J. G. Eden. University of Illinois. University of Illinois. Laboratory for Optical Physics and Engineering

Similar documents
Lasers... the optical cavity

ALUMINUM/ALUMINUM OXIDE STRUCTURED MICROPLASMA DEVICES: PASCHEN S LAW AND APPLICATIONS JEKWON YOON THESIS

MICRODISCHARGES AS SOURCES OF PHOTONS, RADICALS AND THRUST*

Profiling and modeling of dc nitrogen microplasmas

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS

LEC E T C U T R U E R E 17 -Photodetectors

Control of gas discharge plasma properties utilizing nonlocal electron energy distribution functions DOE-OFS Plasma Science Center

Carbon Nanotube Thin-Films & Nanoparticle Assembly

H. Shin, W. Zhu, V. M. Donnelly, and D. J. Economou University of Houston. November 2, AVS 58h International Symposium, Nashville, TN, USA

Chapter 7. Solar Cell

Microhollow cathode discharges

ARGON EXCIMER LAMP. A. Sobottka, L. Prager, L. Drößler, M. Lenk. Leibniz Institute of Surface Modification

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam

Electron Current Extraction and Interaction of RF mdbd Arrays

Lecture 18. New gas detectors Solid state trackers

Laser Excitation Dynamics of Argon Metastables Generated in Atmospheric Pressure Flows by Microwave Frequency Microplasma Arrays

Enhanced performance of microbolometer. using coupled feed horn antenna

Chapter 5: Nanoparticle Production from Cathode Sputtering. in High-Pressure Microhollow Cathode and Arc Discharges

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES*

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Stepwise Solution Important Instructions to examiners:

Micro/nano and precision manufacturing technologies and applications

Chemistry Instrumental Analysis Lecture 17. Chem 4631

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Single Photon detectors

Metal Vapour Lasers Use vapourized metal as a gain medium Developed by W. Silfvast (1966) Put metal in a cavity with a heater Vapourize metal, then

Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter

Authors: D.S.Roveri 1, H.H.Bertan 1, M.A.R.Alves 1, J.F.Mologni 2, E.S.Braga 1

CARBON NANOSTRUCTURES SYNTHESIZED THROUGH GRAPHITE ETCHING

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT

Chip-Scale Mass Spectrometers for Portable Gas Analyzers Luis Fernando Velásquez-García. A. I. Akinwande, K. Cheung, and L.-Y Chen.

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER

Modeling Internal Heating of Optoelectronic Devices Using COMSOL

MATERIALS APPLICATIONS

SUPPLEMENTARY INFORMATION

COMPARISON OF J-E CHARACTERISTICS OF A CNT BASED COLD CATHODE GROWN BY CVD AND PECVD

Fluxless Soldering in Activated Hydrogen Atmosphere

Bu Ren an, Song Mingdong *, Wang Zhongrui, Jin Jing, Hu Wenbo, Qiu Feng, Wang Wenjiang, Zhang Jintao

Transient Thermal Measurement and Behavior of Integrated Circuits

Etching: Basic Terminology

Some Reflections on Gas Discharges and PAGD Pulses

Electrical Discharges Characterization of Planar Sputtering System

Boron-based semiconductor solids as thermal neutron detectors

Modern optics Lasers

sensors ISSN by MDPI

INFLUENCE OF MAGNETIC FIELD ON MONOCHROME VISIBLE LIGHT IN ELECTROPOSITIVE ELECTRONEGATIVE GAS MIXTURES DISCHARGES PLASMA

DOE WEB SEMINAR,

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Lecture 12. Semiconductor Detectors - Photodetectors

Analysis of Discharge Parameters and Spectroscopic Diagnostic of DBDs

Quantum Dots for Advanced Research and Devices

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

The Effect of Discharge Characteristics on Dielectric Barrier Discharges According to the Relative Permittivity

PHOTOVOLTAICS Fundamentals

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents

Aluminum for nonlinear plasmonics: Methods Section

Plastic Electronics. Joaquim Puigdollers.

Photonic Communications Engineering Lecture. Dr. Demetris Geddis Department of Engineering Norfolk State University

ESTIMATION OF ELECTRON TEMPERATURE IN ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGE USING LINE INTENSITY RATIO METHOD

Manufacture of Nanostructures for Power Electronics Applications

Nanomaterials and their Optical Applications

Chapter 4. Photodetectors

Fabrication Technology, Part I

Chapter VI: Cold plasma generation

Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition

Radioactivity. Lecture 6 Detectors and Instrumentation

Supporting Information

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

Nanopantography: A method for parallel writing of etched and deposited nanopatterns

SMBBIR45A Broad band High Power Emitter. AnodeMark 5.2. heatsink

The effect of the chamber wall on fluorocarbonassisted atomic layer etching of SiO 2 using cyclic Ar/C 4 F 8 plasma

Technology for Micro- and Nanostructures Micro- and Nanotechnology

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF

Spectral Detection of Metal Contaminants in Water Using an On-Chip Microglow Discharge

Far IR Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Field emission vacuum power switch using vertically aligned carbon nanotubes

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL

Auxiliaire d enseignement Nicolas Ayotte

Recent Status of Polarized Electron Sources at Nagoya University

Modeling nonthermal plasmas generated in glow discharges*

MAPPING OF ATOMIC NITROGEN IN SINGLE FILAMENTS OF A BARRIER DISCHARGE MEASURED BY TWO PHOTON FLUORESCENCE SPECTROSCOPY (TALIF)

Optical plasma emission spectroscopy of etching plasmas used in Si-based semiconductor processing

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

CHAPTER 6: Etching. Chapter 6 1

Improvement of MgO Characteristics Using RF-Plasma Treatment in AC Plasma Display Panel

Neuromorphic computing with Memristive devices. NCM group

Lect. 10: Photodetectors

PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research

Transcription:

NEW OPPORTUNITIES IN PHOTONICS APPLICATIONS : MICROPLASMA DEVICES AND ARRAYS FABRICATED IN SEMICONDUCTORS, CERAMIC AND POLYMER/METAL MULTILAYER STRUCTURES J. G. Eden

MICROPLASMAS: AT THE INTERSECTION OF OPTOELECTRONICS, MICROFABRICATION, AND PLASMA SCIENCE PLASMA SCIENCE New realm of discharge operation and characteristics MICROPLASMAS PHOTONICS MATERIALS SCIENCE, MICRO- AND NANOFABRICATION Broad array of applications

SUMMARY Glow discharges confined to mesoscopic dimensions ( < 10 ~ 100 µm) Microcavity volumes: nanoliters picoliters A variety of atomic and molecular emitters are available (VUV ~ IR) Can be operated continuously at gas pressures beyond one atmosphere at power loadings exceeding 100 kw/cm3 Leveraging MEMs and semiconductor processes for fabrication of devices and arrays Emphasis on processes amenable to mass production

GENERAL CONSIDERATIONS Macroscopic Annular Cathode Thin Film Structure d Disk Anode Discharge microcavity dimensions ( d ) on µm scale As d, surface area / volume : Importance of microcavity design

Semiconductor Devices

REPRESENTATIVE Si DEVICE STRUCTURES anode dielectric cathode Planar Si Electrode Inverted Pyramidal Electrode DRIE Electrode

SEMICONDUCTOR ARRAYS Inverted Square Pyramidal Cathode 400 Torr Ne 1200 Torr Ne

EMISSION UNIFORMITY: DC EXCITATION, ATOMIC AND MOLECULAR EMITTERS Ne Ar Ar/N2

LARGE ARRAYS FOR AC EXCITATION

200 200 ARRAY : 4 cm2 OF ACTIVE AREA

ARRAY INTENSITY CONTOUR 200 200 Arrays Uniformity : Better than 10 %

VOLTAGE-CURRENT CHARACTERISTICS : 200 200 ARRAY 800 200 x 200 10 kh z 5 0 0 T o rr 700 600 V o lta g e ( V p - p ) 700 900 600 500 400 15 20 25 C u rre n t (m A, R M S ) 30

1 5 khz 10 2 RMS RM S 10 10 15 10 10 0 1 10 10-1 0 10 10 0 10 1 10 2 10 T o t a l P o w e r C o n s u m p t io n ( W ) 7 0 0 T o rr N e -2 N o r m a liz e d P o w e r C o n s u m p t io n ( W - c m ) POWER CONSUMPTION 3 N u m b e r o f P ix e ls 10 4 10 5-2

A QUARTER MILLION PIXEL ARRAY : 25 cm2 OF ACTIVE AREA

500 500 ARRAY OPERATING in Ne 700 Torr Ne

500 500 ARRAY OPERATING in Ne 700 Torr Ne

PIXEL UNIFORMITY Attenuation with ND Filter

DRIE Si Devices (10 µm)2 Single (30 µm)2 10 X 11 arrays (30 µm)2 Single 900 Torr Ne

I-V Characteristics (10 µm)2 Si DRIE Device 330 700 T orr N e 800 900 325 1000 1100 V o l t a g e (V ) 320 315 310 10 µm Ni 305 Polyimide 300 200 µm SiO2 Si 295 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 C u rre n t ( µ A ) 2.0 2.2 2.4 2.6 2.8 3.0

Xe/O2 Microdischarges in 30 µm DRIE devices O2 10 mtorr

N Depletion Region Plasma Excitation of a Microdischarge with a Reverse-Biased PN Junction W P d = 300 µm, 180 V, 0.45 ma 200 Torr Neon

25 25 Pixel Array in Glass

Fresnel Arrays 400 Torr Ne Device Separation < Coherence Length

MICRODISCHARGE PHOTODETECTORS With Illumination 246.7V, 0.035 ma (50 234.3 V, 0.113 ma m)2 device, 500 Torr Neon

Photosensitivity Photosensitivity (A/W) 2 (100 µm) Device 500 Torr Ne λ = 780 nm 0 10 10-1 Active Plasma Device Entire Device Die 10-2 10-3 10-2 -1 10 0 10 1 10 Input Power (µw) 2 10 3 10

Spectral Response 4.0 DCD = 36 ma/cm Photosensitivity (A/W) DCD = 27 ma/cm DCD = 62 ma/cm 3.0 DCD = 58 ma/cm 2 2 2 2 2 (50 µm) Device, 800 Torr Ne 2.0 2 (100 µm) Device, 500 Torr Ne 1.0 0.0 400 500 600 700 800 Wavelength (nm) 900 1000 1100

Spectral Response Photosensitivity (A/W) 4.0 Scaled APD Response (100 µm)2, Active Plasma Device 2 (50 µm), Active Plasma Device 3.0 2.0 1.0 0.0 400 500 600 700 800 Wavelength (nm) 900 1000 1100

Band Diagram

Ceramic Devices

MULTISTAGE, MONOLITHIC CERAMIC MICRODISCHARGE DEVICE d anode pad anode cathode anode cathode ceramic layer cathode pad Pre-fired Fired

PLANAR ARRAY ELECTRODE GEOMETRY Electrode spacing is ~100 µm Parallel plate annular electrode design yields more electrode area Better device stability Longer lifetime Reduced field enhancement Individually-ballasted pixels Fabrication by screen printing

300 Torr Xe

LINEAR ARRAY CW or Pulsed Excitation Bore: 80 X 360 µm2 Active Length ~1 cm

600 Torr Ne

Intensity Gain at 460.3 nm: Xe+ 600 500 400 300 200 100 0 2500 2000 1500 1000 500 0 5000 4000 3000 2000 1000 0 300 V 500 V 800 V 440 450 460 470 Wavelength (nm) 480 490

Nanoporous Dielectrics for Microcavity Devices Pore diameter: tens~hundreds of nm

Multilayer Al/Al2O3 Microplasma Array 100 µm V Al2O3 Al 200 µm

3 3 Array Operating in Ne and Ar/N2 700 Torr Ne 500 Torr Ar/N2 (3%)

Flexible Device and Arrays

Thin Film Self-Ballasted Microdischarge Arrays d = 100 µm Dielectric Anode V 30 ~ 40 µm Cathode Layer (Ni) Dielectric Conducting Substrate Resistive Layer

d = 100 µm, 500 Torr Ne 20 mm 148.2V DC, 15 ma

13 ~ 30 µm DEVICES Metal/Polymer Structure 30 µm dia. Microdischarge Device 30 µm 30 µm ND filter

Devices Approaching Cellular Dimensions 900 Torr Neon

Flexible Large Arrays ~ 100 µm dia. 500 Torr Ne

SEALED LARGE ARRAY: 66 66 ARRAY in 3 cm2 OF ACTIVE AREA 100 µm dia. Pixels 760 Torr Ne 10 khz AC, 800 Vp-p

ADDRESSABLE FLEXIBLE ARRAY

AIR DISCHARGE DEVICES Ni / BN / Ni d = 100 µm, DC 450 V, 4 ma

MICRODISCHARGE ARRAY ASSISTED IGNITION OF A HIGH PRESSURE DISCHARGE

3.0 Ar d=400 µm 2.5 Vs (kv) 2.0 L=3.5 cm 1.5 Microdischarge Array 1.0 OFF I = 1 ma 1.5 ma 2 ma 3 ma L=1.0 cm 0.5 0.0 0 50 100 150 200 Pressure (Torr) 250 300 350

Microdischarge Device with Carbon Nanotubes Ni screen anode BN (~70 µm) Ni cathode (50 µm) 200 µm CNT Type I CNT 25 µm 200 µm Type II Si 2nd cathode SEM Image of Microcavity in Type I

Microdischarge Device with CNTs Type I Before Operation 400 Torr Ne

140 I-V Characteristics 2 0 0 T o rr N e Type I 300 400 130 500 600 125 120 115 N i / B N ( 7 0 µm ) / N i 110 145 0.0 4 0.0 8 140 0.1 2 0.1 6 0.2 0 0.2 4 0.2 8 C u rre n t (m A ) 135 2 0 0 T o rr N e 128 300 130 1 0 0 T o rr N e 400 200 500 600 125 0.0 2 0.0 4 0.0 6 0.0 8 0.1 0 0.1 2 0.1 4 0.1 6 0.1 8 C u rre n t (m A ) Type II Without CNTs D e v ic e V o lt a g e ( V ) D e v ic e V o lt a g e ( V ) 150 D e v ic e V o lt a g e ( V ) 135 124 300 400 500 120 600 116 112 108 0.0 5 0.1 0 0.1 5 0.2 0 C u rre n t (m A ) 0.2 5 0.3 0

Efficiency vs. Ignition Voltage 9.6 W it h o u t C N T s 9.2 260 S ta rtin g V o lta g e (V ) R e la tiv e R a d ia tiv e E ffic ie n c y 270 8.8 8.4 8.0 7.6 T yp e I W ith o u t C N T s T yp e I T y p e II 250 240 230 220 210 200 7.2 200 300 400 P Ne 500 600 190 100 200 300 (T o rr) Efficiency improved up to ~9 % Ignition voltage reduced by ~18% 400 P Ne 500 (T o rr) 600 700

APPLICATIONS Microdischarges

WHERE DO WE GO FROM HERE? d < 10 µm < 1 µm Full Implementation of Nanotechnology d λ : QED Effects Optical Integration of Emitters With Waveguides, Micro-Reactors Operation at Extremely High Pressures ( > 5 atm) : Clusters, New Regime of Molecular Excitation

RESEARCH TEAM UNIVERSITY OF ILLINOIS S. J. Park N. P. Ostrom K.-F. Chen C. J. Wagner K. S. Kim K. Kunze M. Leach ANVIK CORPORATION M. Zemel M. Klosner K. Jain EWING TECHNOLOGY ASSOCIATES J. J. Ewing P. von Allmen (now at NASA, JPL) D. L. Wilcox F. Zenhausern M. Oliver D. Sadler C. Jensen MOTOROLA LABORATORIES (TEMPE, AZ) CAVITON C. Herring D. Kellner CAMBRIDGE, UK K.-H. Park