The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

Similar documents
Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES

single-electron electron tunneling (SET)

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Nano devices for single photon source and qubit

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s

Supplementary Information

CONDUCTIVITY AND INDUCED SUPERCONDUCTIVITY IN DNA

HYSWITCH Informal meeting Chersonissos - Crete September 15th 19th 2007,

Single Electron Tunneling Examples

Electronic transport in low dimensional systems

arxiv: v1 [cond-mat.mes-hall] 7 Sep 2012

Single Electron Transistor (SET)

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Testing axion physics in a Josephson junction environment

M.C. Escher. Angels and devils (detail), 1941

The Physics of Nanoelectronics

SUPPLEMENTARY INFORMATION

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

SUPPLEMENTARY INFORMATION

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

Supercondcting Qubits

Strong tunable coupling between a charge and a phase qubit

Publication VII. c 2011 The American Physical Society. Reprinted with permission.

Superconducting Qubits

Superconducting devices based on coherent operation of Josephson junction arrays above 77K

Superconductivity at nanoscale

Nanoelectronics. Topics

Josephson effect in carbon nanotubes with spin-orbit coupling.

Exotic Kondo effects in nanostructures

SUPPLEMENTARY INFORMATION

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Supplementary figures

Coherent oscillations in a charge qubit

SUPPLEMENTARY FIGURES

A. Optimizing the growth conditions of large-scale graphene films

Ideal Discrete Energy Levels in Synthesized Au. Nanoparticle for Chemically Assembled. Single-Electron Transistors

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

Spins Dynamics in Nanomagnets. Andrew D. Kent

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions

GRAPHENE the first 2D crystal lattice

Tunable Orbital Pseudospin and Multi-level Kondo Effect in Carbon Nanotubes

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Quantum Information Processing with Semiconductor Quantum Dots

MSN551 LITHOGRAPHY II

Graphite, graphene and relativistic electrons

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Final exam. Introduction to Nanotechnology. Name: Student number:

Physics in two dimensions in the lab

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0.

Intrinsic Electronic Transport Properties of High. Information

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger

Parity-Protected Josephson Qubits

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Graphene and Carbon Nanotubes

Experimental Studies of Single-Molecule Transistors

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Mar 2007

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Quantum physics in quantum dots

Electron counting with quantum dots

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Spectroscopy at nanometer scale

Quantum Transport in InAs/GaSb

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

1D quantum rings and persistent currents

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

Carbon Nanomaterials

Superconducting Flux Qubits: The state of the field

Liquid nanodispensing

Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures

Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques

Vortices in superconductors& low temperature STM

Andreev bound states in anisotropic superconductor junctions

SUPPLEMENTARY INFORMATION

Superconducting properties of carbon nanotubes

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 1 Apr 1999

Terahertz sensing and imaging based on carbon nanotubes:

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter

Semiconductor Nanowires: Motivation

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

There's Plenty of Room at the Bottom

Graphene electronics

Superconductivity controlled by the magnetic state of ferromagnetic nanoparticles

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

Transcription:

The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

Outline Sample fabrication Proximity effect in CNT The CNT superconducting transistor The CNT SQUID experiment Current Phase relation of proximity coupled Qdot Application of the device

Sample fabrication Nanotube in surfactant (SDS) Deposition by «combing» on functionnalized silica 2.µm Alignment with AFM E beam lithography Lift-off of Paladium/Aluminum bilayer

Carbon nanotube SQUID fabrication G1 SWNT Gnd G2 5 nm Forked geometry same nanotube for both arms -> molecular weak link with same chirality & balanced SQUID

Proximity effect in SN NT NS junction Al Pd Al Pd Al Pd MetallicSWNT Pd Al S N Qdot N S

14 12 1 Proximity Effect (Al Pd 3nm).4K.7K.3K.9 K.5 K di/dv (kω) 8 6 4 2 MAR 2 g -3-2 -1 V ds (µv) 1 2 3

Proximity effect in SN NT NS junction Al/Pd/CNT/Pd/Al 7 6 dv/di (k Ω) 5 4 3 2 1.4 K.1 K.15 K.2 K.25 K.3 K.35 K MAR 2 g.4 K.45 K.5 K.55 K.6 K.7 K.8 K -2-15 -1-5 5 1 15 2 V ds ( µv) Pd(3 nm)/al(5 nm) Pd(6 nm)/al(5 nm)

The nanotube Josephson transistor S S VG Off On Energy level schematics P. Jarillo-Herrero, et al., Nature 439, 953-956 (26). E 2 g T1 T2

Gate voltage dependence of the switching current 8 6 4 V ( µv) 2-2 -4 V G -9. V -6-8 -.8 -.6 -.4 -.2.2.4.6.8 I (na)

Gate voltage dependence of the switching current V ( µv) 8 6 4 2-2 -4-6 V G -9. V -9.6 V -1. V -11. V -8 -.8 -.6 -.4 -.2.2.4.6.8 I (na)

Kondo effect in CNT junctions V sd (mv) 6 4 2-2 2N-2 2N 2N+2 H z = 5 mt 35 mk -4-6 -3-2 -1 1 2 3 Conductance di/dv T 2 2 4 e 2 /h U c = 6 mev δe = 9 mev Γ = 1 mev δe = hv F /2L v F = 8.1 x 1 5 m/s Fermi velocity in the CNT L = 186 nm, comparable to CNT length of 2 nm T 1 V G E F

Kondo resonance in CNT Qdots 6 4 V sd (mv) 2-2 -4 α β γ δ di/dv (e 2 /h) 1.6 1.4 1.2 1.8.6.4.2-6 -3-2 -1 1 2 3.1 K α β γ δ Pi junction -4-2 2 4 V sd (mv)

Temperature dependence of the Kondo resonance a di/dv (e 2 /h) 1.6 1.4 1.2 1.8.6.4.1 K α β γ δ b Pi junction di/dv (e 2 /h).2.18.16.14.12.4 K.8 K.1 K.15 K.2 K.3 K.4 K.5 K.6 K.8 K 1. K c di/dv (e 2 /h).2 1.2 1.8.6.4-4 -2 2 4 V sd (mv).4 K.12 K.2 K.3 K.4 K.5 K.6 K.8 K 1. K 1.2 K d di/dv max (e 2 /h).1 -.15 -.1 -.5.5.1.15 V sd (mv) 1.2 1.8.6.4.2 T K =.24 K T K =.1 K.2 -.15 -.1 -.5.5.1.15.1.1 1 V sd (mv) T (K) G(T) = G /[1 + (2 1/s 1)(T/T K ) 2 ] s s=.22

Interplay between Kondo effect and superconductivity V sd (mv) 6 4 2-2 2N-2 2N 2N+2 H z = 5 mt 35 mk di/dv I (na) -4-6 3-3 -2-1 1 2 3 2 1-1 2 4 e 2 /h H z = -2-3 -3-2 -1 1 2 3 dv/di 6.5 18 kω

Differential conductivity di/dv map versus sidegate voltages 2 1 V sd (mv) 6 4 2-2 -4 Single CNT-junction α β γ δ H z = 5 mt 35 mk V BG = V -6-3 -2-1 1 2 3 double Q-dot in parallel V G1-1 -2 V G2-2 -1 1 2 V G2 (V) 2 4 6 e 2 /h

Differential conductivity di/dv map versus sidegate voltages 2 1 H z = 5 mt 35 mk V BG = V -1-2 2 6 4 e 2 /h -2-1 1 2 V G2 (V)

Differential conductivity di/dv map versus sidegate voltages 2 1 H z = 5 mt 35 mk V BG = -4 V -1-2 2 4 6 e 2 /h -2-1 1 2 V G2 (V)

G1 CNT Carbon nanotube SQUID V BG G2 5 nm I On On V G1 II Off On V G1 III Off Off V G1 V G2 V G2 V G2

CNT-SQUID flux modulation characteristics 12 8 Qdots «on» 6 5 V (µv) ( µ ) 4-4 -8 I (na) 4 3 2 1 V (µv) ( µ ) 12 8 6 4 2-2 -4-6 -6-4 -2 2 4 6 I (na) Qdots «off» I (pa) ( ) 6 5 4 3 2 1 5 1 15 2 µ H z (mt) -8-6 -4-2 2 4 6 I (pa) 5 1 15 2 µ H z (mt)

Estimation of the critical current Calculation of the current driven by discreete Andreev states F BCS free energy =.6 mev and N=1 gives I c = 15 na

Correlation between normal state conductance and superconducting switching current I sw V BG = -6V di/dv(v G1,V G2 ) map H z = 5 mt I sw (V G1,V G2 ) map H z = I sw (V G1,V G2 ) map H z = 1.3 mt (Φ /2=h/4e) 3 3 3 2 2 2 1 1 I 1-1 -1 II -1-2 -3-2 -3 III -2-3 -3-2 -1 1 2 3 V G2 (V) -3-2 -1 1 2 3 V G2 (V) -3-2 -1 1 2 3 V G2 (V) 2 4 e 2 /h 2 4 6 na

Magnetic Field dependence I (na) 6 4 2-2 I (na) 1 5-5 -4 on -1 off -6 5 1 15 2 25 3 35 Hz (mt) 5 1 15 2 25 3 35 Hz (mt) 6.8 k Ω 12 k Ω

π - junction SQUID di/dv(v G1,V G2 ) map H z = 5 mt I sw (V G1,V G2 ) map H z = V BG = V 3-4 2 1-8 -12-16.5 1 na 4 8 12 16 2 24 V G2 (V) -1-2 -3-3 -2-1 1 2 3 V G2 (V) 2 4 e 2 /h

π - junction SQUID 3 2 di/dv(v G1,V G2 ) map H z = 5 mt I ( na) 1.8.6.4 1-1.2-4 -8. V -9.7 V -1. V -1.9 V -1 1 2 3 4 5 6 7 µ H z (mt) -2-3 -3-2 -1 1 2 3 V G2 (V) -8-12 -16 4 8 12 16 2 24 V G2 (V) π -4% 8% 2 4 e 2 /h

initial π junction in Odd proximity coupled Qdots intermediate 2 1 2 g Quantum state of Cooper pairs condensate final 4 3 B.I. Spivak and S.A. Kivelson Phys. Rev. B 43, 374 (1991) π-shift in the Creation operators Josephson relation anticommutation I s = I c sin(ϕ+π) generates π-shift = -I c sin(ϕ) Reversal of the Josephson current

Double Pi-junction SQUID V G1 π π V G2 π -4-4 π π -8-8.2.4 na -5% 75% π 2 24 28 V G2 (V) 2 24 28 V G2 (V)

Preliminary estimation of the flux sensitivity of CNT-SQUIDs CNT-SQUID characteristics I sw histogram 2 1.8 3 na/φ 15 N = 56 1.6 1 I (na) 1.4 1.2 Count 5 1.8.2.4.6.8 1 Φ/ Φ 1.41 1.42 1.43 1.44 1.45 1.46 1.47 I (na) Flux sensitivity: [3.5 pa]/([3 na/φ ]*sqrt[1]) 1-5 Φ when averaging I sw during 1 s at a rate of 1 khz.

Magnetization switching of single molecules micro-squid versus nano-squid (CNT-SQUID) Optimising the flux coupling factor 5 nm nanoparticle 2 nm junction substrate molecule stray field.6 nm 1 nm molecule nanotube carbon nanotube junction substrate

Estimation of magnetic flux variation for Mn 12 with S = 1 molecule stray field.6 nm molecule 1 nm nanotube carbon nanotube junction substrate The total magnetic flux Φ of a uniformly magnetized sphere, R =.5 nm. Φ = 1 2 µ Φ = 1.1 x 1-4 Φ for Mn 12 with S = 1 m R Flux sensitivity for the CNT-SQUIDs: 1-5 Φ when averaging I sw during 1 s at a rate of 1 khz

Summary Interplay between Kondo effect and superconductivity ->The critical current is enhanced for strong Kondo resonances Gate controlled phase current relation -> tunable Pi SQUID ->Supercurrent reversal in proximity coupled Qdot Noise and performance of the SQUID is compatible with single molecule magnetization measurement A tool for Quantum information?