s=a+jb s=% x(t)=sin(&t)

Similar documents
MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007

Chapter 7 PHASORS ALGEBRA

Topic Outline for Algebra 2 & and Trigonometry One Year Program

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order)

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

Introduction to Complex Mathematics

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives

Chapter 10: Sinusoids and Phasors

Complex Numbers and Phasor Technique

Music 270a: Complex Exponentials and Spectrum Representation

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4

Pre-Calculus and Trigonometry Capacity Matrix

Objectives List. Important Students should expect test questions that require a synthesis of these objectives.

Secondary Honors Algebra II Objectives

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

Math 4C Fall 2008 Final Exam Study Guide Format 12 questions, some multi-part. Questions will be similar to sample problems in this study guide,

I. Signals & Sinusoids

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

Lesson 73 Polar Form of Complex Numbers. Relationships Among x, y, r, and. Polar Form of a Complex Number. x r cos y r sin. r x 2 y 2.

Algebra II/Math III Curriculum Map

Topic Outline for Integrated Algebra 2 and Trigonometry-R One Year Program with Regents in June

WAYNESBORO AREA SCHOOL DISTRICT CURRICULUM ALGEBRA II

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

Bemidji Area Schools Outcomes in Mathematics Analysis 1. Based on Minnesota Academic Standards in Mathematics (2007) Page 1 of 5

6.1: Reciprocal, Quotient & Pythagorean Identities

Polynomials and Rational Functions. Quadratic Equations and Inequalities. Remainder and Factor Theorems. Rational Root Theorem

Grade 11 or 12 Pre-Calculus

3 What You Should Know About Complex Numbers

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Intermediate Level Learning Targets

Lecture 13: Pole/Zero Diagrams and All Pass Systems

Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS:

y[ n] = sin(2" # 3 # n) 50

Algebra 2. Chapter 4 Exponential and Logarithmic Functions. Chapter 1 Foundations for Functions. Chapter 3 Polynomial Functions

2. Algebraic functions, power functions, exponential functions, trig functions

3.2 Complex Sinusoids and Frequency Response of LTI Systems

HIGH SCHOOL MATH CURRICULUM GRADE ELEVEN ALGEBRA 2 & TRIGONOMETRY N

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION ALGEBRA II WITH TRIGONOMETRY 2003 ACOS 2010 ACOS

SOLUTIONS to ECE 2026 Summer 2018 Problem Set #3

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

Sophomore Year: Algebra II Textbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012

HOW TO NOT LOSE POINTS...

Step 1: Greatest Common Factor Step 2: Count the number of terms If there are: 2 Terms: Difference of 2 Perfect Squares ( + )( - )

ALGEBRA AND TRIGONOMETRY

Math Academy I Fall Study Guide. CHAPTER ONE: FUNDAMENTALS Due Thursday, December 8

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

CM2202: Scientific Computing and Multimedia Applications General Maths: 3. Complex Numbers

1 (2n)! (-1)n (θ) 2n

NFC ACADEMY COURSE OVERVIEW

Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations

Curriculum Catalog

Prentice Hall Mathematics, Algebra Correlated to: Achieve American Diploma Project Algebra II End-of-Course Exam Content Standards

Mathematics - High School Algebra II

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

List of PreCalculus Algebra Mathematical Concept Practice Sheets (Updated Spring 2015)

Math 005A Prerequisite Material Answer Key

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities

PreCalculus Unit 1:- Algebraic Functions

Algebra 2 and Trigonometry

Algebra 2 Standards. Essential Standards:

The Research- Driven Solution to Raise the Quality of High School Core Courses. Algebra I I. Instructional Units Plan

PreCalculus. Curriculum (637 topics additional topics)

Common Core State Standards. Clusters and Instructional Notes Perform arithmetic operations with complex numbers. 5.6

Chapter 10: Sinusoidal Steady-State Analysis

Topic 4 Notes Jeremy Orloff

Pre-Calculus & Trigonometry Scope and Sequence

Gr. 11, 12 Pre Calculus Curriculum

Standards-Based Learning Power Standards. High School- Algebra

Algebra II Pacing Guide Last Updated: August, Guiding Question & Key Topics

Topic 3: Fourier Series (FS)

AS PURE MATHS REVISION NOTES

Achieve Recommended Pathway: Algebra II

CC.2.2.HS.D.1 Interpret the structure of expressions to represent a quantity in terms of it. Calculator set builder notation, interval Unit 2:

Module 4. Single-phase AC Circuits

Algebra 2 and Mathematics 3 Critical Areas of Focus

Revision of Basic A.C. Theory

Algebra II. Algebra II Higher Mathematics Courses 77

Introduction to Vibration. Professor Mike Brennan

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

PreCalculus Honors Curriculum Pacing Guide First Half of Semester

CURRICULUM GUIDE. Honors Algebra II / Trigonometry

MATH 1040 Objectives List

3 + 4i 2 + 3i. 3 4i Fig 1b

Chapter 4: Graphing Sinusoidal Functions

Summer Assignment MAT 414: Calculus

Discrete-Time Signals: Time-Domain Representation

xvi xxiii xxvi Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7

Chapter 7: Trigonometric Equations and Identities

WA State Common Core Standards - Mathematics

College Algebra & Trig w Apps

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Pre-Calculus & Trigonometry Scope and Sequence

Transcription:

Linearity input Ax (t)+bx (t) Time invariance x(t-$) x(t) Characteristic Functions Linear Time Invariant Systems Linear Time Invariant System scaling & superposition e st complex exponentials y(t) output Ay (t)+by (t) y(t-$) s% s±j& s-% ±j& x(t)sin(&t) e st e -%t e ±j&t e -%±j&t cos" ej" + e #j" Complex Exponential Signals Linear Time Invariant System exponential decay sinusoids exponential sinusoids characteristic functions of LTI systems y(t)a sin(&t+') output has same frequency as input but is scaled and phase shifted Periodic y()y( +"n) sine odd sin(-)sin() Sinusoids (rad) y sin() "/6 " /4 " /3 " / " 3"/ " cosine even cos(-)-cos()..77.866 # y cos().866.77. # Relations: &"f T:period (sec/cycle) Continuous sinusoids T /f "/& (t) Parameters: A: amplitude ': phase (radians) &: radian frequency (radians/sec) or f: frequency (cycles/sec-hz) rad/sec (" rad/cycle)*cycle/sec y(t)y(t+t) y(t)a sin(&t+') y(t)a sin("ft+') sec/cycle / (cycle/sec) (" rad/cycle)/(rad/sec)

Continuous sinusoids (t) Sampled Continuous Sinusoid Phase shift In: x(t)sin(t) Out: y(t).sin(t-"/3) y(t)a sin(&t+') y(t)a sin("ft+') Parameters: A: amplitude ': phase (radians) &: radian frequency (radians/sec) or f: frequency (cycles/sec-hz) x() y("/3) Continuous Sinusoid [ ] sin(" # # n) [ ] sin( " # n) y n y n y(t) sin("t) Sample rate: t nt s Discrete Sinusoid T s sec y[n]cos(*pi*n/).8.6.4. -. -.4 -.6 -.8 TextEnd sampled continuous sinusoids - 3 4 6 7 8 9 n - samples n y[n]..49 3.368 4.488 Discrete sinusoids [n] n,, Period of discrete sinusoids y[n]a sin(&n+') y[n]a sin("fn+') A: amplitude ': phase (radians) &: radian frequency (radians/sample) f: frequency (cycles/sample) Relations: &"f rad/sample (" rad/cycle)*cycle/sample N:period (samples/repeating cycle [integer]) Smallest integer N such that y[n]y[n+n] Find an integer k so Nk/f is also an integer N " f f k/n (f: rational number -> k/n is ratio of integers) ex: y[n]cos("(3/6)n) What is the period N? y[n]a cos("fn+') frequency: f3/6 cycles/sample N:period (samples/repeating cycle [integer]) Smallest integer N such that y[n]y[n+n] Find an integer k so Nk/f is also an integer f3/6 let k3 N(3)*6/36-3 n - samples f k/n (rational number -> k/n is ratio of integers) y[n]cos(*pi*3/6*n).8.6.4. -. -.4 -.6 -.8 TextEnd period of discrete sinusoids

y[ n] sin(" # 3 # n) f 3 cycles sample y[ n] y[n + N] N?? samples N: integer Period of discrete sinusoids: ex. discrete function y[ n] sin(" # 3 # n) frequency: period: N?? samples y[ n] y[n + N] f " N k Period of discrete sinusoids: ex. f 3 cycles sec N, k:integers 3 " N k N " f /3 integer N k 3 samples cycle ratio of integers rational number periodic N samples, k3 cycles Aperiodic discrete sinusoids continuous function ( ) sin(" # # t) y t T sec sample t nt s periodic T s sec ysin(*pi*sqrt()/*n).8.6.4. -. -.4 -.6 TextEnd irrational frequency arbitrary continuous signal y(t+()y(t) After what interval does the signal repeat itself? Periodicity T:period (sec/cycle) discrete function [ ] sin(" # y n period? [ ] y[n + N] y n N?? samples (integer) # n) -.8 -... 3 3. 4 time (sec) f f " N k N,k: integers N k not a ratio of integers irrational number sampled discrete sinusoid aperiodic

Ex: Period of sum of sinusoids. -. - 3 4 6 T. seconds, T.7 seconds seconds to complete cycles T/ seconds /s, /s, 3/s 4/s, 8/s, /s, 6/s, /s, 4/s, 8/s, 3/s, 36/s, 4/s, 44/s, 48/s, /s, 6/s, 6/s cycles Least common multiple /*k3/4*l k/l/4 seconds to complete cycles T3/4 seconds 3/4s, 6/4s, /s. 3/s, 4/s, 6/s rational number 4 cycles - Tsum*T/3 seconds Tsum4*T3/4*43 seconds - 3 4 6 time (sec) Tsum? seconds Tsum3 seconds y()sin() (t) instantaneous frequency &d/dt sinusoid constant frequency Instantaneous frequency y(t)a sin(&t+') &t+' d/dt& chirp linearly swept frequency &d/dt & ((& -& )/T)t +& integrate (& -& )/T t +& t + C time varying argument t & & ( & y chirp (t)a sin((& -& ) /(T) t +& t + ') Representations of a sinusoid y(t)a cos(&t+') [ ] e j#t + e $ j#t y(t) Ae j" y(t)re{ae j' e j(&t) } X Ae j' complex amplitude (constant) y(t)re{xe j(&t) } Euler s relations e j cos()+jsin() trig function complex conjugates real part of complex exponential rotating phasor cos" ej" + e #j" sin" ej" # e #j" j e j (") e j (#t+$) e j$ e j#t

Complex Exponentials Why use complex exponentials? Trigonometric manipulations -> algebraic operations on exponents Trigonometric identities cos(x)cos(y) [ cos( x " y) " [ cos( x + y) ]] ( ) cos + cos x (x) Vector representation (graphical) Properties of exponentials re x e y re x+y (re x ) n r n e nx n x x / n x x" Complex Exponentials Amplitude modulation (multiply two sinusoids of different frequencies) Acos(& t) B cos(& t+') C(cos(& 3 t +' )+ cos(& 4 t +' )) cos. cos " cos. cos. cos " sin. sin " cos. cos " cos. sin. sin " cos cos sin sin. cos ". sin " cos s cos d sin s sin d. cos ". sin "... A B cos. cos "s cos. cos "d sin. sin "s sin. sin "d. cos s " sin d " or cos. cos " e j.. e j. e j. " e j. " cos complex conj mult. exponentials... 4 A B exp j. " " exp j. " " exp j. " " exp j. " "... 4 A B. cos " ". cos " ". cos " " cos " " *sum formula for sin & cos trig id *product formula for sin & cos trig id *sum formula for sin & cos trig id cos complex conj Representations of a sinusoid complex numbers y(t)a cos(&t+') [ ] e j#t + e $ j#t y(t) Ae j" y(t)re{ae j' e j(&t) } trig function complex conjugates real part of complex exponential e j (") e j (#t+$) e j$ e j#t sre j j " conversion a r cos(" ) b r sin(" ) X Ae j' complex amplitude (constant) y(t)re{xe j(&t) } rotating phasor Euler s relations e j cos()+jsin() cos" ej" + e #j" sin" ej" # e #j" j conjugate s*a-jbre -j r a + b # " atan% b& ( $ a' quadrants e j e j"/ i e j" -

complex numbers complex numbers sre j conjugate s*a-jbre -j j " conversion a r cos(" ) b r sin(" ) r a + b # " a tan b & % ( $ a ' remember: e j e j"/ j e j" - ex. j (e j ) j e j(j)() e -() e ex. cos(j)? /j? s 3+j 3. e s -+j. j atan 3 3 e j.88 j. atan. e e j.678 s 3 e j.88 3+j s e j.678 3. cos.88 j. 3. sin.88. cos.678 j.. sin.678 -+j 3 Addition complex arithmetic Addition Subtraction Multiplication Division Powers Roots s a +jb s +s a +jb + a +jb s a +jb (a + a ) +j(b +b ) s r e j s r e j convert to add convert back to place tail of s at head of s connect origin to s

Addition - example s 3+j s -+j s 3 e j.88 s e j.678 s +s a + a +j(b +b ) 3 - +j(+ ) +j3 s 3 cos(.88)+j 3 sin(.88) 3+j s cos(.678)+j sin(.678) -+j s +s +j3 3. j e. atan 3. e j..49 Subtraction s a +jb s -s a +jb - (a +jb ) s a +jb (a - a ) + j(b -b ) s r e j s r e j rotate s 8 (-s ) place tail of -s at head of s convert to add convert back to connect origin to s Subtraction - example s s -s (a - a ) + j(b -b ) 3+j s -+j (3 - (-)) + j(- ) + j s e j.88 s 3 3 cos(.88)+j 3 sin(.88) 3+j s e j.678 s cos(.678)+j sin(.678) -+j s -s +j j. atan. e 6. e j..97 Multiplication s a +jb s s (a +jb ) s a +jb (a +jb ) a a + ja b + ja b + jb jb a a + j b b + j(a b +a b ) a a -b b + j(a b +a b ) s r e j s r e j magnitudes multiply angles add s s r e j r e j r r e j e j r r e j+ x a x b x a+b

Multiplication - example s s a a -b b + j(a b +a b ) s 3+j 3(-) -() + j(3()+()() ) s -+j s 3 e j.88 s e j.678-6 - + j(3-4 ) -8 - j s s r r e j+ 3 e j(.88+.678) 6 e j3.66 s s 6 cos(3.66)+ 6 j sin(3.66) -8 - j Division s a +jb s a +jb s r e j s r e j s /s (a +jb ) / (a +jb ) (a +jb ) (a -jb ) / (a +jb ) (a -jb ) (a +jb ) (a -jb ) / (a +b ) s s * / s s /s r e j / r e j r e j (r e j ) # (r /r ) e j e -j (r /r ) e j- divide magnitudes angles subtract x a /x b x a-b Division - example s 3+j s -+j s 3 e j.88 s e j.678 s /s s s * / s (a +jb ) (a -jb ) / (a +b ) (3+j ) (--j) / ( + ) (3(-)-j3()+j(-)+()) / () (-6-j3-j4+) / () (-4-j7) / () s /s (r /r ) e j- Powers sre j s n (a+jb) n n " n ( $ % ' a n)k ( jb) k " where n $ % ' # k& # k& k s n (re j ) n s n r n e jn Binomial expansion n(n ()(n ( )K(n ( ( k ( )) k 3 ( / ) e j.88#.678 3 ( / ) ej.88#.678 3. e j..9 3 3 cos(-.9)+j sin(-.9) -.8-j.4 (x a ) n x an magnitude raised to power n angle multiplied by n

Powers - example s+j sre j. e. e j..464. j atan. e j..464 s (+j) Roots sre j s /n (a+jb) /n " a/ n + j b % $ ' # a& / n s /n (re j ) /n s /n r /n e j(/n+"k/n) + j b n a + " /n % $ # & ' j b " % " $ # a ' + /n % $ & # 3 & ' j b 3 " % $ # a ' +K & k,,,,n-??? s n r n e jn s r e j s e j(.464) s e j.97 cos(.97)+jsin(.97) 3+j4 n nth positive root of magnitude circle evenly divided by n starting at angle/n x x / n Roots - example s+j. e j..464 s /3 (a+jb) /3 s /n r /n e j(/n+"k/n) s /3 /3 e j(.464/3+"k/3) s /3.38 e j(.464/3).38 e j(.464/3+"/3).38 e j(.464/3+"/3) k,,,,n- k,, s /3.38 e j..9+j..38 e j.49 -.8+j.9.38 e j4.343 -.47-j. s a + b e j"a tan ( b a) sre j s rcos" + jrsin" Addition Subtraction Multiplication Division Powers Complex Conversions Complex Arithmetic ( a + jb ) + ( a + jb ) ( a + a ) + j( b + b ) ( a + jb ) " ( a + jb ) ( a " a ) + j( b " b ) r e j" # r e j" r r e j ( " +" ) r e j" r e j" r e j (" #" ) r ( re j" ) n r n e jn" Roots z n s re j" z s / n r / n e j " / n +#k / n ( ) k,kn "