Reflected Discontinuous Backward Doubly Stochastic Differential Equations With Poisson Jumps

Similar documents
An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations

An Introduction to Malliavin calculus and its applications

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs

On a Fractional Stochastic Landau-Ginzburg Equation

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Example on p. 157

Utility maximization in incomplete markets

Singular control of SPDEs and backward stochastic partial diffe. reflection

Uniqueness of solutions to quadratic BSDEs. BSDEs with convex generators and unbounded terminal conditions

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

arxiv: v1 [math.pr] 19 Feb 2011

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

Backward stochastic dynamics on a filtered probability space

Positive continuous solution of a quadratic integral equation of fractional orders

Existence and uniqueness of solution for multidimensional BSDE with local conditions on the coefficient

On Gronwall s Type Integral Inequalities with Singular Kernels

Existence Theory of Second Order Random Differential Equations

Local Strict Comparison Theorem and Converse Comparison Theorems for Reflected Backward Stochastic Differential Equations

Convergence of the Neumann series in higher norms

BSDES UNDER FILTRATION-CONSISTENT NONLINEAR EXPECTATIONS AND THE CORRESPONDING DECOMPOSITION THEOREM FOR E-SUPERMARTINGALES IN L p

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Sobolev-type Inequality for Spaces L p(x) (R N )

Cash Flow Valuation Mode Lin Discrete Time

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

arxiv: v2 [math.pr] 11 Dec 2013

arxiv: v2 [math.pr] 7 Mar 2018

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

REFLECTED SOLUTIONS OF BACKWARD SDE S, AND RELATED OBSTACLE PROBLEMS FOR PDE S

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

arxiv: v1 [math.ca] 15 Nov 2016

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

6. Stochastic calculus with jump processes

CONTRIBUTION TO IMPULSIVE EQUATIONS

arxiv: v1 [math.pr] 23 Mar 2019

arxiv: v1 [math.pr] 21 May 2010

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH REFLECTION AND DYNKIN GAMES 1. By Jakša Cvitanić and Ioannis Karatzas Columbia University

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Undetermined coefficients for local fractional differential equations

A class of multidimensional quadratic BSDEs

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

DISCRETE GRONWALL LEMMA AND APPLICATIONS

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation

The Existence, Uniqueness and Stability of Almost Periodic Solutions for Riccati Differential Equation

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

arxiv: v1 [math.fa] 9 Dec 2018

arxiv: v1 [math.pr] 28 Nov 2016

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

Lecture 20: Riccati Equations and Least Squares Feedback Control

Approximation of backward stochastic variational inequalities

arxiv: v1 [math.pr] 14 Jul 2008

Asymptotic instability of nonlinear differential equations

Couplage du principe des grandes déviations et de l homogénisation dans le cas des EDP paraboliques: (le cas constant)

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

TO our knowledge, most exciting results on the existence

Chapter 2. First Order Scalar Equations

Existence of positive solutions for second order m-point boundary value problems

On R d -valued peacocks

2. Nonlinear Conservation Law Equations

Lecture 10: The Poincaré Inequality in Euclidean space

Hamilton Jacobi equations

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

POSITIVE PERIODIC SOLUTIONS OF NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS DEPENDING ON A PARAMETER

On Oscillation of a Generalized Logistic Equation with Several Delays

arxiv: v1 [math.pr] 6 Oct 2008

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN DIFFERENCE-DIFFERENTIAL EQUATIONS

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

10. State Space Methods

Quasi-sure Stochastic Analysis through Aggregation

Algorithmic Trading: Optimal Control PIMS Summer School

On the probabilistic stability of the monomial functional equation

Singular perturbation control problems: a BSDE approach

arxiv: v4 [math.pr] 29 Jan 2015

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

ON JENSEN S INEQUALITY FOR g-expectation

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite

Homogenization of random Hamilton Jacobi Bellman Equations

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

Research Article Existence and Uniqueness of Positive and Nondecreasing Solutions for a Class of Singular Fractional Boundary Value Problems

A FAMILY OF MARTINGALES GENERATED BY A PROCESS WITH INDEPENDENT INCREMENTS

EXISTENCE OF S 2 -ALMOST PERIODIC SOLUTIONS TO A CLASS OF NONAUTONOMOUS STOCHASTIC EVOLUTION EQUATIONS

STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES

Backward Stochastic Differential Equations with Nonmarkovian Singular Terminal Values

Well-posedness of Backward Stochastic Differential Equations with General Filtration

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

arxiv: v2 [math.pr] 12 Jul 2014

4 Sequences of measurable functions

Simulation of BSDEs and. Wiener Chaos Expansions

KYLE BACK EQUILIBRIUM MODELS AND LINEAR CONDITIONAL MEAN-FIELD SDEs

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Essential Maps and Coincidence Principles for General Classes of Maps

Transcription:

Journal of Numerical Mahemaics and Sochasics, () : 73-93, 8 hp://www.jnmas.org/jnmas-5.pdf JNM@S uclidean Press, LLC Online: ISSN 5-3 Refleced Disconinuous Backward Doubly Sochasic Differenial quaions Wih Poisson Jumps B. MANSOURI, and M. A.. SAOULI Universiy Mohamed Khider, POBox 45, 7, Biskra, Algeria, -mail: mansouri.badreddine@gmail.com Absrac. In his paper we prove he exisence of a soluion for refleced backward doubly sochasic differenial equaions wih poisson jumps (RBDSDPs) wih one coninuous barrier where he generaor is coninuous and also we sudy he RBDSDPs wih a linear growh condiion and lef coninuiy in y on he generaor. By a comparison heorem esablished here for his ype of equaion we provide a minimal or a maximal soluion o RBDSDPs. Key words : Refleced Backward Doubly Sochasic Differenial quaions, Random Poisson Measure, Minimal Soluion, Comparison heorem, Disconinuous Generaor. AMS Subjec Classificaions : 6H5, 6H, 6H3. Inroducion A new kind of backward sochasic differenial equaions was inroduced by Pardoux and Peng [] in 994, which is a class of backward doubly sochasic differenial equaions (BDSDs for shor) Y fs,ys,z s ds gs,ys,z s db s Zs dw s,, where is a random variable ermed he erminal condiion, f :, d, g :, d are wo joinly measurable processes, W and B are wo muually independen sandard Brownian moion, wih values, respecively in d and. Several auhors ineresed in weakening his assumpion see Bahlali e al [3], Boufoussi e al. [5], Lin. Q [8] and[9],n zielal.[],shieal.[3],wue al. [5], Zhu e al. [7]. A class of backward doubly sochasic differenial equaions wih jumps was sudy by Sun el al. [4], Zhu e al. [6] hey have proved he exisence and uniqueness of soluions for his ype of BDSDs under uniformly Lipschiz condiions. In addiion, Bahlali e al [] prove he exisence and uniqueness of soluions o refleced 73

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 74 backward doubly sochasic differenial equaions (RBDSDs) wih one coninuous barrier and uniformly Lipschiz coefficiens. he exisence of a maximal and a minimal soluion for RBDSDs wih coninuous generaor is also esablished. In his paper, we sudy he now well-know refleced backward doubly sochasic differenial equaions wih jumps (RBDSDPs for shor): Y fs, sds gs, sdbs dk s Z sdws Use ds,de,, where s Y s,z s,u s. Moivaed by he above resuls and by he resul inroduced by Fan. X, Ren. Y [6] and Zhu, Q., Shi, Y [6, 7], we esablish firsly he exisence of he soluion of he refleced BDSD wih Poisson jumps (RBDSDP in shor) under he coninuous coefficien, also we prove he exisence soluion of a RBDSDP where he coefficien f saisfy a linear growh and lef coninuiy in y condiions on he generaor of his ype of equaion.f he organizaion of he paper is as follows. In secion, we give some preliminaires and we consider he spaces of processus also we define he Iô s formula. In secion 3, we proof a comparison heorem, secion 4 under a coninuous condiions on f we obain he exisence of a minimal soluion of RBDSDP, and finally in secion 5, we sudy RBDSDP where he generaor f saisfied a lef coninuiy in y and linear growh condiions.. Noaions, Assumpions and Definiions Le,F,P be a complee probabiliy space. For, We suppose ha F is generaed by he following hree muually independen processes: (i) Le W, and B, be wo sandard Brownian moion defined on,f,p wih values in d and, respecively. (ii) Le random Poisson measure on wih compensaor d,de ded, where he space is equipped wih is Borel field such ha, A, A is a maringale for any A saisfying A. is a finie measure on and saisfies e de. Le F W : W s ; s, F : s ; s and F, : B s B ; s, compleed wih P-null ses. We pu, F : F W F B, F. I should be noed ha F is no an increasing family of sub fields, and hence i is no a filraion. For d N, sands for he uclidian norm in d,. We consider he following spaces of processes: We denoe by S,, d, he se of coninuous F measurable processes ;,, which saisfy sup. Le M,, d denoe he se of d dimensional, F measurable processes ;,, such ha d. A se of coninuous, increasing, F measurable process K :,, wih K, K. L se of F - measurable random variables : wih. We denoe by L,,, d, he space of mappings U :, d which are measurable such ha B

75 B. MANSOURI, and M. A.. SAOULI U L,,, d U L,,, d d, where denoed he algebra of F predecable ses of, and U L,,, d U e de. Noice also he space D S,,R M,,R d L,,,R A endowed wih he norm Y,Z,U,K D Y S Z M U L K A. is a Banach space. Definiion.. wich saisfies A soluion of a refleced BDSDPs is a quadruple of processes Y,Z,K,U i Y S,,, Z M,, d,k A,U L,,,, ii Y fs,ys,z s,u s ds gs,ys,z s,u s db s dks Zs dw s U s e ds,de,, iii S Y, and Y S dk. We give he following (H) assumpions on he daa, f, g, S : (H.) f :, d L,,, ; g :, d L,,, be joinly measurable such ha for any y,z,u d L,,, f,,y,z,u M,,, g,,y,z,u M,,. (H.) here exis consan C and a consan such ha for every,, and y,y, z,z d, u,u L,,, i f,,y,z,u f,,y,z,u C y y z z u u, ii g,,y,z,u g,,y,z,u C y y z z u u. (H.3) he erminal value be a given random variable in L. (H.4) S, is a coninuous progressively measurable real valued process saisfying

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 76 sup S, where S : maxs,. (H.5) S, P-almos surely. heorem [6].. Assume ha H. H.5 hold. hen equaion admis a unique soluion Y,Z,U,K D. he resul depends on he following exension of he well-krown Iô s formula. Is proof follows he same way as Lemma.3 of []. Lemma.. Le S,, k,, M k, M kd and L,,, k such ha: hen i ii s ds s db s s dw s dks s e ds,de, s, s ds s, s db s s, s dw s s,dk s s,e ds,de s ds s ds Δ s, s e deds s ds s e deds s, s ds s,dk s 3. A Comparison heorem s ds. Given wo parameers,f,g, and,f,g,, we considere he refleced BDSDPs, i,, Yi i f i s,y s i,zs i,us i ds gs,y s i,zs i,us i dbs dk s i Z s i dws Us i e ds,de,. heorem 3.. Assume ha he refleced BDSDP associaed wih daes,f,g,, resp,f,g, has a soluion Y,Z,K,U,, resp Y,Z,K,U,. ach one saisfying he assumpion (H). Assume moreover ha:

77 B. MANSOURI, and M. A.. SAOULI,, S S, f,y,z,u f,y,z,u. hen we have P a.s., Y Y. Proof. Le us show ha Y Y, using he equaion (), we ge Ȳ Y Y f s,y s,z s,u s f s,y s,z s,u s ds gs,ys,z s,u s gs,y s,z s,u s db s dks dk s Z sdw s Ū s eds,de, where, Z Z Z and Ū U U. Since Ȳs gs,y s,z s,u s gs,y s,z s,u s db s and Ȳs Z sdw s are a uniformly inegrable maringale hen aking expecaion, we ge by applying lemma. Ȳ Ȳs Z s ds Ȳs Ū s e deds Ȳs f s,y s,z s,u s f s,y s,z s,u s ds Ȳs dk s dk s Ȳ s gs,y s,z s,u s gs,y s,z s,u s ds. Since, we ge Ȳs dk s dk s Ys Y s dk s, Ȳ Ȳs Z s ds Ȳs Ū se deds Ȳs f s,y s,z s,u s f s,y s,z s,u s ds gs,y Ȳ s s,z s,u s gs,y s,z s,u s ds, o obain, by hypohesis H. and Young s inequaliy, he following inequaliy Ȳs f s,y s,z s,u s f s,y s,z s,u s ds C C Ȳs ds Z s Ū s de ds.

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 78 Also, we apply assumpion H. for g o arrive a gs,y s,z s,u s gs,y s,z s,u s C Ȳ s ds Z s Ū s. hen, we have he following inequaliy Ȳ Ȳ s Z ds Ȳ s Ū se deds C C Ȳs ds Z s Ū s de ds C Ȳ s Ȳ s ds Ȳ s Z s Ȳ s Ū s de ds, C 3C Ȳs ds Ȳ s Z s ds Ȳ s Ū s deds. By choosing such ha, we have Ȳ 3C C Ȳs ds. hen using Gronwall s lemma implies ha Ȳ. Finally, we have Y Y. 4. Refleced BDSDPs Wih Coninuous Coefficiens In his secion we are ineresed in weakening he condiions on f. We assume ha f and g saisfy he following assumpions: (H.6) here exiss andc s.. for all,,y,z,u, d L,,,, f,,y,z,u C y z u, g,,y,z,u g,,y,z,u C y y z z u u. (H.7) For fixed and, f,,,, is coninuous. he nex hree lemmas will be useful in he sequel. Before saing hem, we recall he following classical lemma, ha can be proved by adaping he proof given by J. J. Aliber and K. Bahlali in []. Lemma 4.. Lef :, d L,,, be a mesurable funcion such ha: Lemma.. For a.s. every,,, f,,y,z,u is a coninuous. 3. here exiss a consan C such ha for every,,y,z,u, d L,,,, f,,y,z,u C y z u. hen exiss he sequence of funcions f n

79 B. MANSOURI, and M. A.. SAOULI f n,,y,z,u y, z, u inf f,,y,z,u n y y z z u u, B is well defined for each n C, and i saisfies, dp d a.s. i Linear growh: n, y,z,u d L, f n,,y,z,u C y z u. ii Monooniciy in n : y,z,u, f n,,y,z,u is increases in n. iii Convergence:,,y,z,u, B, if,,y n,z n,u n,,y,z,u, hen f n,,y n,z n,u n f,,y,z,u. iv Lipschiz condiion: n,,,, y,z,u B and y,z,u B, wehave f n,,y,z,u f n,,y,z,u n y y z z u u. Now given L, n N, we consider Y n,z n,k n,u n and resp V,N,K,M be soluions of he following refleced BDSDPs: Y n f ns,ys n,zs n,us n ds gs,y s n,zs n,us n dbs dk s n Z s n dws Us n e ds,de,, 3 S Y n,, and Y n S dk n. respecively V Hs,Vs,N s,m s ds gs,vs,n s,m s db s dks Ns dw s M s e ds,de,, S V,, and V S dk, where Hs,,V,N,M C V N M. Lemma 4.. i a.s. for all, and n m, Y n Y m V, ii assume ha H., H.3 H.7 is in force. hen here exiss a consan A depending only on C,, and such ha: U n L,,, A, Zn M,, d A. Proof.he prove of he i follow from comparison heorem. I remains o prove ii, bylemma., we have

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 8 Y n Zs n ds U s n e deds Ys n f n s,y s n,z s n,u s n ds Ys n dk s n gs,ys n,z s n,u s n ds. By i in lemma 4., we have Ys n f n s,y s n,z s n,u s n ds C Ys n Y s n Z s n U s n ds Ys n ds C C Ys n ds C Ys n ds Zs n ds C Ys n ds U s n e deds, C C C Ys n ds C Also by he hypohesis associaed wih g, wege Zs n ds U s n e deds. gs,y s n,z s n,u s n gs,y s n,z s n,u s n gs,,, gs,,,, C Y s n Z s n U s n gs,,,. Chossing. hen, we obain he following inequaliy Y n Zs n ds U s n e deds C C 4C C Ys n ds Ys n dk s n Zs n ds U s n e deds Consequenly, we have gs,,, ds. Zs n U s n e de ds where C n Zs ds U n s e deds K n K n, gs,,, ds sup S s s sup Y n. Now chossing and such ha, we obain C 4C

8 B. MANSOURI, and M. A.. SAOULI Z s n ds Us n e deds K n K n. On he oher hand, we have from q.3, 4 K n K n Y n fn s,y s n,z s n,u s n ds gs,ys n,z s n,u s n db s Zs n dw s U s n e ds,de. Using he Hölder s inequaliy and assupmion H.6, wehave K n K n C C Zs n ds U n deds, From inequaliy 4, wege Zs n U s n e de ds C C Zs n U n de ds. Finally chossing such ha C, we obain Zs n ds U s n e deds C. hus he prove of his lemma is comple. Lemma 4.3. Assume ha H., H.3 H.7 is in force. hen he sequence Z n,u n converges a.s. in M,, d L,,,. Proof. Le n C. Fromq.4., we deduce ha here exiss a process Y S,, such ha Y n Y a.s., as n. Applying lemma. o Y n Y m,forn,m n Y n Y m Zs n Z s m ds U s n e U s m e deds Ys n Y s m f n s,y s n,z s n,u s n f m s,y s m,z s m,u s m ds Ys n Y s m dk s n dk s m gs,ys n,z s n,u s n gs,y s m,z s m,u s m ds. Since Ys n Y s m dk s n dk s m, we deduce ha Z n Z m ds U s n e U s m e deds Ys n Y s m f n s,y s n,z s n,u s n f m s,y s m,z s m,u s m ds gs,ys n,z s n,u s n gs,y s m,z s m,u s m ds. Using Hölder s inequaliy and assumpion H.6 for g, we deduce ha Z n Z m ds U s n e U s m e deds fn s,y s n,z s n,u s n f m s,y s m,z s m,u s m ds Ys n Y s m ds C Ys n Y s m ds. Applying assumpion H.6 for f and he boundedness of he sequence Y n,z n,u n, we deduce

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 8 ha Z n Z m ds U s n e U s m e deds C e Ys n Y s m ds, where he consan C e depend only, C, and. Which yields ha Z n n respecively U n n is a Cauchy sequence in M,, d, respecively in L,,,. hen here exiss Z,U M,, d L,,, such ha Zs n Z s ds U s n e U s e deds, as n. heorem 4.. Assume ha H., H.3 H.7 holds. hen q admis a soluion Y,Z,U,K D. Moreover here is a minimal soluion Y,Z,U of RBDSDP in he sense ha for any oher soluion Y,Z,U of q., we have Y Y. Proof. From q.4., i s readily seen ha Y n converges in S,,, d dp a.s. o Y S,,. Oherwise hanks o lemma 4.3 here exiss wo subsequences sill noed as he whole sequence Z n n respecively U n n such ha Zs n Z s ds asn, and U s n e U s e deds, as n. Applying lemma 4., we have f n,y n,z n,u n f,y,z,u and he linear growh of f n implies f n,y n,z n,u n C sup Y n Z n U n n L,;d. hus by Lebesgue s dominaed convergence heorem, we deduce ha for almos all and uniformly in, wehave fn s,y s n,z s n,u s n ds fs,ys,z s,u s ds. We have by H.6 he following esimaion n gs,ys,z n s,u n s gs,y s,z s,u s ds C Ys n Y s ds Zs n Z s ds U s n e U s e deds, as n, Using Burkholder-Davis-Gundy inequaliy, we have

83 B. MANSOURI, and M. A.. SAOULI sup n Zs dw s Zs dw s, sup U n s e ds,de U s e ds,de, sup n gs,ys,z n s,u n s db s gs,ys,z s,u s db s, in probabiliy as, n. Le he following refleced BDSDPs wih daa,f,g,s Ŷ S,,, Ẑ M,, d, K A, Û L,,,, Ŷ fs,ys,z s,u s ds gs,ys,z s,u s db s dks Ẑs dw s Û s e ds,de, S Ŷ, and Ŷ S dk. By Iô s formula, we obain Y n Ŷ n Ys Ŷ s f n s,y n s,z n s,u n s fs,y s,z s,u s ds Ys n Ŷ s dk s n dk s gs,ys n,z s n,u s n gs,y s,z s,u s ds U s n e Û s e deds Zs n Ẑ s ds. Using he fac ha Ys n Ŷ s dk s n dk s, we ge Y n Ŷ U s n e Û s e deds Zs n Ẑ s ds Ys n Ŷ s f n s,y s n,z s n,u s n fs,y s,z s,u s ds gs,ys n,z s n,u s n gs,y s,z s,u s ds. he by leing n, wehavey Ŷ, U Û and Z Ẑ dp d a.e. Le Y,Z,U,K be a soluion of. hen by heorem 3., we have for any n N, Y n Y. herefore, Y is a minimal soluion of.

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 84 5. RBDSDPs Wih Disconinuous Coefficiens In his secion we are ineresed in weakening he condiions on f. We assume ha f saisfy he following assumpions: (H.8) here exiss a nonnegaive process f M,, and consan C, such ha,y,z,u, B, f,y,z,u f C y z u. (H.9) f,,z,u : is a lef coninuous and f,y,, is a coninuous. (H.) here exiss a coninuous foncion :, B saisfying for y y, z,u d L,,,,y,z,u C y z u, f,,y,z,u f,,y,z,u,y y,z z,u u. (H.) g saisfies H.,ii. 5.. xisence resul he wo nex lemmas will be useful in he sequel. Lemma 5.. Assume ha saisfies H., g saisfies H. and h belongs in M,,. For a coninuous processes of finie variaion A belong in A we consider he processes Ȳ,Z,Ū S,, M,, d L,,, such ha: i Ȳ s,ȳ s,z s,ūs hsds gs,ȳ s,z s,ūsdbs da s Z sdws Ūse ds,de,, 5 ii Ȳ da s. hen we have, he RBDSDPs 5. admis a minimal soluion Y,Z,A,U D. If h and, we have Ȳ, dp d a.s. Proof. Has been obained from a previous par. Applying lemma. o Ȳ, leads o Ȳ Ȳs Z s ds Ȳs Ū se deds Ȳs s,ȳ s,z s,ū s hsds Ȳs da s Ȳs gs,ȳ s,z s,ū s ds. Since h,, and using he fac ha Ȳ da s, we obain

85 B. MANSOURI, and M. A.. SAOULI Ȳ Ȳs Z s ds Ȳs Ū se deds Ȳs s,ȳ s,z s,ū s ds Ȳs gs,ȳ s,z s,ū s ds. AccordingoassumpionsH., wehave Ȳ Ȳs Z s ds Ȳs Ū se deds Ȳs s,ȳ s,z s,ū s ds C Ȳs Ȳ s ds Ȳs Z s ds Ȳs Ū se deds. hen by applying assumpion H. and using Young s inequaliy, we can wrie Ȳs s,ȳ s,z s,ū s ds C Ȳs ds Ȳs ds C Z s ds Ȳs ds C Ū s e deds. hen Ȳ Ȳs Z s ds Ȳs Ū se deds 3C Ȳs ds C Ȳs Z s Ū s e de ds. herefore, choosing, and C such ha C and using Gronwall s inequaliy, we have Ȳ, P a.s. for all,. his implies ha Ȳ, P a.s. for all,. Now by heorem 4., we consider he processes Ỹ,Z,K,Ũ, Y,Z,K,U and he sequence of processes Ỹ n,z n,k n,ũ n n respecively as minimal soluion, for all,, o he following RBDSDPs iỹ C Ỹ s Z s Ũ s fs ds gs,ỹ s,z s,ũ s dbs dk s Z s dw s Ũs e ds,de,, 6 iiỹ S, iii Ỹ s Ss dk s,

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 86 i Y C Y s Zs Us fs ds gs,y s,zs,us dbs dk s Z s dws Us e ds,de,, ii Y S, 7 iii Y s Ss dks, and i Ỹ n fs,ỹ s n,z sn,ũ s n ds s,ỹ n Ỹ n,z n Z n,ũ n Ũ n ds gs,ỹ s n,z sn,ũ s n dbs dk sn Z sn dw s Ũs n e ds,de,, iiỹ n S, iii Ỹ s n SsdK sn. 8 Lemma 5.. Under he assumpions H., H.3, H.5 and H.8 H., and for any n wih,,here holds Ỹ Ỹ n Ỹ n Y. Proof. For any n, we se n n n, and Δ n s,ỹ n s,z sn,ũ n s s,ỹ n s Ỹ n s,z sn Z sn,ũ n s Ũ n s s,ỹ n s,z sn,ũ n s. Invoke 8 o wrie where Ỹ n s,ỹs n,z sn,ũ s n s n ds Δg n s,ỹ s n,z sn,ũ s n db s dk sn Z sn dw s Ũ s n e ds,de,

87 B. MANSOURI, and M. A.. SAOULI n s Δf n s,ỹ n s,z sn,ũ n s s,ỹ n s,z sn,ũ n s, and s fs,ỹ s,z s,ũ s C Ỹ s Z s Ũ s f s, n. According o is definiion, one can show ha s and Δg n, n saisfy all assumpion of lemma 5.. Moreover, since K n is a coninuous and increasing process, for all n, hen K sn is a coninuous process of finie variaion. Using he same argumens as in firs par, i is possible o show ha Ỹ n Ỹ n dk n Ỹ n Ỹ n dk n Ỹ n Ỹ n dk n. By applying lemma 5., we deduce ha Ỹ n, i.e. Ỹ n Ỹ n, for all,.so we have Ỹ n Ỹ n Ỹ. Now we shall prove ha Ỹ n Y. By definiion, we have Y Ỹ n C Ys Ỹ s n Z s Z sn U s Ũ s n s n ds gs,ys,z s,u s gs,ỹ s n,z sn,ũ s n db s dks dk sn Zs Z sn dw s U s e Ũ s n e ds,de, where n s C Y n s Ỹ s Z s Z sn U n s Ũ s Y s Z s U s f s fs,ỹ n s,z sn,ũ n s s,ỹ n s,z sn,ũ n s. Also by repeaed use of lemma 5., we deduce ha Y Ỹ n, i.e. Y Ỹ n, for all,. hus, we have for all n, Y Ỹ n Ỹ n Ỹ, dp d a.s.,,. Now we can sae our main resul. heorem 5.. Under assumpion H., H.3, H.5 and H.8 H., he RBDSDPs has a minimal soluion Y,Z,K,U, D. Proof. Since Ỹ n maxỹ,y Ỹ Y for all,, wehave sup n sup Ỹ n sup Ỹ sup Y. herefore, we deduce from he Lebesgue s dominaed convergence heorem ha Ỹ n n converges in S,, o a limi Y. On he oher hand, by 8 we can wrie

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 88 Ỹ n Ỹ n fs,ỹs n,z sn,ũ s n ds s,ỹ n,z n,ũ n ds gs,ỹs n,z sn,ũ s n db s dk sn Z sn dw s Ũ s n e ds,de. Apply hen lemma. o obain Ỹ n Z sn ds Ũ s n e deds Ỹs n fs,ỹ s n,z sn,ũ s n s,ỹ s n,z sn,ũ s n ds Ỹs n dk sn gs,ỹ s n,z sn,ũ s n ds. By H.8 and H., i follows ha Ỹ n f,ỹ n,z n,ũ n,ỹ n,z n,ũ n Ỹ n n f C Ỹ Z n Ũ n n C Ỹ Z n Ũ n Ỹ n C Ỹ n f C C C Ỹ n Ỹ n C Ỹ n Z n C Ỹ n Ũ n C 3 Ỹ n 3 Z n C 4 Ỹ n 4 Ũ n C C 3 C 4 C Ỹ n 3 Z n 4 n Ũ n Ỹ Z n n Ũ f. Also applying H. leads o he following inequaliy gs,ỹ n s,z sn,ũ n s gs,ỹ n s,z sn,ũ n s gs,,, gs,,, hen using Young s inequaliy, allows wriing Ỹs n dk sn Ss dk sn C Ỹ s n Z sn Ũ s n gs,,,. sup S K n. herefore, here exiss a consan C independen of n such ha for any i,wherei :4,we have Z sn ds Ũs n e deds C 3 Z sn ds 4 Ũs n deds 9 Z sn ds Ũs n deds K n. Moreover, since

89 B. MANSOURI, and M. A.. SAOULI K n Ỹ n fs,ỹs n,z sn,ũ s n ds s,ỹ s n,z sn,ũ s n ds gs,ỹs n,z sn,ũ s n db s Z sn dw s Ũ s n e ds,de, we may use Hölder s inequaliy and assumpions H.8 and H.. Consequenly, here exiss wo consans C and C depending on,c,, i,i,...,4, and we have ha K n C C Z sn Z sn ds Ũ s n Ũ s n deds. We reurn back o inequaliy 9 and wrie Z sn ds Ũ s n e deds C C C Z sn ds C Ũ s n deds 3 C Z sn ds 4 C Ũ s n deds. hen by aking and 3 4, wehave Z sn ds Ũ s n e deds C C C Z sn ds Ũ s n deds C Z sn Ũ s n e de ds. A furher choise of, and such ha C, allows for Z sn ds Ũ s n e deds C C C Z sn ds Ũ s n deds i n C C C i C n Z s ds Ũ s deds. i Now choosing, and C such ha C, and noing ha Z s Ũ s de ds,allows for sup Z sn ds and n N sup Ũ s n e deds. n N Consequenly, we deduce ha K n. Now we shall prove ha Z n,k n,ũ n is a Cauchy sequence in M,, d A L,,,, seγ n s fs,ỹ n s,z sn,ũ n s s,ỹ n s,z sn,ũ n s o arrive

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 9 a Ỹ n Ỹ m Γs n Γ s m ds gs,ỹs n,z sn,ũ s n gs,ỹ s m,z sm,ũ s m db s dk sn dk sm Z sn Z sm dw s Ũ s n e Ũ s m e ds,de. Furher applicaion of lemma. o Ỹs n,m Ỹ s n Ỹ s m, resuls wih Ỹ n Ỹ m Z sn Z sm ds Ũ s n Ũ s m deds Ỹs n Ỹ s m Γ s n Γ s m ds Ỹs n Ỹ s n dk sn dk sm gs,ỹ s n,z sn,ũ s n gs,ỹ s m,z sm,ũ s m ds. Since Ỹs n Ỹ s n dk sn dk sm, we obain Z sn Z sm ds Ũ s n Ũ s m deds Ỹs n Ỹ s m Γ s n Γ s m ds gs,ỹ s n,z sn,ũ s n gs,ỹ s m,z sm,ũ s m ds. Apply nex Hölder s inequaliy and assumpion H. o wrie Z sn Z sm ds Ũ s n Ũ s m deds Ỹs n Ỹ s m ds Γs n Γ s m ds C Ỹs n Ỹ s m ds. he boundedness of he sequence Ỹ n,z n,k n,ũ n implies ha sup n Γs ds, o allow for Z sn Z sm ds Ũ s n Ũ s m deds n N 4 Ỹs n Ỹ s m ds C Ỹs n Ỹ s m ds, which implies ha each of Z n n and Ũ n n, is a Cauchy sequence in M,, d and in L,,, respecively. hen here exiss Z,U M,, d L,,, such ha, Z sn Z s ds Ũs n Us de, as n. On he oher hand, applying he Burkholder-Davis-Gundy inequaliy and, ends up wih

9 B. MANSOURI, and M. A.. SAOULI sup Z sn dw s Z sdws Z sn Z s ds, as n, sup Ũs n e ds,de Use ds,de Ũs n Us deds, as n, sup gs,ỹ s n,z sn,ũ s n dbs gs,y s,zs,usdbs C Ỹ s n Ys ds Z sn Z s ds Ũs n Us deds, as n. herefore, from he properieies of f,, wehave Γ n s fs,ỹ n s,z sn,ũ n s s,ỹ n s,z sn,ũ n s fs,y s,z s,u s, P a.s., for all, as n. I follows hen, by he dominaed convergence heorem, ha n Γs fs,y s,z s,u s ds. Since Ỹ s n,z sn,ũ s n,γ s n converges in B M,, and sup K n K m Ỹ n Ỹ m sup sup Ỹ n Ỹ m Γs n Γ s m ds gs,ỹs n,z sn,ũ s n gs,ỹ s m,z sm,ũ s m db sup for any n,m, we deduce ha Z sn Z sm dw s sup Ũ s n e Ũ s m e ds,de, sup K n K m, as n,m. Consequenly, here exiss a F measurable process K wich value in such ha sup K n K Finally, we have, as n.

Refleced Disconinuous Doubly Sochasic Ds Wih Poisson Jumps 9 sup Ỹ n Y Z sn Z s ds Ũ s n U s deds sup K n K, as n. Obviously, K andk ; is a increasing and coninuous process. From 8, we have for all n, Ỹ n S,,.hen Y S,,. On he oher hand, from he resul of Saisho [], i follows ha Ỹs n S s dk sn Ys S s dk s, P a.s., as n. Using he ideniy Ỹs n S s dk sn for all n, we conclude ha Ys S s dk s. Leing hen n in equaion, proves ha Y,Z,K,U, is a soluion o i. Assume ulimaely Y,Z,U,K o be a soluion o o invoke heorem 3., and observe ha for any n N, Y n Y. herefore, Y is a minimal. Remark 5.. Using he same argumens and he following approximaing sequence f n,,y,z,u sup f,,y,z,u n y y z z u u, y, z, u B one can prove ha he RBDSD () has a maximal soluion. References [] J. J. Aliber, and K. Bahlali, Genericiy in deerminisic and sochasic differenial equaions, Séminaire de Probabiliés XXXV, Lecure Noes in Mahemaics 755, Springer Verlag, Berlin-Heidelberg, (), -4. [] K. Bahlali, M. Hassani, B. Mansouri, and N. Mrhardy, One barrier refleced backward doubly sochasic differenial equaions wih coninuous generaor, Compes Rendus Mahemaique 347(9), (9), -6. [3] K. Bahlali, R. Ga, and B. Mansouri, Backward doubly sochasic differenial equaions wih a superlinear growh generaor, Compes Rendus Mahemaique 353(), (5), 5-3. [4] J. M. Bismu, Conjugae convex funcions in opimal sochasic conrol, Journal of Mahemaical Analysis and Applicaions 44, (973), 384 44. [5] B. Boufoussi, J. Van Caseren, and N. Mrhardy, Generalized backward doubly sochasic differenial equaions and SPDs wih nonlinear Neumann boundary condiions, Bernoulli 3(), (7), 43-446. [6] X. Fan, and Y. Ren, Refleced backward doubly sochasic differenial equaion wih jumps, Mahemaica Applicaa (4), (9), 778-784. [7] G. Jia, A class of backward sochasic differenial equaions wih disconinuous

93 B. MANSOURI, and M. A.. SAOULI coefficiens, Saisics and Probabiliy Leers 78, (8), 3 37. [8] Q. Lin, A generalized exisence heorem of backward doubly sochasic differenial equaions, Aca Mahemaicae Sinica, nglish Series 6(8), (), 55 534. [9] Q. Lin, Backward doubly sochasic differenial equaions wih weak assumpions on he coefficiens, Applied Mahemaics and Compuaion 7, (), 93 9333. [] M. N zi, and J. M. Owo, Backward doubly sochasic differenial equaions wih disconinuous coefficiens, Saisics and Probabiliy Leers 79, (9), 9 96. []. Pardoux, and S. Peng, Backward doubly sochasic differenial equaions and sysems of quasili near SPDs, Probabiliy heory and Relaed Fields 98, (994), 9-7. [] Y. Saisho, Sochasic differenial equaions for mulidimensional domain wih reflecive boundary, and applicaions, Probabiliy heory and Relaed Fields 73(3), (987), 455 477. [3] Y. Shi, Y. Gu, and K. Liu, Comparison heorems of backward doubly sochasic differenial equaions and applicaions, Sochasic Analysis and Applicaions 3, (5), 97. [4] A. B. Sow, Backward doubly sochasic differenial equaions driven by Lévy process: he case of non-lipschiz coefficiens, Journal of Numerical Mahemaics and Sochasics 3, (),7 79. [5] Z. Wu, and F. Zhang, BDSDs wih locally monoone coefficiens and Sobolev soluions for SPDs, Journal of Differenial quaions 5, (), 759-784. [6] Q. Zhu, and Y. Shi, Backward doubly sochasic differenial equaions wih jumps and sochasic parial differenial-inegral equaions, Chinese Annals of Mahemaics, Ser. B 33,(), 7 4. [7] Q. Zhu, and Y. Shi, A class of backward doubly sochasic differenial equaions wih disconinuous coefficiens, Aca Mahemaicae Applicaae Sinica, nglish Series 3, (4), 965 976. Aricle hisory: Submied February,, 8; Acceped December, 3, 8.