Multiple Antimicrobial Resistance in Plague: An Emerging Public Health Risk

Similar documents
By Eliza Bielak Bacterial Genomics and Epidemiology, DTU-Food Supervised by Henrik Hasman, PhD

3 S. Heidelberg ESBL Extended spectrum lactamase

Genetic Basis of Variation in Bacteria

Comparative Genomics of the IncA/C Multidrug Resistance Plasmid Family

The Evolution of Infectious Disease

The New England Journal of Medicine

Pr oject Summar y. Funded by The Beef Checkoff

Inc A/C Plasmids Are Prevalent in Multidrug-Resistant Salmonella enterica Isolates

Expansion of Salmonella Typhimurium ST34 clone carrying multiple. resistance determinants in China

CRISPR-SeroSeq: A Developing Technique for Salmonella Subtyping

Characterization of Salmonella enterica serovar Heidelberg from Turkey-Associated Sources

Complete DNA Sequence, Comparative Genomics, and Prevalence of an ACCEPTED

The New England Journal of Medicine

Received 11 February 2010/Accepted 6 July 2010

INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, F-37380, France 1 ;

Two novel Salmonella genomic island 1 variants in Proteus mirabilis

ACCEPTED. from Poultry and Humans in Belgium and France,

Comparative Genomics of Multidrug Resistance- Encoding IncA/C Plasmids from Commensal and Pathogenic Escherichia coli from Multiple Animal Sources

Resistance to third-generation cephalosporins in human non-typhoidal Salmonella enterica isolates from England and Wales,

Gene expression in prokaryotic and eukaryotic cells, Plasmids: types, maintenance and functions. Mitesh Shrestha

Received 9 June 2003/Accepted 29 September 2003

Genetic Variation: The genetic substrate for natural selection. Horizontal Gene Transfer. General Principles 10/2/17.

Dr. habil. Anna Salek. Mikrobiologist Biotechnologist Research Associate

bla CMY-2 -Positive IncA/C Plasmids from Escherichia coli and Salmonella enterica Are a Distinct Component of a Larger Lineage of Plasmids

The Genetic Epidemiology of Antibiotic Resistance

Whole genome sequencing (WGS) as a tool for monitoring purposes. Henrik Hasman DTU - Food

DNA Molecular Detection of Mycoplasmas: Introducing Real-Time PCR

2 Salmonella Typhimurium

Collaborators. Page 1 of 7

Whole genome sequencing (WGS) - there s a new tool in town. Henrik Hasman DTU - Food

Fernando Leite, Connie Gebhart, Randall Singer, Richard Isaacson. University of Minnesota, St. Paul, MN

Horizontal transfer and pathogenicity

ABSTRACT IN FOODBORNE PATHOGENS. The emergence of antimicrobial resistance bacteria in both the medical and

A pathogen is an agent or microrganism that causes a disease in its host. Pathogens can be viruses, bacteria, fungi or protozoa.

Gram negative bacilli

Chapters AP Biology Objectives. Objectives: You should know...

Genetic characterization of IncI2 plasmids carrying bla CTX-M-55. spreading in both pets and food animals in China

Whole-Genome Sequencing of Drug-Resistant Salmonella enterica Isolated from Dairy

Characterization of Chloramphenicol and Florfenicol Resistance in Escherichia coli Associated with Bovine Diarrhea

Characterization of Multiple-Antimicrobial-Resistant Salmonella Serovars Isolated from Retail Meats

The emergence of a new phage type of Salmonella Typhimurium in humans and animals in New Zealand

Streptomyces Linear Plasmids: Their Discovery, Functions, Interactions with Other Replicons, and Evolutionary Significance

Tineke Jones Agriculture and Agri-Food Canada Lacombe Research Centre Lacombe, Alberta

Characteristics of extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from horses

Conjugative transfer of an IncA/C plasmid-borne bla CMY-2 gene through genetic re-arrangements with an IncX1 plasmid

Multidrug-Resistant Salmonella enterica Serovar Muenchen from Pigs and Humans and Potential Interserovar Transfer of Antimicrobial Resistance

Antimicrobial Resistance in Nontyphoidal Salmonella

Molecular Characterization of Antibiotic-Resistant Salmonella Isolates from Retail Meat from Markets in Northern Vietnam

PCR- TTGE PCR (PCR-TTGE) PCR.

Supplementary Information

Mini-Tn7 Derivative Construction and Characterization. Mini-Tn7 derivatives for

Overview. Michelle D. Danyluk University of Florida. 4/14/14

Characterization of Class 1 Integrons and Antimicrobial Resistance in CTX-M-3-Producing Serratia marcescens Isolates from Southern Taiwan

NRL-Salmonella, Hungary. National Food Chain Safety Office Food and Feed Safety Directorate Erzsébet Adrián 29 May 2018

DNA Sequence Analysis of Regions Surrounding bla CMY-2 from Multiple Salmonella Plasmid Backbones

Molecular Analysis of inchi1 Antimicrobial Resistance Plasmids from Salmonella Serovar Typhi Strains Associated with Typhoid Fever

The plasmid incompatibility group IncA/C is a broad-hostrange

Salmonella enteritidis Identification and Isolation

Characteristics of Plasmids in Multi-Drug-Resistant Enterobacteriaceae Isolated during Prospective Surveillance of a Newly Opened Hospital in Iraq

Received 11 August 2010/Accepted 2 January 2011

Project Title: Estimation of the area affected by animal feces in vegetable field under overhead sprinkle irrigation system

MiGA: The Microbial Genome Atlas

Genetic Material Uptake in E. Coli

CHARACTERIZATION OF SALMONELLA ENTERICA SEROVAR AGONA SLAUGHTER ISOLATES FROM THE ANIMAL ARM OF THE NATIONAL ANTIMICROBIAL

Report: antimicrobial resistance in commensal E. coli from poultry, pigs, cows and veal calves. 2014

An Enhanced Discriminatory Pulsed-Field Gel Electrophoresis Scheme for Subtyping Salmonella Serotypes Heidelberg, Kentucky, SaintPaul, and Hadar

Bactericidal Effect of Several Chemicals on Hatching Eggs Inoculated with Salmonella serovar Typhimurium

Cattle in Hokkaido, Japan: Evidence of Clonal Replacement and Characterization of. the Disseminated Clone. Yuuji Nakaoka, 4 and Masato Akiba 8

Department of Food Science 1 and Department of Population Medicine and Diagnostic Sciences, 2 Cornell University, Ithaca, New York 14853

Progress on the biocontrol of foodborne pathogens on leafy greens with non-pathogenic microbes

Multilocus Variable-Number Tandem-Repeat Method for Typing Salmonella enterica Serovar Newport

Implementation of Public Health Surveillance of Carbapenemase- Producing Enterobacteriaceae in Victoria, Australia

Neisseria meningitidis and Haemophilus influenzae Survey Brief

Recent evolution in invasive Salmonellosis

Antibiotic Resistance in Escherichia coli Iron Transport Mutants

Genomes and Their Evolution

Parallel evolution of multidrug-resistance in Salmonella enterica isolated from swine

Evolution and pathogenicity in the deadly chytrid pathogen of amphibians. Erica Bree Rosenblum UC Berkeley

Supplementary Information for Hurst et al.: Causes of trends of amino acid gain and loss

Fitness constraints on horizontal gene transfer

Survey of plasmid profiles of Shigella species isolated in Malaysia during

Salmonella enterica Burden in Harvest-Ready Cattle Populations from the Southern High Plains of the United States

RESISTANCE TO ANTIMICROBIALS is one of the best-known examples

Received 10 March 2004/Returned for modification 16 May 2004/Accepted 3 June 2004

Fate of Enterohemorrhagic Escherichia coli 0157:H7 in Apple Cider with and without Preservatives

C.M. Harris*, S.K. Williams* 1. PhD Candidate Department of Animal Sciences Meat and Poultry Processing and Food Safety

Leeuwenhoek s Animacules

Leeuwenhoek s Animacules. Early History of Microbiology: Fig. 1.4

b-lactam resistance and b-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships

Emergence of an SGI1-bearing Salmonella enterica serotype Kentucky isolated from septic poultry in Nigeria

Molecular characterization of antimicrobial resistance in Salmonella isolated from animals in Japan

Title: Emergence of azithromycin resistance mediated by mph(a) gene in Salmonella Typhimurium clinical isolates in Latin America

Industry Learning in Salmonella Control

Swine Enteric Coronavirus Disease (SECD) Situation Report Sept 17, 2015

Development and Evaluation of Visual Biosensors for Rapid Detection of Salmonella spp. and Listeria monocytogenes

OCR Biology Checklist

Use of the 3M Molecular Detection System for Salmonella and Listeria spp.

COMMISSION REGULATION (EU)

OCR Biology Checklist

Serotype epidemiology and multidrug resistance patterns of Salmonella enterica infecting humans in Italy

Transcription:

Multiple Antimicrobial Resistance in Plague: An Emerging Public Health Risk Timothy J. Welch 1, W. Florian Fricke 2, Patrick F. McDermott 3, David G. White 3, Marie-Laure Rosso 4, David A. Rasko 2,5, Mark K. Mammel 6, Mark Eppinger 2, M.J. Rosovitz 2, David Wagner 7, Lila Rahalison 8, J. Eugene LeClerc 6, Jeffrey M. Hinshaw 9, Luther E. Lindler 10, Thomas A. Cebula 6, Elisabeth Carniel 4, Jacques Ravel 2 * 1 National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture (USDA), Kearneysville, West Virginia, United States of America, 2 The Institute for Genomic Research, Rockville, Maryland, United States of America, 3 Office of Research, Center for Veterinary Medicine-Food and Drug Administration (CVM-FDA), Laurel, Maryland, United States of America, 4 Institut Pasteur, Yersinia Research Unit, Paris, France, 5 University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America, 6 Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition-Food and Drug Administration (CFSAN-FDA), Laurel, Maryland, United States of America, 7 Northern Arizona University, Flagstaff, Arizona, United States of America, 8 Institut Pasteur, Antananarivo, Madagascar, 9 Department of Zoology, North Carolina State University, Fletcher, North Carolina, United States of America, 10 Public Health Laboratory Services, DoD-GEIS, Silver Spring, Maryland, United States of America Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pip1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pip1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pip1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern. Citation: Welch TJ, Fricke WF, McDermott PF, White DG, Rosso M, et al (2007) Multiple Antimicrobial Resistance in Plague: An Emerging Public Health Risk. PLoS ONE 2(3): e309. doi:10.1371/journal.pone.0000309 INTRODUCTION Yersinia pestis, the etiological agent of plague, is a zoonotic bacterial pathogen that has caused multiple pandemics resulting in an estimated 200 million human deaths [1]. Plague has recently been recognized as a re-emerging disease as small outbreaks continue to occur globally [2]. This reappearance, coupled with its potential for aerosol dissemination and associated high mortality rate, also makes Y. pestis one of the most dangerous bioterrorism agents [3]. Antimicrobial resistance in Y. pestis is rare but constitutes a significant public health threat given that antimicrobials are critical both for plague treatment and prevention of human-tohuman transmission. Furthermore, no vaccine is currently available. Thus, multidrug resistant (MDR) Y. pestis would likely have a major human health impact, complicating the control of outbreaks and leading to high mortality rates. Accordingly, the isolation of a MDR Y. pestis strain (IP275) in 1995 caused considerable alarm in the public health and biodefense communities [4,5]. Strain IP275 was isolated from a bubonic plague patient in Madagascar and was shown to contain a self-transmissible plasmid (pip1202) that conferred high-level resistance to at least eight antimicrobials, including streptomycin, tetracycline, chloramphenicol and sulfonamides, drugs recommended for plague prophylaxis and therapy [3]. This is the only documented case of MDR Y. pestis, although resistance monitoring of this organism is not conducted systematically [4]. Recently there also has been a rapid worldwide emergence of MDR foodborne bacterial pathogens [6,7]. While these resistant variants can be transferred to humans via contaminated food supplies, subsequent infections usually result in a self-limited gastroenteritis that does not require antimicrobial therapy [8]. However, since these MDR determinants are often encoded on mobile plasmids, the potential transfer of MDR phenotypes from foodborne pathogens to more virulent human pathogens, including Y. pestis, constitutes a serious public health threat. Here we report the complete sequence and comparative analysis of three nearly identical large (.150 kb) MDR plasmids isolated from Yersinia pestis [5], Salmonella enterica ser. Newport and Yersinia ruckeri. Our findings indicate a very recent common origin for these plasmids. Moreover, we present evidence that a common plasmid backbone is prevalent among E. coli, Klebsiella sp. and multiple Salmonella serotypes isolated from retail meats in the US, and among some food animal isolates of E. coli. Our data imply that Academic Editor: Joseph Petrosino, Baylor College of Medicine, United States of America Received February 12, 2007; Accepted February 19, 2007; Published March 21, 2007 This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Funding: This research was supported by Federal funds from the National Institute of Allergy and Infectious Diseases, NIH, DHHS, under Contract No. N01- AI-30071 and by ARS CRIS project 1930-31000-002. Competing Interests: The authors have declared that no competing interests exist. * To whom correspondence should be addressed. E-mail: jravel@tigr.org PLoS ONE www.plosone.org 1 March 2007 Issue 3 e309

high levels of MDR in the causative agent of plague may rapidly evolve naturally, and present a vital biomedical, public health, and biodefense threat. RESULTS AND DISCUSSION Comparative analysis of the complete DNA sequence of the Y. pestis pip1202 plasmid (182,913 bp) revealed a shared IncA/C plasmid backbone of 113,320 bp with MDR plasmids psn254 (176,473 bp) and pyr1 (158,038 bp) isolated respectively from the foodborne pathogen Salmonella Newport SL254 and the fish pathogen Yersinia ruckeri YR71 (Fig. 1). The shared backbone regions (99-100% nucleotide identity) consist of 135 syntenic genes with similar codon usage that encode functions such as plasmid replication/maintenance and type IV conjugative transfer (25 genes). A total of 85 genes have no assigned function. Notably, the backbone also includes a gene (sul2) conferring resistance to sulfonamides, a class of synthetic antimicrobials first introduced into clinical use in the 1930 s, suggesting that these plasmids evolved from the same sulfonamide resistant ancestor. All other antimicrobial resistance determinants are integrated at four sites comprising laterally acquired DNA as shown by the deviating nucleotide composition of these regions (Fig. 1). Each plasmid also carries a laterally acquired region integrated at either side of a gene containing repetitive sequences of the RHS type [9], which may act as an integration hotspot for acquired DNA. A large fraction of antimicrobial resistance genes are encoded within either of two transposons, Tn21 and Tn10 (Fig. 1). A region in psn254 contains duplicate copies of the bla CMY-2 gene. The number of resistance determinants varies with four on pyr1, ten on pip1202 and 13 on psn254, several of which are present in multiple copies (Table 1 and Fig. 1). In addition, both pip1202 and psn254 carry Figure 1. Circular representation of the IncA/C backbone (inner circle) and laterally acquired regions (outer circles) on each of the three plasmids. Nucleotide composition is represented on each of the outer circles and PCR primers used in this study are indicated in the inner circle. Antimicrobial determinants are colored red and labeled with gene names as follows: sulfonamides (sul1, sul2); phenicols (cat, flor); tetracyclines (tetra); aminoglycosides/aminocyclitols (aacc, aada, apha, strab); quaternary ammonium compounds (qacedelta1, suge1, suge2); b-lactams (blacmy- 2-1, blacmy-2-2, blashv-1); trimethoprim (dhfri); mercury ions (merrtpabde, merrtpcade). Sequences described in this manuscript have been deposited in GenBank, accession numbers are CP000603 (pip1202), CP000604 (psn254), CP000602 (pyr1). doi:10.1371/journal.pone.0000309.g001 PLoS ONE www.plosone.org 2 March 2007 Issue 3 e309

................................................... Table 1. Antimicrobial resistance determinants................................................................................................................................................... Backbone Y. pestis (pip1202) S. enterica (psn254) Y. ruckeri (pyr1) Resistance phenotypes* Su ACKSSpTMSul ACSSulTCfAxG STTmSul b-lactams - bla SHV-1 bla CMY-2 1, bla CMY-2 2 - Aminoglycosides/Aminocyclitols - strab, aada, apha strab, aacc, aada strab Tetracyclines - tetra class D tetra class A tetra class B Phenicols - cat flor - Quaternary ammonium compounds - qacedelta1 qacedelta1, suge1, suge2 - Sulfonamides sul2 sul1, sul2 sul1, sul2 sul2 Trimethoprim - - - dhfri * Abbreviations used for antibiotics: A, ampicillin; C, chloramphenicol; S, streptomycin; Sul, sulfonamide; T, tetracycline; Cf, cephalothin, Ax, ceftriaxone; G, gentamicin; Sp, spectinomycin; M, minocycline; Tm, trimethoprim. doi:10.1371/journal.pone.0000309.t001 a mercury resistance operon, a hallmark of the transposon Tn21- family [10]. While MDR Y. pestis and Y. ruckeri isolates are rarely reported, monitoring of antimicrobial resistance in Salmonella has shown an escalating incidence of MDR strains resistant to an increasing number of drugs (i.e.$eight antimicrobials) [11]. Moreover, S. Newport MDR strains harboring plasmids encoding resistance to expanded-spectrum cephalosporins (Newport MDR-AmpC phenotype) are widely disseminated within the United States and have been isolated from cattle, ground beef and ill humans [12]. As plasmid psn254 confers the Newport MDR-AmpC resistance phenotype, we sought to determine the occurrence and distribution of the IncA/C plasmid backbone among 125 MDR Salmonella strains recovered from retail meats from 2002 to 2005 through the National Antimicrobial Resistance Monitoring System (NARMS see cite above), as well as a small collection of E. coli strains recovered from food animals and Klebsiella isolates from ground turkey meat from Iowa. Using the repa gene as marker, primary screening by PCR for the IncA/C replicon [13] revealed 70 repapositive samples that were subsequently probed with a panel of twelve PCR assays targeting backbone regions (shown in Fig. 1). These findings indicated that IncA/C plasmid backbones were present in all repa-positive strains, in all meat types sampled, including chicken, turkey, pork and ground beef and in all ten states that participate in the NARMS retail surveillance (Table 2). Several IncA/C positive strains were found in California, New Mexico and Oregon, areas of the United States where Y. pestis is endemic. IncA/C backbones were detected in representatives of S. enterica Newport, Heidelberg, Kentucky, Dublin, Bredeney, and Typhimurium. In addition, screening of E. coli and Klebsiella MDR isolates revealed the presence of this plasmid backbone in the nine tested Klebsiella isolates recovered from ground turkey collected in Iowa, and E. coli isolated from a calf in North Dakota and a broiler chicken from Georgia (Table 2). A majority of S. Newport and S. Heidelberg strains (9/14) and several Klebsiella isolates (3/9) were positive for all twelve markers, while other Salmonella serotypes were positive for 50% or greater of the assayed loci (Table 2). The discovery of these MDR IncA/C plasmids in evolutionarily distinct pathogens attests to recent genetic exchange, either directly between these bacterial species or through bacterial intermediates, and it suggests that overlap in the ecological niches of these organisms is sufficient to permit past or future plasmid transmission. This is consistent with the high identity (60 kb, 97% nucleotide identity) found between Y. pestis virulence plasmid pfra and S. enterica Typhi plasmid phmc2 [14,15]. The ecological location of plasmid transfer to Y. pestis is unknown, although it has been speculated that transfer might occur in a co-infected mammalian host or in the midgut of the flea [16], the classic vector for plague. Recent experimental evidence has shown that high frequency transfer of a streptomycin resistant R-plasmid from E. coli to Y. pestis can occur in flea midgut [17]. While identification of the exact bacterial donor or sequence of events leading to the transfer of pip1202 to Y. pestis cannot be conclusively determined, we were able to demonstrate the transfer of the IncA/C plasmids present in the 70 MDR repa+foodborne enterics (Table 2) to Y. ruckeri. Thirty of the 70 MDR enterics tested transferred drug resistance to Y. ruckeri along with the IncA/ C-specific repa marker. Interestingly, 53% (29/54) of the MDR isolates from poultry products transferred resistance to Y. ruckeri while only one of the 14 non-poultry isolates was transfer competent. Conjugal transfer could not be demonstrated for IncA/C plasmids from any of the S. Newport isolates identified, including the sequenced SL254 isolate. In these cases transfer might depend on the presence of additional transfer functions or may be limited by incompatible restriction/modification systems. In all, a large fraction of the repa+mdr enterics were capable of transferring resistance, suggesting that direct transfer of IncA/C MDR plasmids mediates environmental dissemination between these bacterial genera. Our findings reveal a potential for the natural acquisition of multidrug resistance in Y. pestis and other MDR zoonotic bacterial pathogens. Hence, antimicrobial resistance monitoring should be expanded especially to the areas of the world where Y. pestis is endemic, including Asia, Africa and the Southwestern United States where both Y. pestis and MDR Salmonella have been isolated and therefore have a high probability of coming into direct contact. The plasmid detection and typing assays described here could also be used to monitor pip1202-like antimicrobial resistance plasmids in numerous bacterial pathogens recovered from diverse environments including animal production systems, foods, and health care settings, and may be useful for the detection of these plasmids in biothreat agents. MATERIALS AND METHODS Genome sequencing and Informatics Plasmids pip1202 and psn254 were assembled from whole genome shotgun sequencing of Y. pestis IP275 and S. enterica serotype Newport SL254 respectively, while pyr1 was sequenced from purified plasmid DNA. Sequencing libraries were constructed as previously reported [18] and sequenced using 3730xl DNA analyzer (Applied Biosystems). Assembly and closure, PLoS ONE www.plosone.org 3 March 2007 Issue 3 e309

Table 2. Antimicrobial resistance phenotypes, IncA/C PCR profiles and conjugation frequencies of MDR NARMS isolates....................................................................................................................................................................................................... Strain Organism State Year Source Antimicrobial resistance phenotype a IncA/C PCR profile b Transfer c A C S Su T Ti G K Ag Ax N Ak Cp Sxt 30034 S. Typhimurium CA 2003 Turkey A C S Su T Ti - - Ag - N - - - 1 2 3 4 5 - - - - 10 11 12-32412 S. Typhimurium CT 2003 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 8.4 x 10-6 32463 S. Typhimurium NY 2003 Chicken A - - Su T Ti - K Ag - - - - - - 2 3 4 5 6 7 8 9-11 12 1.1 x 10-5 N1577 S. Typhimurium MD 2004 Chicken A - - Su T Ti - - Ag - - - - - 1 2-4 - 6 - - - - 11 12 - N1583 S. Typhimurium MD 2004 Chicken A - - Su T Ti - - Ag - - - - - 1 2-4 5 - - - - - 11 12 - N1591 S. Typhimurium MD 2004 Chicken A - - Su T Ti - K Ag - - - - - 1 2-4 - 6 7 8 9-11 12 8.2 x 10-7 N145 S. Typhimurium CT 2004 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 5 6 - - - - 11 12 3.8 x 10-5 N167 S. Typhimurium CT 2004 Chicken A - - Su T Ti - - Ag - - - - - 1 2-4 - 6 - - - - 11 12 3.2 x 10-6 N509 S. Typhimurium NY 2004 Chicken A - - Su T Ti - K Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 3.7 x 10-5 N520 S. Typhimurium NY 2004 Chicken A - - Su T Ti - - Ag - - - - - 1 2-4 - 6 7 8 9-11 12 2.9 x 10-6 N168 S. Typhimurium CT 2004 Chicken A - - Su T Ti - K Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 - N169 S. Typhimurium CT 2004 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 - N176 S. Typhimurium CT 2004 Chicken A C S Su T Ti - - Ag - - - - - 1 2 3 4 5 6 - - - - 11 - - N177 S. Typhimurium CT 2004 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 - N499 S. Typhimurium NY 2004 Chicken A - - Su T Ti - K Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 - N1563 S. Typhimurium MD 2004 Chicken A - - Su T Ti - K Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 9.0 x 10-6 N1575 S. Typhimurium MD 2004 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 8.4 x 10-4 N4528 S. Typhimurium CT 2005 Chicken A - - Su T Ti - K Ag - - - - - 1 2 3 4 - - - 8 9-11 12 - N4546 S. Typhimurium CT 2005 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 - - - 8 9-11 12 - N7313 S. Typhimurium CT 2005 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 - - - 8 9-11 12 - N6424 S. Typhimurium NY 2005 Chicken A - - Su T Ti - K Ag - - - - - 1 2 3 4 5 6-8 9-11 12 2.5 x 10-4 N6426 S. Typhimurium NY 2005 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9 - - 12 - N6430 S. Typhimurium NY 2005 Chicken A - - Su T Ti - K Ag - - - - - 1 2 3 4-6 - 8 9-11 12 - N6437 S. Typhimurium NY 2005 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 5 6-8 9-11 12 4.3 x 10-3 N5370 S. Typhimurium MD 2005 Chicken A - - Su T Ti - - Ag - - - - - - 2 3 4 5 6-8 9-11 12 - N5379 S. Typhimurium MD 2005 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 5 6 - - - - - - 6.3 x 10-5 N5380 S. Typhimurium MD 2005 Chicken A - - Su T Ti - K Ag - - - - - 1 2 3 4 5 6-8 9-11 12 - N5385 S. Typhimurium MD 2005 Chicken A - - Su T Ti - K Ag - - - - - 1 2 3 4-6 7 8 9-11 12 1 x 10-6 22404 S. Newport CT 2002 Beef A - S Su T Ti - - Ag - - - - - 1 2 3 4 5 6 - - - 10 11 12-22697 S. Newport MD 2002 Turkey A C S Su T Ti - - Ag - - - - Sxt 1 2 3 4 5 6 7 8 9 10 11 12-22699 S. Newport MD 2002 Pork A C S Su T Ti - - Ag - - - - Sxt 1 2 3 4 5 6 7 8 9 10 11 12-22707 S. Newport MD 2002 Beef A C S Su T Ti - - Ag - - - - - 1 2 3 4 5 6 - - - 10 11 12-29461 S. Newport CA 2003 Beef A C S Su T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11 12-29768 S. Newport OR 2003 Pork A C S Su T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 - N1543 S. Newport GA 2004 Beef A C S Su T Ti - - Ag Ax - - - - 1 2 3 4 5 6 - - - 10 11 12 -................................................................................................................................................... PLoS ONE www.plosone.org 4 March 2007 Issue 3 e309

Table 2. cont........................................................................................................................................................................................................ Strain Organism State Year Source Antimicrobial resistance phenotype a IncA/C PCR profile b Transfer c A C S Su T Ti G K Ag Ax N Ak Cp Sxt N635 S. Newport OR 2004 Beef A C S Su T Ti - - Ag - - - - Sxt 1 2 3 4 5 6 7 8 10 11 12 - N175 S. Kentucky CT 2004 Chicken A C S Su T Ti - - Ag - - - - - 1 2-4 - 6 - - - - 11-8.3 x 10-5 N6427 S. Kentucky NY 2005 Chicken A - S - T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 - N4534 S. I.4,5,12:n.mot. CT 2005 Chicken A - - Su T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9-11 12 - N6312 S. I.3,10 :n.mot. MN 2005 Turkey A - S Su T Ti - K Ag - - - - - 1 2 3 4 5 6-8 9-11 12 5.2 x 10-5 N5389 S. I. 4,12 : r :- MD 2005 Turkey A C S Su T Ti - - Ag - - - - Sxt 1 2 3 4 5 - - - - 10 11 12-20592 S. Heidelberg CT 2002 Turkey A - S Su T Ti - - Ag - - - - - 1 2 3 4 5 - - - - 10 11 12-21380 S. Heidelberg CT 2002 Turkey A - S Su T Ti G K Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 3.3 x 10-2 N416 S. Heidelberg NM 2004 Turkey A C S Su T Ti G - Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 9 x 10-4 N418 S. Heidelberg NM 2004 Turkey A C S Su T Ti G K Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 4.4 x 10-2 N633 S. Heidelberg OR 2004 Chicken A C S Su T Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 6.3 x 10-2 N4504 S. Heidelberg CO 2005 Turkey A - - - - Ti - - Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11 12-29440 S. Dublin MN 2003 Beef A C S Su T Ti - - Ag Ax - - - - 1 2 3 4 5 - - - - - - - - 23742 S. Dublin OR 2003 Beef A C S Su T Ti - - Ag - - - - Sxt 1 2 3 4 5 6 7 - - 10 11 12 - N187 S. Bredeney CT 2004 Turkey A - - Su T Ti G - Ag - - - - - 1 2 3 4 5 - - - - 10 11 12 - N6328 S. Bredeney MN 2005 Turkey A - S Su T Ti - - Ag Ax - - - - 1 2 3 4 5 - - - - 10 11 12-10688 Klebsiella sp. IA 2002 Turkey A C S Su T Ti G K Ag - N - - - 1 2 3 4 5 6-8 9 10 11 12 4.9 x 10-3 10689 Klebsiella sp. IA 2002 Turkey A C S Su T Ti G K Ag - N - - - 1-3 - 5 - - 8 9 10 11-9.3 x 10-3 10698 Klebsiella sp. IA 2002 Turkey A C S Su T Ti G K Ag - - - - - 1 - - - 5 - - - - 10 11 - - 10978 Klebsiella sp. IA 2002 Turkey A C S Su T Ti G K Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 1 x 10-2 11226 Klebsiella sp. IA 2002 Turkey A C S Su T Ti G K Ag - - - - - 1-3 - 5 - - 8 9 10 11 12 2.5 x 10-3 11228 Klebsiella sp. IA 2002 Turkey A C S Su T Ti G K Ag - - - - - 1-3 - 5 - - 8 9 10 11 12 1.2 x 10-3 12905 Klebsiella sp. IA 2002 Turkey A C S Su T Ti G K Ag - - - - - 1 2 3 4 5 - - - - 10 11 12-12906 Klebsiella sp. IA 2002 Turkey A C S Su T Ti G K Ag - - - - - 1-3 - 5 - - - - 10 11 12-13280 Klebsiella sp. IA 2002 Turkey A C S Su T Ti G K Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 7.9 x 10-4 3311b E. coli ND 1997 Calf A C S Su T Ti G K Ag Ax N Cp - - 1-3 - 5 - - 8 9 10 11 12 3.6 x 10-4 19811 E. coli MD 2002 Chicken A C S Su T Ti G K Ag - - - - - 1 2 3 4 5 6 7 8 9 10 11-1.2 x 10-2 4420 E. coli GA 2002 Chicken A - S - - Ti G K Ag Ax N - Ak - 1-3 - 5 - - 8 9 10 11 12 4.5 x 10-3 32645 E. coli GA 2003 Turkey A C S Su T Ti G K Ag - N - - - 1-3 4 5 6 7 8 9 10 11-3.3 x 10-2 32751 E. coli GA 2003 Pork A C S Su T Ti - K Ag - - - - - 1-3 - 5 6 - - - 10 11 - - N820 E. coli OR 2004 Beef A C S Su T Ti G - Ag - - - - - 1 2 3 4 5 - - - - 10 11 - - N935 E. coli OR 2004 Chicken A C S Su T Ti - - Ag - - - - - 1-3 - 5 - - - - 10 11 - - N1004 E. coli OR 2004 Pork A C S Su T Ti - - Ag - - - - - 1 2 3 4 5 - - - 9 10 11 - - N2024 E. coli GA 2004 Beef A C S Su T Ti - - Ag - - - - - 1 2 3-5 - - - - 10 11 - - N3878 E. coli TN 2004 Chicken A C S Su T Ti G - Ag - - - - - 1 2 3 - - - 7 8 9-11 - 7.2 x 10-3 a amikacin (Ak), amoxicillin/clavulanate (Ag), ampicillin (A), cefoxitin (Cx), ceftiofur (Ti), ceftriaxone (Ax), chloramphenicol (C), ciprofloxacin (Cp), gentamicin (G), kanamycin (K), nalidixic acid (N), tetracycline (T), streptomycin (S), sulfamethoxazole (Su), trimethoprim/sulfamethoxazole (Sxt). b PCR amplicons tested shown in Fig. 1. c Estimated efficiency of transfer to Y. ruckeri; expressed as the number of transconjugants per donor; all transconjugants tested positive for the IncA/C replicon. doi:10.1371/journal.pone.0000309.t002............................................................................................................................................................... PLoS ONE www.plosone.org 5 March 2007 Issue 3 e309

followed by manual annotation were performed as previously described [18]. PCR screening Plasmid DNA for PCR was prepared using the QIAprep Spin Miniprep kit according to the manufacturer s procedure (Qiagen). PCR was performed using HotStarTaq (Qiagen) with the following cycling protocol: five min enzyme activation at 95uC, 26 cycles of 45 s at 95uC, 45 s at 55uC and 90 s at 72uC followed by a 10 min final extension step at 72uC. The 13 primer sets used were designed to each amplify a distinct plasmid backbone region displayed in Fig. 1. Primers used are listed in Supplemental Methods S1. Plasmid transfer experiments Conjugative mating experiments were performed using a rifampicin resistant derivative of Y. ruckeri (YR34R) as the recipient strain. Donor (Table 2) and recipient strains were grown in an orbital shaker (225 rpm) in Brain-Heart-Infusion (BHI) medium at 37uC (donor) or 28uC (recipient) to mid-log phase. Donor and recipient bacteria were then harvested by centrifugation (60006g, 10 min, 4uC) and 10 8 of each were mixed and spotted onto BHI agar. Conjugation mixtures were allowed to incubate for 3 h at 28uC after which the cells were resuspended in PBS, diluted, and plated onto BHI agar containing tetracycline (20 mg/ml) for plasmid selection and rifampicin (100 mg/ml) to counter select the donor. For donor strains that did not transfer tetracycline resistance, conjugations were repeated using selection for ampicillin (100 mg/ ml), ceftriaxone (8 mg/ml), chloramphenicol (100 mg/ml), and kanamycin (50mg/ml). Transconjugants were confirmed using a Y. ruckeri-specific bacteriophage and assayed for the presence of the repa marker by PCR as described above. SUPPORTING INFORMATION Methods S1 Primers used in this study Found at: doi:10.1371/journal.pone.0000309.s001 (0.03 MB DOC) ACKNOWLEDGMENTS We thank Chris Campbell, Karen Blickenstaff, Lingxia Jiang and Sara Koenig for technical assistance. Author Contributions Conceived and designed the experiments: JR TW. Performed the experiments: JR EC TW WF PM DW MR. Analyzed the data: JR MR DR TW WF ME PM DW. Contributed reagents/materials/analysis tools: JR EC LR DW TW PM DW MM JL TC MR LL JH. Wrote the paper: JR TW WF. Other: Edited Manuscript: EC TC DW PM. REFERENCES 1. Perry RD, Fetherston JD (1997) Yersinia pestis etiologic agent of plague. Clin Microbiol Rev 10(1): 35 66. 2. Anisimov AP, Amoako KK (2006) Treatment of plague: promising alternatives to antibiotics. J. Med. Microbiol. 55(Pt 11): 1461 1475. 3. Inglesby TV, Dennis DT, Henderson DA, Bartlett JG, Ascher MS, et al. (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA 283(17): 2281 2290. 4. Galimand M, Carniel E, Courvalin P (2006) Resistance of Yersinia pestis to antimicrobial agents. Antimicrob Agents Chemother 50(10): 3233 3236. 5. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, et al. (1997) Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med 337(10): 677 680. 6. Zhao S, Qaiyumi S, Friedman S, Singh R, Foley SL, et al. (2003) Characterization of Salmonella enterica serotype newport isolated from humans and food animals. J Clin Microbiol 41(12): 5366 5371. 7. Butaye P, Michael GB, Schwarz S, Barrett TJ, Brisabois A, White DG (2006) The clonal spread of multidrug-resistant non-typhi Salmonella serotypes. Microbes Infect 8(7): 1891 1897. 8. Varma JK, Marcus R, Stenzel SA, Hanna SS, Gettner S, et al. (2006) Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002 2003. J Infect Dis 194(2): 222 230. 9. Wang YD, Zhao S, Hill CW (1998) Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. J Bacteriol 180(16): 4102 4110. 10. Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63(3): 507 522. 11. (2006) National Antimicrobial Resistance Monitoring System - Enteric Bacteria (NARMS): 2003 Executive Report. Rockville, MD: U.S. Department of Health and Human Services, U.S. FDA (http://www.cdc.gov/narms/annual/2002/ 2002ANNUALREPORTFINAL.pdf). 12. Gupta A, Fontana J, Crowe C, Bolstorff B, Stout A, et al. (2003) Emergence of multidrug-resistant Salmonella enterica serotype Newport infections resistant to expanded-spectrum cephalosporins in the United States. J Infect Dis 188(11): 1707 1716. 13. Carattoli A, Miriagou V, Bertini A, Loli A, Colinon C, et al. (2006) Replicon typing of plasmids encoding resistance to newer b-lactams. Emerg Infect Dis 12(7): 1145 1148. 14. Prentice MB, James KD, Parkhill J, Baker SG, Stevens K, et al. (2001) Yersinia pestis pfra shows biovar-specific differences and recent common ancestry with a Salmonella enterica serovar Typhi plasmid. J Bacteriol 183(8): 2586 2594. 15. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, et al. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413(6858): 848 852. 16. Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L, et al. (2001) Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 7(1): 43 48. 17. Hinnebusch BJ, Rosso ML, Schwan TG, Carniel E (2002) High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46(2): 349 354. 18. Rasko DA, Rosovitz MJ, Okstad OA, Fouts DE, Jiang L, et al. (2007) Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus group plasmids including B. anthracis pxo1. J Bacteriol 189(1): 52 64. PLoS ONE www.plosone.org 6 March 2007 Issue 3 e309