Quantum phase transitions of insulators, superconductors and metals in two dimensions

Similar documents
Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum mechanics without particles

Quantum entanglement and the phases of matter

Talk online: sachdev.physics.harvard.edu

Quantum entanglement and the phases of matter

The phase diagrams of the high temperature superconductors

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum disordering magnetic order in insulators, metals, and superconductors

Subir Sachdev Harvard University

Subir Sachdev Harvard University

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

2. Spin liquids and valence bond solids

Strange metals and gauge-gravity duality

The underdoped cuprates as fractionalized Fermi liquids (FL*)

AdS/CFT and condensed matter

Quantum phase transitions in coupled dimer compounds

Quantum criticality of Fermi surfaces in two dimensions

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

General relativity and the cuprates

arxiv: v1 [cond-mat.str-el] 7 Oct 2009

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Saturday, April 3, 2010

Quantum criticality of Fermi surfaces

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

A quantum dimer model for the pseudogap metal

Pressure- and field-induced magnetic quantum phase transitions in TlCuCl 3

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Spin liquids on the triangular lattice

Talk online at

Topological order in the pseudogap metal

Quantum criticality and the phase diagram of the cuprates

Order and quantum phase transitions in the cuprate superconductors

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

arxiv: v1 [hep-th] 16 Feb 2010

Electronic quasiparticles and competing orders in the cuprate superconductors

Quantum Phase Transitions

Bond operator methods for dimerized antiferromagnets

Quantum Criticality and Black Holes

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

Dual vortex theory of doped antiferromagnets

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Gapless Spin Liquids in Two Dimensions

SUPPLEMENTARY INFORMATION

The Superfluid-Insulator transition

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions in Mott insulators and d-wave superconductors

Z 2 topological order near the Neel state on the square lattice

Universal Post-quench Dynamics at a Quantum Critical Point

Entanglement, holography, and strange metals

Tuning order in the cuprate superconductors

The quantum phases of matter. sachdev.physics.harvard.edu

Electrical transport near a pair-breaking superconductor-metal quantum phase transition

Quantum and classical criticality in a dimerised quantum antiferromagnet

Tuning order in the cuprate superconductors by a magnetic field

(Effective) Field Theory and Emergence in Condensed Matter

3. Quantum matter without quasiparticles

Quantum Phase Transitions

Quantum spin systems - models and computational methods

Condensed Matter Physics in the City London, June 20, 2012

SU(N) magnets: from a theoretical abstraction to reality

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University

Understanding correlated electron systems by a classification of Mott insulators

Quantum transitions of d-wave superconductors in a magnetic field

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Nematic and Magnetic orders in Fe-based Superconductors

A New look at the Pseudogap Phase in the Cuprates.

Deconfined Quantum Critical Points

Spin liquid phases in strongly correlated lattice models

Entanglement, holography, and strange metals

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Metals without quasiparticles

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Quantum Monte Carlo Simulations in the Valence Bond Basis

SYK models and black holes

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

The Higgs particle in condensed matter

Order and quantum phase transitions in the cuprate superconductors

Tuning order in cuprate superconductors

Deconfined Quantum Critical Points

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor

Unusual ordered phases of magnetized frustrated antiferromagnets

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

From the pseudogap to the strange metal

Emergent gauge fields and the high temperature superconductors

Quantum Spin-Metals in Weak Mott Insulators

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Transcription:

Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD

Outline 1. Phenomenology of the cuprate superconductors (and other compounds) 2. QPT of antiferromagnetic insulators (and bosons at rational filling) 3. QPT of d-wave superconductors: Fermi points of massless Dirac fermions 4. QPT of Fermi surfaces: A. Finite wavevector ordering (SDW/CDW): Hot spots on Fermi surfaces B. Zero wavevector ordering (Nematic): Hot Fermi surfaces

Outline 1. Phenomenology of the cuprate superconductors (and other compounds) 2. QPT of antiferromagnetic insulators (and bosons at rational filling) 3. QPT of d-wave superconductors: Fermi points of massless Dirac fermions 4. QPT of Fermi surfaces: A. Finite wavevector ordering (SDW/CDW): Hot spots on Fermi surfaces B. Zero wavevector ordering (Nematic): Hot Fermi surfaces

Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001). Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave superconductor E. G. Moon and S. Sachdev, Phy. Rev. B 80, 035117 (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Thermally fluctuating SDW Magnetic quantum criticality Spin gap Strange Metal d-wave Classical spin waves superconductor Neel order Large Fermi surface Quantum critical E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 Dilute (2001). triplon gas E. G. Moon and S. Sachdev, Phy. Rev. B 80, 035117 (2009) Criticality of the coupled dimer antiferromagnet at x=xs Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

Theory of quantum criticality in the cuprates ncreasing SDW Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Thermally fluctuating SDW Magnetic quantum criticality Criticality of the topological change in Fermi surface at x=xm Spin gap Spin density wave (SDW) Strange Metal d-wave superconductor Large Fermi surface Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m. E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001). E. G. Moon and S. Sachdev, Phy. Rev. B 80, 035117 (2009)

TlCuCl 3

TlCuCl 3 An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.

TlCuCl 3 at ambient pressure N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001).

TlCuCl 3 at ambient pressure Sharp spin 1 particle excitation above an energy gap (spin gap) N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001).

Square lattice antiferromagnet H = ij J ij Si S j Ground state has long-range Néel order Order parameter is a single vector field ϕ = η isi η i = ±1 on two sublattices ϕ = 0 in Néel state.

Square lattice antiferromagnet H = ij J ij Si S j J J/λ Weaken some bonds to induce spin entanglement in a new quantum phase

Square lattice antiferromagnet H = ij J ij Si S j J J/λ Ground state is a quantum paramagnet with spins locked in valence bond singlets = 1 2

λ c λ Quantum critical point with non-local entanglement in spin wavefunction M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev.B 65, 014407 (2002).

λ c λ Pressure in TlCuCl3

Excitation spectrum in the paramagnetic phase λ c λ

Excitation spectrum in the paramagnetic phase λ c λ

Excitation spectrum in the paramagnetic phase λ c λ

Excitation spectrum in the paramagnetic phase λ c λ

Excitation spectrum in the paramagnetic phase λ c λ Sharp spin 1 particle excitation above an energy gap (spin gap)

TlCuCl 3 at ambient pressure Sharp spin 1 particle excitation above an energy gap (spin gap) N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001).

Excitation spectrum in the Néel phase λ c λ

Excitation spectrum in the Néel phase λ c λ Spin waves

Excitation spectrum in the Néel phase λ c λ Spin waves

Derivation of field theory of critical point

Description using Landau-Ginzburg field theory λ c CFT3 λ O(3) order parameter ϕ ( S = d 2 rdτ τ ϕ) 2 + c 2 ( r ϕ ) 2 +(λ λ c )ϕ 2 + u ϕ 2 2

Excitation spectrum in the paramagnetic phase λ λ c V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 2.0 V (ϕ ) 1.5 Spin S =1 λ >λ c ϕ triplon

Excitation spectrum in the paramagnetic phase λ λ c V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 2.0 V (ϕ ) 1.5 Spin S =1 λ >λ c ϕ triplon

Excitation spectrum in the paramagnetic phase λ λ c V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 2.0 V (ϕ ) 1.5 Spin S =1 λ >λ c ϕ triplon

Excitation spectrum in the paramagnetic phase λ λ c V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 2.0 V (ϕ ) 1.5 Spin S =1 λ >λ c ϕ triplon

Excitation spectrum in the paramagnetic phase λ λ c V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 2.0 V (ϕ ) 1.5 Spin S =1 λ >λ c ϕ triplon

TlCuCl 3 at ambient pressure Sharp spin 1 particle excitation above an energy gap (spin gap) N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001).

Excitation spectrum in the Néel phase V (ϕ ) 0.1 0.2 λ c V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 λ <λ c λ 0.3 ϕ Spin waves ( Goldstone modes) and a longitudinal Higgs particle

Excitation spectrum in the Néel phase V (ϕ ) 0.1 0.2 λ c V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 λ <λ c λ 0.3 ϕ Spin waves ( Goldstone modes) and a longitudinal Higgs particle

Excitation spectrum in the Néel phase V (ϕ ) 0.1 0.2 λ c V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 λ <λ c λ 0.3 ϕ Spin waves ( Goldstone modes) and a longitudinal Higgs particle

TlCuCl 3 with varying pressure Observation of 3 2 low energy modes, emergence of new longitudinal mode (the Higgs boson ) in Néel phase, and vanishing of Néel temperature at quantum critical point Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Prediction of quantum field theory Potential for ϕ fluctuations: V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 Paramagnetic phase, λ >λ c Expand about ϕ = 0: 2.0 V (ϕ ) 1.5 V (ϕ ) (λ λ c )ϕ 2 ϕ Yields 3 particles with energy gap (λ λ c )

Prediction of quantum field theory Potential for ϕ fluctuations: V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 Paramagnetic phase, λ >λ c Expand about ϕ = 0: 2.0 V (ϕ ) 1.5 V (ϕ ) (λ λ c )ϕ 2 ϕ Yields 3 particles with energy gap (λ λ c ) Néel phase, λ < λ c Expand ϕ = 0, 0, (λ c λ)/(2u) + ϕ 1 : V (ϕ ) 0.1 0.2 0.3 ϕ V (ϕ ) 2(λ c λ)ϕ 2 1z Yields 2 gapless spin waves and one Higgs particle with energy gap 2(λ c λ)

Prediction of quantum field theory Energy of Higgs particle Energy of triplon 1.4 = 2 V (ϕ )=(λ λ c )ϕ 2 + u ϕ 2 2 Energy 2*E(p < p c ), E(p > p c ) [mev] 1.2 1 0.8 0.6 0.4 0.2 TlCuCl 3 p c = 7 kbar T = 1.85 K Q=(0 4 0) L (p < p c ) L (p > p c ) Q=(0 0 1) L,T 1 (p < p c ) L (p > p c ) E(p < p c ) unscaled 0 0 1 1.5 2 Pressure (p p c ) [kbar] S. Sachdev, arxiv:0901.4103

O(3) order parameter ϕ λ c CFT3 ( τ ϕ) 2 + c 2 ( r ϕ ) 2 + sϕ 2 + u ϕ 2 2 λ S = d 2 rdτ

Quantum Monte Carlo - critical exponents S. Wenzel and W. Janke, Phys. Rev. B 79, 014410 (2009) M. Troyer, M. Imada, and K. Ueda, J. Phys. Soc. Japan (1997)

Quantum Monte Carlo - critical exponents Field-theoretic RG of CFT3 E. Vicari et al. S. Wenzel and W. Janke, Phys. Rev. B 79, 014410 (2009) M. Troyer, M. Imada, and K. Ueda, J. Phys. Soc. Japan (1997)