1 (1, t) + z x 2 (1, t) = u(t) F. Woittennek Flatness of d.p.s Elgersburg 33 / 40

Simple network: Coupled strings m 2 x x 2 (z 2, t) m 1 x 1 (z 1, t) 0 Parametrization by the load positions: z 1 z 2 1 u z x i (z, t) = 1 2 (y i(t+z)+y i (t z))+ m i 2 (ẏ i(t+z) ẏ i (t z)) System of convolution equations for (y 1, y 2, u) H 1 loc (R)2 L 2 loc (R) u(t) = 0 = 2 i=1 2 i=1 1 2 (ẏ i(t+1) ẏ i (t 1))+ m i 2 (ÿ i(t+1)+ÿ i (t 1)) ( 1) i ( 1 2 (y i(t+1)+y i (t 1))+ m i 2 (ẏ i(t+1) ẏ i (t 1)) ) F. Woittennek Flatness of d.p.s Elgersburg 33 / 40

Simple network: Coupled strings m 2 x x 2 (z 2, t) m 1 x 1 (z 1, t) 0 Parametrization by the load positions: z 1 z 2 1 u z x i (z, t) = 1 2 (y i(t+z)+y i (t z))+ m i 2 (ẏ i(t+z) ẏ i (t z)) System of convolution equations for (y 1, y 2, u) H 1 loc (R)2 L 2 loc (R) u(t) = 0 = 2 i=1 2 i=1 1 2 (ẏ i(t+1) ẏ i (t 1))+ m i 2 (ÿ i(t+1)+ÿ i (t 1)) ( 1) i ( 1 2 (y i(t+1)+y i (t 1))+ m i 2 (ẏ i(t+1) ẏ i (t 1)) ) F. Woittennek Flatness of d.p.s Elgersburg 33 / 40

Simple network: Coupled strings m 2 x x 2 (z 2, t) m 1 x 1 (z 1, t) 0 z 2 Flat output (by solving a Bezout equation): 1 y(t) = 1 2 (α(t + 1) + α(t 1)) + 1 2 β(t τ)dτ 1 z 1 α(t) = m 1y 1 (t) m 2 y 2 (t) m 1 m 2, β(t) = y 1(t) y 2 (t) m 1 m 2 belongs to Y = {y H 2 loc (R) : (y( + 1) y( 1)) H3 loc (R)} Observations and consequences: space Y is not exactly concatenable only approximate controllability for the system 1 u z F. Woittennek Flatness of d.p.s Elgersburg 33 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 34 / 40

Water-waves in a tube Plant: tube with moving wall (control input) Model: quasi-linear system of hyperbolic p.d.e. for (s, t) (h(s, t), v(s, t)) (Saint-Venant-equations) Mass balance: Momentum balance: t A(h) + ( ) A(h)v = 0 s t (A(h)v) + s (A(h)v2 ) + ga(h) h s = 0 Boundary conditions: v(0, t) = 0, v(u(t), t) = u(t) Flat output: water level h(0, t) at uncontrolled boundary F. Woittennek Flatness of d.p.s Elgersburg 35 / 40

Water-waves: Setup F. Woittennek Flatness of d.p.s Elgersburg 36 / 40

Water-waves: no motion planning Transition without motion planning F. Woittennek Flatness of d.p.s Elgersburg 37 / 40

Water-waves: flatness based Flatness based rest-to-rest transition F. Woittennek Flatness of d.p.s Elgersburg 38 / 40

Outline Introduction: Flatness of finite dimensional linear Systems Flatness as parametrizability Wave equation: Boundary controlled string with boundary load Flatness State controllability Control design Numerical implementation by late lumping Some examples More general hyperbolic p.d.e. Coupled strings with one control Nonlinear systems Summary F. Woittennek Flatness of d.p.s Elgersburg 39 / 40

Summary Flatness: fundamental property of many systems with distributed parameters Useful: flatness based parametrization simplifies controllability analysis, open loop control design, and feedback design Related results and outlook: Observer design Generalization of controller resp. observer canonical forms to hyperbolic b.v.p systematic search for flat outputs parabolic equations F. Woittennek Flatness of d.p.s Elgersburg 40 / 40

M. Fliess, J. Lévine, P. Martin, and P. Rouchon. A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control, AC 44:922 937, 1999. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Flatness and defect of non-linear systems: introductory theory and examples. Int. J. Control, 61:1327 1361, 1995. T. Knüppel, F. Woittennek, and J. Rudolph. Flatness-based trajectory planning for the shallow water equations. In Proc. 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, pages 2960 2965, 2010. T. Knüppel and F. Woittennek. Control design for quasi-linear hyperbolic systems with an application to the heavy rope. IEEE Trans. Automat. Control, 60(1):5 18, 2015. S. Wang and F. Woittennek. Backstepping-method for parabolic systems with in-domain actuation. In Proc. 1. IFAC Workshop on Control Systems Modelled by Partial Differential Equations, Paris, 2013. F. Woittennek Flatness of d.p.s Elgersburg 40 / 40

F. Woittennek. On flatness and controllability of simple hyperbolic distributed parameter systems. In Proc. 18th IFAC World Congress, pages 14452 14457, Milano, Italy, 2011. F. Woittennek and H. Mounier. Controllability of networks of spatially one-dimensional second order p.d.e. an algebraic approach. SIAM J. Control Optim., 48(6):3882 3902, 2010. F. Woittennek, M. Riesmeier, and S. Ecklebe. On approximation and implementation of transformation based feedback laws for distributed parameter systems. In Proc. 20. IFAC World Congress 2017, 2017. F. Woittennek, S. Wang, and T. Knüppel. Backstepping design for parabolic systems with in-domain actuation and robin boundary conditions. In Proc. 19. IFAC World Congress 2014, 2014. 5175-5180. F. Woittennek Flatness of d.p.s Elgersburg 40 / 40