Modeling All-MOS Log-Domain Σ A/D Converters

Similar documents
Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

ELEN 610 Data Converters

ECEN 610 Mixed-Signal Interfaces

A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement

Design of Analog Integrated Circuits

SWITCHED CAPACITOR AMPLIFIERS

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

A novel Capacitor Array based Digital to Analog Converter

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Summary Last Lecture

Homework Assignment 08

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

EE247 Lecture 16. Serial Charge Redistribution DAC

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion

Translinear Circuits

Microelectronics Main CMOS design rules & basic circuits

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Slide Set Data Converters. High-Order, CT Σ Converters and Σ DAC

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Oversampling Converters

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

Successive Approximation ADCs

Top-Down Design of a xdsl 14-bit 4MS/s Σ Modulator in Digital CMOS Technology

An Anti-Aliasing Multi-Rate Σ Modulator

Switched Capacitor: Sampled Data Systems

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

Multi-bit Cascade ΣΔ Modulator for High-Speed A/D Conversion with Reduced Sensitivity to DAC Errors

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

EXAMPLE DESIGN PART 1

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1

ECE 546 Lecture 11 MOS Amplifiers

Nyquist-Rate A/D Converters

EXAMPLE DESIGN PART 2

EE247 Analog-Digital Interface Integrated Circuits

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EXAMPLE DESIGN PART 2

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

EE 505. Lecture 27. ADC Design Pipeline

EE 521: Instrumentation and Measurements

An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor. ΔΣ Modulator. Electronic Design Automation Laboratory

Electronic Circuits Summary

Data Converter Fundamentals

PURPOSE: See suggested breadboard configuration on following page!

EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2006 H.K. Page 1. Summary Last Lecture

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise

Integrated Circuits & Systems

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Sample-and-Holds David Johns and Ken Martin University of Toronto

Slide Set Data Converters. Digital Enhancement Techniques

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 400 Discrete-Time Comparators (4/8/02) Page 400-1

Choice of V t and Gate Doping Type

Lecture 10, ATIK. Data converters 3

AN ABSTRACT OF THE THESIS OF

System on a Chip. Prof. Dr. Michael Kraft

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

University of Toronto. Final Exam

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Lecture 4, Noise. Noise and distortion

Power Dissipation. Where Does Power Go in CMOS?

EE 505. Lecture 29. ADC Design. Oversampled

Introduction to CMOS RF Integrated Circuits Design

E40M Review - Part 1

University of Toronto. Final Exam

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

The Devices. Jan M. Rabaey

Device Models (PN Diode, MOSFET )

Chapter 4 Field-Effect Transistors

EECS 141: FALL 05 MIDTERM 1

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

Pipelined multi step A/D converters

Nyquist-Rate D/A Converters. D/A Converter Basics.

Lecture 120 Filters and Charge Pumps (6/9/03) Page 120-1

EKV MOS Transistor Modelling & RF Application

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

Simulation of the Temperature Influence in IC-EMC

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

Homework Assignment 11

PARALLEL DIGITAL-ANALOG CONVERTERS

Microelectronics Part 1: Main CMOS circuits design rules

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology

Homework Assignment 09

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor

Systematic Design of Operational Amplifiers

LECTURE 090 FILTERS AND CHARGE PUMPS

High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Transcription:

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 1/22 Modeling All-MOS Log-Domain Σ A/D Converters X.Redondo 1, J.Pallarès 2 and F.Serra-Graells 1 1 Institut de Microelectrònica de Barcelona (CNM - CSIC) 2 Barcelona International R&D Core (Epson Europe Electronics GmbH - CNM) 25th November 2004

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 2/22 1 Introduction 2 Low-Voltage All-MOS Circuits 3 Modeling Circuit Non-Idealities 4 Design Example 5 Conclusions

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 3/22 1 Introduction 2 Low-Voltage All-MOS Circuits 3 Modeling Circuit Non-Idealities 4 Design Example 5 Conclusions

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 4/22 Σ Modulator Architecture CMOS Log Domain y source Limiter Antialiasing Filter y lim y in Analog Modulator Quantizer H DAC b out Digital Decimator Very low-voltage Low-power MOS-only I in + 1 1 1 s I 1 + 1 1 + 1 1 s s k I k L I dac di k dt = 1 τ k (I k 1 I dac ) I L M DAC Quantizer N=1 I high I low b out Simulation Issues High-accuracy Continuous-time Oversampling Pseudo-periodic... need for high-level (but device-based) analytical modeling!

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 5/22 1 Introduction 2 Low-Voltage All-MOS Circuits 3 Modeling Circuit Non-Idealities 4 Design Example 5 Conclusions

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 6/22 CMOS Log-Domain Processing Input Compressor I in + 1 1 1 s I 1 I k + 1 1 + 1 1 k s L s Quantizer I L b out M DAC I dac N=1 I high I in K 1 I ref I ref K I low V ref V in I in F V in + 1 G 1 s V 1 1 + 1 G C k 1 s V k 1 + 1 G C L k s V L 1 C L b out V dac F I high F I low I = F (V ) = I ref e V V ref nu t I > 0 Weak inversion and forward saturation: I D = I S e V GB V T O nu t e V SB U t I S = 2nβ ( ) W L U 2 t IC = I D IS Class-A operation: I in < I ref ( ) Iin V in = V ref + nu t ln + 1 I ref

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 7/22 Differential Integrator Quantizer and Built-in DAC di k dt = 1 τ k (I k 1 I dac ) b clk b clk b clk D b Q out dv k dt dq k dt }{{} C k dv k dt = nu t e Vk 1 Vk nu t τ k nu t e Vdac Vk nu t τ k ( ) = I } tunk e V k nu t e V k 1 nu t e V dac nu t {{} nu t C k τ k V L V ref { 1 VL > V b out = ref 0 V L V ref b out 1 K high K low I tunk I tunk V k-1 V k I capk V k-1 V k V ref C k V dac I capk C k ( ) Ihigh b V dac = V ref + nu t ln out+i low b out I ref

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 8/22 1 Introduction 2 Low-Voltage All-MOS Circuits 3 Modeling Circuit Non-Idealities 4 Design Example 5 Conclusions

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 9/22 Thermal Noise Block contributions: PSD in Class-A: di 2 Dn df = 4KT g ms 2 2qI D Input compressor: dv 2 inn df 4q (nu t) 2 I ref Integrator+DAC: di 2 capkn df 2q(2+K low +b out K high )I tunk SNR +3dB/oct(I ref ) K low = I low I tunk K high = I high I low I tunk I full I tunk

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 10/22 Moderate Inversion Inversion coefficient dependence: Degradation of the e x : ( ) I D = I S ln 2 1 + e V GB V T O 2nU t e V SB 2U t Input compressor: r V in = V ref +nu t ln e e I in +I ref r I ref I S 1 I S 1 Integrator+DAC: I capk = I S ln 2 [ 1 + e V k 1 V k 2nU t (eq Itunk 2 )] I S 1 )] I S ln 2 [ 1 + e V dac V k 2nU t (eq Itunk I S 1 SDR IC = I D I S

C k / C oxk DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 11/22 MOS Capacitors Strong inversion asymptote: Non-linear capacitors: dq k dt = ( C k + dc ) k dvk V k dv k dt NMOS capacitance: ) U t C k C oxk (1 V k V T O Integrator ODE: dv k dt = I tunk C oxk V k e nu t 1 + V T OU t (V k V T O ) 2 1 0.8 0.6 0.4 0.2 weak inversion 0-20 -15-10 -5 0 5 10 15 20 ( ) e V k 1 nu t e V dac nu t EKV moderate inversion ( Vk - VTO)/ Ut strong inversion C k V k SDR V ref V T O

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 12/22 MOS Capacitors OP dependence (V T ON 0.5V): Non-linear capacitors: dq k dt = ( C k + dc ) k dvk V k dv k dt NMOS capacitance: ) U t C k C oxk (1 V k V T O Integrator ODE: dv k dt = I tunk C oxk V k e nu t 1 + V T OU t (V k V T O ) 2 ( ) e V k 1 nu t e V dac nu t SDR V ref V T O

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 13/22 DAC Waveform Asymmetry I high I low I high I rtz I low I off +I amp I off I off -I amp 1 0 1 0 1 1 0 0 WA signal dependencies In-band noise injection! Return-tozero (I rtz ) techniques Equivalent model: input offset (I off ) + full-scale reduction (I amp )

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 14/22 Block Models (e.g. Simulink) Vnoise Iref Class-A Iin 1/Is -1 F (u) n*ut Vin Input compressor Voffset Technology mismatching Vcap S/H Quantizer (sgn(u-vref)+1)/2 Quantizer bout bout Vinp Vinn Inoise for bout=1 transconductance Vinp Vinn Icap Vcap bout=0 integration 1 s MOS cap Qcap Vcap Vdac Switch1 n*ut bout -1 F (u) 1/Is Iamp Ioff Cmos(Vcap) n*ut -1 F (u) 1/Is Integrator DAC (common to optimize simulation speed)

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 15/22 1 Introduction 2 Low-Voltage All-MOS Circuits 3 Modeling Circuit Non-Idealities 4 Design Example 5 Conclusions

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 16/22 Architecture A 4th-order 64 1bit single-loop Σ modulator: compressor integrator1 Iin Vin Vinp integrator2 Ain, fin Vin Vcap Vinp integrator3 bout Vinn Vcap bout Vinp Vinn Vcap integrator4 Vinp quantizer bout Vinn Vcap Vcap bout bout bout DAC RTZ Specifications Input full-scale Bandwidth Sampling frequency RTZ period Biasing Tuning Supply Technology Vdac bout 6µA pp 100Hz-8KHz 1.024MHz 10%-50% programmable I ref =7µA and V ref =0.7V I tunk ={7,1,1,1}µA and C oxk ={210,30,12,12} 5pF V DD =1.2V and P D 160µW 0.35µm CMOS digital V T ON + V T OP 1.2V

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 17/22 Design Process Functional vs Electrical fast high-level model optimal circuit parameters SPICE validation

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 18/22 Performance Estimations Simulation: electrical 18 weeks functional 1 hour DR=74dB(12b) and SNDR max =62dB at -4dBµA rms 3000!

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 19/22 Final Design 100¹ m Total area: 650µm 1130µm=0.73mm 2... to be integrated soon!

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 20/22 Final Design Reference Quantizer+S/H Switching NMOS capacitor array 100¹ m Dummies Biasing Translinear loops DACs Total area: 650µm 1130µm=0.73mm 2... to be integrated soon!

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 21/22 1 Introduction 2 Low-Voltage All-MOS Circuits 3 Modeling Circuit Non-Idealities 4 Design Example 5 Conclusions

DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 22/22 Main Results Accurate high-level modeling of log-domain CMOS Σ ADCs. Analytical circuit study + advanced MOSFET models. Simulation speed improved by more than 1000 times. Independent evaluation of each non-ideality or block effect. ADC complete performance estimations can be iterated. Example for a 4th-order 64 1bit single-loop Σ modulator.