Introduction 3. Basic Mine Fill Materials 13

Similar documents
Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Acknowledgement...iii. Editors...iii FOREWORD... v Practical limitations The ultimate objective THE DRIVERS...

PRINCIPLES OF GEOTECHNICAL ENGINEERING

DISCUSSION ON THE INFLUENCE OF MINERALOGY ON THE RHEOLOGY OF TAILINGS SLURRIES

The Pumping Characteristics and Rheology of Paste Fills

Geotechnical Engineering and Dams

GUIDELINES FOR OPEN PIT SLOPE DESIGN EDITORS: JOHN READ, PETER STACEY # & CSIRO. J x PUBLISHING


Experimental and numerical investigation of injection of coal washery waste into longwall goaf

VALLIAMMAI ENGINEERING COLLEGE

Instructor : Dr. Jehad Hamad. Chapter (7)

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6)

Site Investigation and Landfill Construction I

Mechanics of Mine Backfill

IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6

An effective stress approach to modelling mine backfilling

C H A P T E R. Introduction

Mark Hawley, Piteau Associates Engineering Ltd. John Cunning, Golder Associates Ltd.

Course Scheme -UCE501: SOIL MECHANICS L T P Cr

pcf REQUIRED: Determine the shear strength parameters for use in a preliminary shallow foundation design. SOLUTION:

UNDP HARARE HOSPITAL PROPOSED NATPHARM WAREHOUSE

TEMPERATURE CHANGE AND THE TOTAL STRESS ANOMALY IN PASTE BACKFILL

Cyclic Triaxial Testing of Water-Pluviated Fly Ash Specimens

Central Queensland Coal Project Appendix 4b Geotechnical Assessment. Environmental Impact Statement

Geotechnical Engineering Projects

Soils. Technical English - I 10 th week

Changes in soil deformation and shear strength by internal erosion

NZQA unit standard New US6 to replace and version 1 Page 1 of 5

Further Research into Methods of Analysing the October 2000 Stability of Deep Open Pit Mines EXECUTIVE SUMMARY

GEOTECHNICAL ENGINEERING INVESTIGATION HANDBOOK Second Edition

Effect of Cementation on the Shear Strength of Tehran Gravelly Sand Using Triaxial Tests

P16 Gravity Effects of Deformation Zones Induced by Tunnelling in Soft and Stiff Clays

Characterizing and Stabilizing a Historical Tailings Facility: The Rheology to Soil Mechanics Continuum

KDOT Geotechnical Manual Edition. Table of Contents

Water in Soil Sections in Craig

Introduction to Soil Mechanics Geotechnical Engineering

Introduction to Soil Mechanics

Centrifuge modelling of municipal solid waste landfills under earthquake loading

Effect of additives on suspension pipe flow

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Evaluación global de las mejores prácticas de relleno de minas subterráneas. Presented by: Dr. David Stone, P.E. President MineFill Services, Inc.

Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI Federal Highway Administration Washington, DC

SOIL AND AGGREGATE FUNDAMENTALS STUDENT GUIDE AMRC April, 2006 AREA MANAGER ROADS CERTIFICATION PROGRAM FOR EDUCATIONAL PURPOSES ONLY

Field Rheology of Mine Tailings & Practical Applications. Tailings & Mine Waste 12 Keystone, Colorado Lawrence Charlebois

Excavation method in Goushfill mine

Effect of Geotextile on the Liquefaction Behavior of Sand in Cyclic Triaxial Test

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

IV. ENVIRONMENTAL IMPACT ANALYSIS G. GEOLOGY AND SOILS

ITASCA Consulting Canada Inc.

Review of static and seismic stability of a cross-valley sand tailings embankment in a high rainfall, high seismicity setting

An integrated approach for the design of stable mine backfill sillmats

Gotechnical Investigations and Sampling

Mass Wasting. Revisit: Erosion, Transportation, and Deposition

Stress distribution in inclined backfilled stopes

The effect of stope inclination and wall rock roughness on backfill free face stability

Implementation of spigot discharge systems for high-density tailings at Sierra Gorda Sociedad Contractual Minera, Chile

Chapter 1 - Soil Mechanics Review Part A

Cone Penetration Testing in Geotechnical Practice

SOIL MECHANICS: palgrave. Principles and Practice. Graham Barnes. macmiiian THIRD EDITION

Evaluation of the rheology of pipehead flocculated tailings

Geotechnical Properties of Soil

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

Acid Mine Drainage Risk Assessment Utilizing Drill- Hole Data and Geological Modelling Tools

Rock & Aggregate Drop Inlet Protection

Class Principles of Foundation Engineering CEE430/530

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

The Russian Practice of Assessment of Earth Dam Seepage Strength

Pit Slope Optimization Based on Hydrogeologic Inputs

An evaluation of cyclone performance to improve the quality of cyclone underflow material for tailings disposal

Particle Density Meter (PDM) Noel Lambert Clean Process Technologies Nicholas Cox Clean Process Technologies Peter Taylor Quality Handling Systems

Farimah MASROURI. Professor in Geotechnical Engineering. LAEGO : Research Center In Geomechanics & Geoenvironmental Engineering

Slurry to soil clay behaviour model using methylene blue to cross the process / geotechnical engineering divide

SHEAR STRENGTH OF SOIL

HUDSON BAY MINING AND SMELTING CO., LIMITED FLIN FLON TAILINGS IMPOUNDMENT SYSTEM. Dust Control Guidelines

1. Rock Mechanics and mining engineering

Geology 229 Engineering Geology. Lecture 8. Elementary Soil Mechanics (West, Ch. 7)

MAD345 - Mining II INTRODUCTION. 10 October Hacettepe University. Introduction Prospecting Mining Dilution Resource and Reserve Estimation

(Refer Slide Time: 02:10)

10. GEOTECHNICAL EXPLORATION PROGRAM

Hydrogeology of Deep Borehole Disposal for High-Level Radioactive Waste

Soil Mechanics III. SOIL COMPOSITION WEIGHT-VOLUME RELATIONSHIPS TERMINOLOGY AND DEFINITIONS

Nipigon River Landslide, Ontario, Canada

The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally

OVERVIEW OF ER DRILLING IN EARTH EMBANKMENT DAMS AND

University of Saskatchewan

Predicting Settlement and Stability of Wet Coal Ash Impoundments using Dilatometer Tests

Tailings Dam Classification and Breach Analyses, Perspectives from the Canadian Dam Association

ENGINEERING GEOLOGY AND ROCK ENGINEERING ASPECTS OF OPERATION AND CLOSURE OF KBS-3

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

2016 Semester Terms and Dates Summary

Effect of Cementation on the Shear Strength of Tehran Gravelly Sand Using Triaxial Tests

Micro-scale modelling of internally

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1

GEOL 314 Engineering Geology

Soil Mechanics I 1 Basic characteristics for soils. Introduction Description State Classification

CPT Applications - Liquefaction 2

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business

Transcription:

C O N T E N T S 1 Introduction 3 2 1.1 Preamble... 3 1.2 Why mine fill?... 3 1.2.1 Ensuring long-term regional stability... 4 1.2.2 Limiting excavation exposure... 5 1.2.3 Waste disposal... 6 1.3 Considerations for selection of mine fill systems... 6 1.4 Brief history of mine fill... 8 1.4.1 Australian mine fill history... 8 1.4.2 North American mine fill history... 8 1.4.3 Recent mine fill history... 9 Basic Mine Fill Materials 13 2.1 Preamble... 13 2.2 Tailings... 13 2.2.1 Sizing... 13 2.2.2 Mineralogy... 14 2.2.3 Particle shape... 14 2.2.4 Tailings oxidation... 14 2.3 Natural sands... 15 2.4 Rock and aggregate... 15 2.4.1 Aggregate grading... 15 2.4.2 Attrition... 15 2.5 Water... 16 2.6 Cement... 17 2.6.1 Chemical reactions... 17 2.6.2 Cement contents... 18 2.7 Pozzolans... 18 2.7.1 Fly ash... 18 2.7.2 Slag... 19 2.7.3 Gypsum... 19 2.7.4 Other pozzolans... 19 2.7.5 Admixtures... 19 i

Handbook on Mine Fill 3 Geomechanics of Mine Fill 23 3.1 Preamble... 23 3.2 Soil mechanics and mine fill... 24 3.3 Mine backfilling applications and the relevant fill parameters... 24 3.3.1 Dry fill (DF)... 24 3.3.2 Hydraulic fill (HF)... 24 3.3.3 Cemented hydraulic fill (CHF)... 24 3.3.4 Paste fill... 24 3.3.5 Composite fills... 24 3.3.6 Shotcrete... 25 3.3.7 Geofabrics geotextiles... 25 3.4 Sources of mine fill tailings... 26 3.4.1 Mine tailings... 26 3.4.2 Phases of backfill materials... 26 3.5 Some volumetric relationships... 26 3.5.1 Degree of saturation... 28 3.5.2 Some important unit weights of backfill materials... 28 3.5.3 Water content of fill... 29 3.5.4 Moisture content of fill... 29 3.5.5 Solids content... 29 3.5.6 Saturated fills, slurries and pastes... 29 3.5.7 The volumetric solids concentration C v...30 3.6 Particle size distribution of backfill/tailings... 31 3.6.1 Particle size distribution curve... 31 3.6.2 Uniformity of fill... 32 3.6.3 Some important benchmarks on particle packing... 33 3.6.4 Relative density or density index... 33 3.7 Atterberg s limits... 34 3.7.1 Ultra fines in tailings (<2 µm)... 35 3.8 The fundamentals of the shear strength of backfill... 36 3.9 Fill permeability(hydraulic conductivity)... 37 3.9.1 Determination of coefficient of permeability... 37 3.9.2 Seepage gradient... 38 3.9.3 Quick condition and piping... 38 3.9.4 Development of piping in fill masses... 38 3.9.5 Liquefaction of mine fill... 38 3.10 Compaction and consolidation of mine fill... 39 3.10.1 Consolidation of fill... 39 3.11 Shear strength of fill... 40 3.11.1 Effective stress concept... 40 3.11.2 Shear strength... 40 3.11.3 Some general observations regarding strength development in cemented fills... 41 3.11.4 Measurement of shear strength... 42 3.12 Lateral earth pressure... 43 3.13 Arching in fill masses and stability analyses... 44 3.13.1 Stope fill mass stability analysis 3D wedge analysis... 45 ii

Contents 4 Fluid Mechanics of Mine Fill 51 5 4.1 Preamble... 51 4.2 Transport and delivery of fill slurries... 51 4.2.1 Introduction to fluid mechanics principles... 52 4.2.2 Hydraulic fill slurry behaviour... 52 4.2.3 Paste fill behaviour... 53 4.2.3.1 Paste fill rheology... 53 4.2.3.2 Paste fill flow in pipes and wall shear stress... 53 4.2.3.3 Yield shear stress effect of pulp density... 54 4.3 Reticulation design... 54 4.3.1 Hydraulic fill reticulation design... 55 4.3.2 Calculating friction system losses in hydraulic fill systems... 56 4.3.3 Paste fill reticulation design... 57 4.3.3.1 Calculating friction factors in paste fill systems... 57 4.3.3.2 Flow control strategy... 57 4.4 Drainage through hydraulic fill... 59 4.4.1 Drainage analysis... 59 4.4.2 Saturation... 59 4.5 Testing and measurements... 60 4.5.1 Laboratory-scale rheology... 60 4.5.1.1 Yield shear stress and slump test... 60 4.5.1.2 Yield shear stress determined by the vane shear viscometer... 61 4.5.1.3 Viscosity measurement... 61 4.5.1.4 Pipe loop testing... 62 Introduction to Hydraulic Fill 67 5.1 Preamble... 67 5.2 Design... 68 5.2.1 Demand from mining methods... 68 5.2.1.1 Cemented or uncemented hydraulic fill?... 68 5.2.2 Supply of materials... 68 5.2.2.1 Mill tailings... 68 5.2.2.2 Natural surface sand deposits... 69 5.2.2.3 Binders... 69 5.2.3 Preparation of hydraulic fill... 69 5.2.3.1 Tailings dewatering... 69 5.2.3.2 Tailings desliming... 70 5.2.3.3 Fill permeability and percolation rate... 70 5.2.3.4 Empirical relationships for permeability/percolation rate of hydraulic fill... 70 5.2.3.5 Particle size distribution curves... 70 5.2.3.6 Cautionary note on sizing criteria for hydraulic fill... 71 5.2.3.7 Hydrocyclones... 71 5.2.3.8 Spiral and rake classifiers... 72 5.2.3.9 Drum filters... 72 5.2.3.10 Elutriation tanks... 72 5.2.3.11 Storage tanks and pachucas... 72 iii

Handbook on Mine Fill 6 5.2.4 Delivery systems from preparation site to stope... 72 5.2.5 Fill containment design and construction of fill barricades... 73 5.2.6 Placement and drainage... 74 5.2.6.1 Design principles... 75 5.2.7 The risk of fill inrush... 76 5.2.7.1 Erosion piping failure mechanism... 76 5.2.7.2 Mechanical defects design, construction... 76 5.3 Monitoring and performance... 77 5.3.1 Operational monitoring of fill and barricades... 77 5.4 Hydraulic fill summary of key issues... 78 Paste Fill 83 6.1 Preamble... 83 6.2 Principles... 83 6.2.1 Advantages of paste... 85 6.2.2 Considerations with paste... 85 6.3 Demands from mining methods... 85 6.3.1 Paste fill performance... 85 6.3.2 Rate of filling... 86 6.3.2.1 Placement rates... 86 6.4 Supply of materials... 86 6.4.1 Tailings... 86 6.4.2 Water... 86 6.4.3 Binder... 87 6.4.4 Coarse fraction... 87 6.5 Processing of components... 87 6.5.1 Tailings dewatering... 87 6.5.1.1 Thickening... 88 6.5.1.2 Filtration... 88 6.5.1.3 Excavated tailings... 88 6.5.2 Mixing... 89 6.5.3 Binder addition... 89 6.5.4 Mix control... 90 6.6 Delivery and placement... 90 6.6.1 Boreholes... 90 6.6.2 Pipes... 90 6.6.3 Pumps... 91 6.6.4 Flushing of distribution system... 91 6.7 Retention... 92 6.8 Design... 92 6.8.1 Material characterisation... 92 6.8.2 Flow characteristics... 93 6.8.2.1 Pump test... 93 6.8.3 Strength gain... 93 6.8.3.1 Results... 93 6.8.3.2 Effect of yield stress at high cement contents... 94 6.8.4 Dewatering testwork... 94 6.8.4.1 Thickener design... 94 6.8.4.2 Filtration design... 94 6.9 Monitoring and performance... 94 6.10 Examples of paste fill applications... 95 iv

Contents 7 Rock Fill in Mine Fill 101 8 7.1 Preamble...101 7.2 Angle of repose...101 7.3 Unmodified rock fill...101 7.4 Modified rock fill...102 7.5 Dilating fills...102 7.6 Contracting fills...103 7.7 Particle size optimisation...103 7.8 Blending of rock fill...105 7.9 Some standard rock fill gradings...106 7.10 Binder addition...106 7.11 Inclusion of fine-grained materials...106 7.12 Friction angle of rock fill...107 7.13 Rock fill production...107 7.14 Delivery of rock fill in mining...108 7.14.1 Cemented rock fill at Mount Isa Mines... 108 7.14.2 Fill mass stability... 108 7.15 Cement slurry rock fill trials at Mount Isa Mines (MIM) in 1996...108 7.15.1 Large cylinder testing... 108 7.15.2 Water content of the mix... 108 7.15.3 Composition of the final placed CSRF... 108 7.15.4 Strength... 110 7.15.5 Fill placement trials... 110 7.16 Rocky Paste Fill (RPF) trials at Mount Isa Mines in 1996...111 7.16.1 RPF mix components... 111 7.16.2 RPF strength... 112 7.16.3 Quality of RPF after placement... 112 7.16.4 Design chart for RPF... 112 7.16.5 Advantages of RPF... 112 7.17 Rocky paste fill at Olympic Dam Mine...112 7.18 CSAF at George Fisher Mine...114 Other Fill Types and Practices 119 8.1 Preamble...119 8.2 Fill in underground coal mines...121 8.2.1 Preamble... 121 8.2.2 Background... 121 8.2.3 Ongoing development... 123 8.3 Surface subsidence mitigation and prevention...123 8.3.1 Preamble... 123 8.3.2 Plant and equipment... 124 8.3.3 Fill material... 124 8.3.4 Water supply... 124 8.3.5 Fill containment... 124 8.3.6 Fill delivery boreholes and surface plant... 124 8.3.7 Fill preparation and placement... 125 8.3.8 Monitoring... 126 8.3.9 Project performance... 126 v

Handbook on Mine Fill vi 8.4 Filling metalliferous and coal open pits...126 8.4.1 Preamble... 126 8.4.2 Fill materials and filling... 126 8.4.3 Fill materials in more detail... 126 8.4.3.1 Waste rock or coarse coal reject... 126 8.4.3.2 Tailings, fine coal reject and fly ash... 126 8.4.3.3 Co-disposal...127 8.4.4 Metalliferous mining... 127 8.4.5 Coal mining... 127 8.4.6 Water management... 127 8.4.7 Waste rock stability... 127 8.4.8 Submerging tailings... 127 8.4.9 Mine closure... 127 8.4.10 Safety and hazard reduction... 127 8.5 Co-disposal of mining and municipal wastes...128 8.5.1 Preamble... 128 8.5.2 Handling municipal waste... 128 8.5.2.1 Transportation...128 8.5.2.2 Mine void access...128 8.5.3 Co-disposal... 128 8.5.4 Dumped co-disposal... 128 8.5.5 Pumped tailings/fine reject... 128 8.5.6 Design... 128 8.5.7 Liner... 128 8.5.8 Underdrains... 129 8.5.9 Safety and hazard reduction... 129 8.6 Use of completed open pits for tailings disposal...129 8.6.1 Preamble... 129 8.6.2 Economics... 129 8.6.3 Environmental requirements... 129 8.6.4 Physical characterisation... 129 8.6.5 Water removal/recovery systems... 130 8.6.6 Geochemical characterisation... 131 8.6.7 Geotechnical considerations... 132 8.6.8 Rehabilitation... 132 8.7 Cemented aggregate fill in complex ore bodies...132 8.7.1 Preamble... 132 8.7.2 Geology... 132 8.7.3 Ground conditions... 132 8.7.4 Mining method... 132 8.7.5 Cemented aggregate fill... 133 8.7.5.1 Evaluation and test work... 133 8.7.5.2 Parameters...133 8.7.5.3 Evaluation approach...134 8.7.6 Operational issues... 134 8.8 A review of some important aspects of cemented aggregate fill...134 8.8.1 Preamble... 134 8.8.2 Particle size distribution... 134 8.8.3 Fill placement... 135 8.8.4 Fill quality test work... 136 8.8.4.1 Aggregate quality...136 8.8.4.2 Aggregate particle size distribution... 136 8.8.4.3 Aggregate moisture content... 136 8.8.4.4 Binder strength...136 8.8.4.5 Slump tests...136 8.8.4.6 CAF reference cylinder strength tests... 136 8.8.4.7 Sands and tailings...136 8.8.5 In situ assessment of CAF... 137 8.8.5.1 Exposure mapping... 137 8.8.5.2 Coring...137 8.8.5.3 Borehole pressure meter... 137 8.8.5.4 Video monitoring...137

Contents 9 Hazards, Risks and Environment 143 10 9.1 Preamble...143 9.1.1 Example of a mine fill risk... 143 9.2 Terminology...144 9.3 Risk management...144 9.3.1 Introduction... 144 9.3.2 Communication and consultation... 144 9.3.3 Establishing the context... 145 9.3.4 Risk identification... 146 9.3.5 Risk analysis... 146 9.3.6 Risk evaluation... 147 9.3.7 Risk treatment... 149 9.3.8 Monitoring and reviewing... 149 9.3.9 Recording the risk management process... 150 9.4 Some aspects of implementing risk management...150 9.4.1 Establishing effective risk management... 150 9.4.2 Life cycle issues... 150 9.4.3 Limitations of risk assessment techniques... 151 9.4.4 Common pitfalls with risk assessments... 151 9.5 Environmental aspects of mine fill...151 9.5.1 Successful use of mine fill... 151 9.5.2 Unsuccessful use of mine fill... 152 9.6 Mine fill risk register...152 9.6.1 Preamble... 152 9.6.2 Risk register... 152 9.7 Suggested reading...154 9.8 Acknowledgement...154 Emerging Technologies and Current Research 159 10.1 Preamble...159 10.2 Summary of responses to requests to comment...159 10.3 Review of content of selected papers from MINEFILL 1998, MINEFILL 2001 and MINEFILL 2004...164 10.3.1 MINEFILL 1998... 164 10.3.2 MINEFILL 2001... 166 10.3.3 MINEFILL 2004... 167 Glossary 171 General terms...171 Terms specific to chapter 6: Paste Fill...176 Terms specific to chapter 9: Hazards, Risks and Environment...178 vii