Research Article Enhanced Response Speed of ZnO Nanowire Photodetector by Coating with Photoresist

Similar documents
Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect Absorption in Visible Regime

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Improving the Electrical Contact Property of Single-Walled Carbon Nanotube Arrays by Electrodeposition

The deposition of these three layers was achieved without breaking the vacuum. 30 nm Ni

Quantum Dots for Advanced Research and Devices

Use of Multi-Walled Carbon Nanotubes for UV radiation detection

Supporting Information Available:

STUDY OF LAYERS OF METAL NANOPARTICLES ON SEMICONDUCTOR WAFERS FOR HYDROGEN DETECTION

Research Article Modeling and Simulation of a Resonant-Cavity-Enhanced InGaAs/GaAs Quantum Dot Photodetector

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

2D Materials for Gas Sensing

Research Article Effect of Strain on Thermal Conductivity of Si Thin Films

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Research Article The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic of HgCdTe PV Detector

Research Article Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates

Supplementary Materials for

Supporting Information

Semiconductor Polymer

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng

Multiband GaN/AlGaN UV Photodetector

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Supporting Information

K D R N Kalubowila, R P Wijesundera and W Siripala Department of Physics, University of Kelaniya, Kelaniya, Sri Lanka ABSTRACT

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Electronic Supplementary Information for

SUPPLEMENTARY INFORMATION

Supporting Information

Amphiphilic diselenide-containing supramolecular polymers

Single Photon detectors

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications

A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR

Supporting Information s for

Research Article The Influence of Atmosphere on Electrical Property of Copper Oxide Nanoparticles

A new concept of charging supercapacitors based on a photovoltaic effect

Supplementary Information. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction

Fabrication Technology, Part I

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

Chapter 7. Conclusion and Future Scope

Electronic Supplementary Information

Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

UNIT I: Electronic Materials.

Characterization of partially reduced graphene oxide as room

Electrochemically Synthesized Multi-block

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

Content. * *

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development

Chapter 4 Scintillation Detectors

SUPPLEMENTARY INFORMATION

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Monolithic Cells for Solar Fuels

Supporting Information

Semiconductor Detectors

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Supporting information

Supplementary information

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

Supporting Information

Lecture 15: Optoelectronic devices: Introduction

Photoresponsive Nanoscale Columnar Transistors

Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry This journal is The Royal Society of Chemistry 2010

Photonic Communications Engineering Lecture. Dr. Demetris Geddis Department of Engineering Norfolk State University

Carbon Nanotubes in Interconnect Applications

All-Inorganic Perovskite Solar Cells

Nanomaterials for Plasmonic Devices. Lih J. Chen

Fabrication Methods: Chapter 4. Often two methods are typical. Top Down Bottom up. Begins with atoms or molecules. Begins with bulk materials

Controlling the Interface-Areas of. Heterojunction Nanowires for High Performance Diodes

Gas Sensors Based on Multiwall Carbon Nanotubes Decorated with. Different Metal Oxides Nanoparticles.

Simulation of AlGaN/Si and InN/Si ELECTRIC DEVICES

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2

Supplementary Information

Nanosphere Lithography

Electronic Supplementary Information

Nanotechnology Fabrication Methods.

The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for water splitting fabricated by pulsed laser deposition

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics

Supporting Information:

Graphene conductivity mapping by terahertz time-domain reflection spectroscopy

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

Solar Fuels From Light & Heat

The Monte Carlo Simulation of Secondary Electrons Excitation in the Resist PMMA

There's Plenty of Room at the Bottom

Preparation of PbSeO 3. as a new material, sensitive to the electromagnetic radiation in UV range. Journal of Physics: Conference Series

Supporting Information for. Photoactive PANI/TiO 2 /Si Composite Coatings With 3D Bio-inspired. Structures

An account of our efforts towards air quality monitoring in epitaxial graphene on SiC

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting

Transcription:

Nanomaterials Volume 2016, Article ID 1367095, 6 pages http://dx.doi.org/10.1155/2016/1367095 Research Article Enhanced Response Speed of Nanowire Photodetector by Coating with Xing Yang, 1,2 Zhili Chen, 1,2,3 Xinwu Xie, 4 Xinxi Xu, 4 Wei Xiong, 5 Weihua Li, 5 and Shuqing Li 3 1 MEMS Lab., Department of Precision Instruments, Tsinghua University, Beijing 100084, China 2 State Key Lab. of Precision Measurement Technology and Instrumentation, Tsinghua University, Beijing 100084, China 3 School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China 4 Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, China 5 Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology of Tsinghua University, Beijing 100084, China Correspondence should be addressed to Xing Yang; yangxing@tsinghua.edu.cn and Wei Xiong; xwthu@tsinghua.edu.cn Received 23 May 2016; Accepted 27 July 2016 Academic Editor: Ali Khorsand Zak Copyright 2016 Xing Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Spin-coating photoresist film on nanowire (NW) was introduced into the fabrication procedure to improve photoresponse and recovery speed of a NW ultraviolet photoelectric detector. A NW was first assembled on prefabricated electrodes by dielectrophoresis. Then, photoresist was spin-coated on the nanowire. Finally, a metal layer was electrodeposited on the nanowireelectrode contacts. The response properties and I-V characteristics of NW photodetector were investigated by measuring the electrical current under different conditions. Measurement results demonstrated that the detector has an enhanced photoresponse and recovery speed after coating the nanowire with photoresist. The photoresponse and recovery characteristics of detectors with and without spin-coating were compared to demonstrate the effects of photoresist and the enhancement of response and recovery speed of the photodetector is ascribed to the reduced surface absorbed oxygen molecules and binding effect on the residual oxygen molecules after photoresist spin-coating. The results demonstrated that surface coating may be an effective and simple way to improve the response speed of the photoelectric device. 1. Introduction is a semiconductor material with a direct energy band gap of 3.37 ev and a large excitation binding energy of 60 mev at room temperature. Different fields have studied the potential applications of, such as transistors, photodetectors, piezoelectric devices, solar cells, and sensors [1 6]. Recently, semiconductor nanowires, nanobelts, and nanoparticles with characteristic of high surface-to-volume ratios have emerged as remarkable nanomaterials in various fields. For example, Soci et al. [7] demonstrated that the optical internal gain of nanowire (NW) ultraviolet (UV) photodetectors could reach as high as 10 8, and this gain shows their potential application in gain-bandwidth products. However, two fundamental limitations remain to be overcome in the application of NW UV photodetectors. First, surface absorbed molecules [8 12] or surface defects [13] can deteriorate the performance of a NW device; in particular, the absorption and desorption of the oxygen molecules from the surface of NWs can affect the performance of the devices. Second, surface contamination [14, 15] produced during the synthesis process and the assembly process may result in poor metal-semiconductor contacts and even nonsymmetrical contacts; these poor contacts lead to the poor performance of NW devices. Surface functionalization has been proved to be an effective way to modify surface physical properties of NWs. Indeed, it can be used to enhance the electrical and optoelectronic performance of NW devices [16]. However, the functionalization processes [17] for the fabrication of

2 Nanomaterials Deposited copper layer Pt/Ti UV light NW Si Silicon substrate Measurement system Figure 1: NW UV photodetector structure with photoresist andelectrodepositedcopper. NW device are mostly complex. As to surface contamination, annealing at high temperatures and focus ion beam- (FIB-) assisted deposition [10] are two commonly used methods to improve the metal-semiconductor contacts. However, the high temperature used in annealing may cause unpredictable damage to the devices, and FIB-based metal deposition is inefficient and costly. In this paper, we report an approach implemented by the functionalization of a NW with photoresist to enhance the response characteristics of a NW UV photodetector. Positive photoresist AZ 1505 is a mixture of polymers and other compounds. It is a type of material usedforphotolithographythathasatransparentappearance and good adherence. To further improve the performance of the device, a much cheaper and simpler fabrication method of electrodeposition [18] is implemented to deposit metal on electrodes. In the present work, the photoresist was adopted as the coating material of NWs, and a photolithographed photoresist pattern was used as the mold of metal deposition. 2. Principle and Methods The structural diagram of a NW-based photoelectric photodetector is illustrated in Figure 1. Pt electrodes were fabricated on a silicon substrate and were isolated by an 800 nm Si layer. NW was assembled on the Pt electrodes to form the channel of carriers, which could detect UV photons. The photoresist coating is isolated from the ambient atmosphere. Thus, the absorption and desorption processes of were prevented and thus the response and recovery speed of the photodetector were enhanced. Two electrodes were electrodeposited by the metal layer to form good metal-semiconductor contact with the help of the photoresist pattern. At the same time, the deposited copper used in this work had a lower work function than the Pt electrodes, and the deposited copper layer could enlarge the contact area of the metal-semiconductor contacts, thus forming ohmic-type metal-semiconductor contacts. 3. Experimental Details 3.1. Fabrication of Electrodes and Assembly of NWs. NWs were synthesized on an alumina plate by a catalyst-free solid vapor process under controlled conditions [19]. NWs were suspended in an ethanol solution by sonication. Figure 2 briefly illustrates the fabrication procedures of the basic photodetector. The parallel electrode patterns were defined by a standard photolithography procedure. In general, dielectrophoresis [20 22] is a simple, effective, and controllable method to assemble NW devices. Thus, NWs were assembled onto the electrodes through dielectrophoresis (Figure 2(d)) in the present work. After applying an AC voltage (V p-p = 5V, f = 1MHz) across the electrodes, a 5 μl dropletofnwsuspensionwas dropped onto the electrodes; the AC power source was cut off after a few minutes. The chip was rinsed with ethanol for 10 s and then with deionized (DI) water for 15 s. Then, it was dried using a gentle stream of nitrogen gas for 15 s. A thermal annealing process was conducted in a vacuum annealing box at 300 C for 3 h to improve the contacts of the nanowires and electrodes and to remove the residual ethanol from the nanowire surface. 3.2. NW Surface Functionalization and Electrodes Electrodeposition. First, we stabilized the nanowires on the substrate using an electrical adsorption process, that is, by applying a pulsed voltage (V p =5V, f = 1000 Hz) across the electrodes for a few minutes. Second, photoresist was spincoated on the chip (Figures 3 and 3). After conducting aligned lithography (Figures 3(c) and 3(d)), the electrodes were exposed and the NWs were immobilized in the photoresist. Lastly, we electroplated a copper layer on the Pt electrodes by dropping a cupric nitrite electrolyte solution onto the electrodes (Figure 3(e)) and by applying a DC bias of 5 V for 5 min (Cu (NO 3 ) 2 400 g/l, Cl 50 ppm, PEG6000 10 ppm, and current density 1 A/dm 2 )[18].After electrodeposition was performed, the chip was rinsed with DI water and dried with a gentle stream of nitrogen gas. Time-related photocurrent was recorded at a constant DC bias of 5 V as the illumination of UV light (λ = 365 nm, approximately 30 μw/cm 2 ) was turned on and off. The current-voltage curves were recorded under dark conditions by Keithley 6487 picoammeter. 4. Results and Discussion 4.1. I-V Characteristics of the Nanowire Photodetector. Figure 4 compares the typical I-V characteristics of the nanowire photodetector without photoresist coating before (red curve) and after (black curve) electrodeposition. I-V characteristics were measured at room temperature by the picoammeter underdarkconditions.theblackcurveshowsanoticeable decrease in resistance compared with the red curve; this decrease demonstrates that a good ohmic-type device was fabricated after electrodeposition. This decrease may be due to the fact that the work function of copper (4.51 ev) is closer to the electron affinity of (4.1 ev) than the work function of platinum (5.64 ev). At the same time, the deposited copper covering on the Pt electrodes and nanowire can enlarge the contact area of metal-semiconductor contacts.

Nanomaterials 3 Si Silicon substrate NWs (c) (d) Figure 2: Diagrams of the fabricating procedure for a NW UV photodetector. NW (c) Photomask Cupric nitrite solution Copper wire Deposited copper layer NW + DC Pt Pt 20 μm (d) (e) (f) Figure 3: Diagrams of the lithography (a d) and electrodeposition (e, f). NW UV photodetector; coat photoresist on the photodetector chip; (c) aligning and covering the photomask and exposure to UV light; (d) development of photoresist film; (e) electrodeposition of copper layer; (f) microscopy picture and diagram of the device. 4.2. Photoresponse Properties of the NW Photodetector. Figure 5 shows the time-dependent response curve of the NW photodetector without photoresist coating. The photocurrent increases steeply once the UV light is turned on. A few seconds later, the photocurrent increases slowly. The fast part of the curve may corresponds to the rapid photo-generated electron-hole pairs, and the slow part may correspond to the desorption process of oxygen from the surface of nanowires. When the light is off, the photocurrent declines very sharply at first; the current cannot decline to theinitialvalueevenafterhundredsofseconds.theseresults suggest that desorption and reabsorption processes of oxygen from the nanowire surface are slow, which corresponds to the slow recovery speed of NW conductance. To examine the effects of surface coating, we investigated the UV response characteristic of the device processed by spin-coating with photoresist. Figure 6 shows the results (the inset in Figure 6 is a schematic diagram of the NW photodetector). The resultant curve has an enhanced response and recovery speed compared to the result shown in Figure 5. When the UV light is on, the photocurrent has 20-foldincreasein3sandthenincreasedslowlyinthenext 20 s. When the UV illumination was off, the currents declined to initial levels within 20 s.

4 Nanomaterials Current (μa) 80 60 40 20 0 20 40 60 80 100 6 4 2 After electrodeposition Before electrodeposition 0 2 4 6 Voltage (V) Figure 4: Comparison diagram of the I-V characteristics of the photodetector after (black)/before (red) electrodeposition. 3.5 3.0 UV light Electron Electron-hole pair Figure 7: Schematic diagrams of the carrier transport mechanism of the NW (cross-section) without photoresist. Oxygen molecules absorbed on the NW surface capture free electrons from thenwtogenerate. A depletion region is formed under the surface of NW; some ions lose their electrons when the UV light illuminates the NW. The oxygen escapes from the surface of the nanowire. Current (μa) 2.5 2.0 1.5 1.0 0.5 Light off 0 Light on Light off 20 40 60 80 100 120 Time (s) Figure 5: Time-related photoresponse characteristics of the NW UV photodetector without photoresist coating. Electron UV light Electron Electron-hole pair Current (μa) 0.30 0.25 0.20 0.15 0.10 0.05 0.00 Light off Light on Light off 0 20 40 60 80 100 120 Time (s) Figure 6: Time-dependent photoresponse characteristic of the NW photodetector with photoresist coating. Figure 8: Schematic diagrams of the carrier transport mechanism of the NW (cross-section) with photoresist. and oxygencaptureelectronsfromthenwandformadepletionlayer below the surface of the NW; photoresist and oxygen lose the electrons when the UV light illuminates the NW. Oxygen cannot escape the surface of the NW. Comparing the results shown in Figures 5 and 6 reveals that the device coated with photoresist has a clear enhancement in response and recovery speed. This improvement indicates that surface coating can be an alternative method to enhance the response and recovery properties of the NW photodetector. Brief carrier transport mechanisms are illustrated in Figures 7 and 8. When NW is exposed to the ambient atmosphere, oxygen is absorbed on the surface of the n-type NW. Then, oxygen captures the electrons to form O 2 ions,

Nanomaterials 5 which subsequently form a depletion layer under the surface (Figure 7) and induce a decrease in conductance of the NW. When the NW is illuminated by UV light (Figure 7), the photo-generated electron-hole pairs enhance the conductivity of the NW by increasing the carrier density. The holes migrate to the surface of the NW and combine with the electrons absorbed on the surface. loses an electron and is desorbed from the surface. When the UV light is off, the electron-hole pairs recombined fast; thus, the curve shows a sharp decline, as shown in Figure 5. But the physisorption speed of oxygen may be too slow to initialize the photocurrent; thus, the photocurrent cannot quickly recover to initial value. The differences between NW devices with and those without photoresist are the absorption and desorption of oxygen, and the potential effects of photoresist are discussed. When the nanowires are coated by photoresist, the oxygen absorption and desorption may experience two effects (Figure8):thedecreaseofoxygenabsorbingonthenanowire surface and the bound effects on absorbing oxygen induced by photoresist. Both effects can lead to the faster response and recovery time of the NW photodetector. At the same time, photoresist may have a similar effect on the NW to that of oxygen does. The difference exists in the illumination by UV light. cannot be desorbed from the nanowire surface when it loses the electrons; thus, the electrons can rapidly transport to photoresist when the UV light was off. Thus, the rapid transfer of carriers occurs attheinterfaceofthenanowire,andthusthephotocurrent declines fast to initial value, as shown in Figure 6. 5. Conclusions In this paper, we introduced a simple approach to process the NW photodetector by coating the nanowire with photoresist. The time-related response characteristics of the device with/without photoresist were measured to analyze the effect of photoresist. The NW photodetector had a clear enhancement in response and recovery speed after spin-coating with photoresist. This work also implements an electrodeposition process to improve the NW-electrodes contacts, which is ascribed to the lower work function of copper and the enlarged contact area of metal-semiconductor contacts. The results in this paper demonstrate that surface may be an effective and simple way to improve the response speed of photoelectric device which is susceptible to ambient atmosphere. Competing Interests The authors declare that there are no competing interests regarding the publication of this paper. Acknowledgments The authors are thankful to Professor Zhong Lin Wang at Georgia Institute of Technology for providing nanowires. This work was supported by the National Natural Science Foundation of China (Grant no. 51375263, 11274190), National Key Basic Research Program of China (no. 2013CB934200), and Key Technologies R & D Program of Tianjin (Grant no. 14ZCZDSY00009). References [1] S. P. Chang, S. J. Chang, Y. Z. Chiou et al., photoconductive sensors epitaxially grown on sapphire substrates, Sensors and Actuators A: Physical,vol.140,no.1,pp.60 64,2007. [2] X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, Fabrication of a high-brightness blue-light-emitting diode using a -Nanowire array grown on p-gan thin film, Advanced Materials,vol.21,no.27,pp.2767 2770,2009. [3] W. Lin, X. Yan, X. Zhang et al., The comparison of nanowire detectors working under two wavelengths of ultraviolet, Solid State Communications,vol.151,no. 24,pp. 1860 1863, 2011. [4] O. Lupan, G. Chai, L. Chow et al., Ultraviolet photoconductive sensor based on single nanowire, Physica Status Solidi A: Applications and Materials Science,vol.207,no.7,pp.1735 1740, 2010. [5]H.Kind,H.Yan,B.Messer,M.Law,andP.Yang, Nanowire ultraviolet photodetectors and optical switches, Advanced Materials, vol. 14, no. 2, pp. 158 160, 2002. [6] A. Sáaedi, R. Yousefi, F. Jamali-Sheini et al., XPS studies and photocurrent applications of alkali-metals-doped nanoparticles under visible illumination conditions, Physica E: Low-Dimensional Systems and Nanostructures, vol.79,pp.113 118, 2016. [7] C. Soci, A. Zhang, B. Xiang et al., nanowire UV photodetectors with high internal gain, Nano Letters, vol.7,no.4,pp. 1003 1009, 2007. [8] Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, Competitive surface effects of oxygen and water on UV photoresponse of nanowires, Applied Physics Letters,vol. 94, no. 2, Article ID 023110, 2009. [9] C. S. Lao, M.-C. Park, Q. Kuang et al., Giant enhancement in UV response of nanobelts by polymer surface-functionalization, the American Chemical Society, vol. 129,no.40,pp.12096 12097,2007. [10] J. Zhou, Y. Gu, Y. Hu et al., Gigantic enhancement in response and reset time of UV nanosensor by utilizing Schottky contact and surface functionalization, Applied Physics Letters, vol.94,no.19,articleid191103,2009. [11] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, Adsorption and desorption of oxygen probed from nanowire films by photocurrent measurements, Applied Physics Letters, vol. 86, no.12,articleid123117,pp.1 3,2005. [12] R. A. Silva and M. O. Orlandi, Influence of synthesis route on the radiation sensing properties of nanostructures, JournalofNanomaterials,vol.2016,ArticleID4054058,9pages, 2016. [13] J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, nanowire transistors, TheJournalofPhysicalChemistryB,vol.109,no.1, pp. 9 14, 2005. [14] A. Y. Polyakov, N. B. Smirnov, E. A. Kozhukhova et al., Electrical characteristics of Au and Ag Schottky contacts on n-, Applied Physics Letters,vol.83,no.8,pp.1575 1577,2003. [15] L. J. Brillson, H. L. Mosbacker, M. J. Hetzer et al., Dominant effect of near-interface native point defects on Schottky

6 Nanomaterials barriers, Applied Physics Letters, vol.90,no.10,articleid 102116, 2007. [16] C.Lao,Y.Li,C.P.Wong,andZ.L.Wang, Enhancingtheelectrical and optoelectronic performance of nanobelt devices by molecular surface functionalization, Nano Letters,vol.7,no.5, pp.1323 1328,2007. [17] C.S.Lao,Q.Kuang,Z.L.Wang,M.-C.Park,andY.Deng, Polymer functionalized piezoelectric-fet as humidity/chemical nanosensors, Applied Physics Letters,vol.90, no.26, ArticleID 262107, 2007. [18] M. Zhang, Z. Zhou, X. Yang, X. Ye, and Z. L. Wang, Fabrication of nanowire devices via selective electrodeposition, Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. D69 D71, 2008. [19] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Nanobelts of semiconducting oxides, Science, vol. 291, no.5510, pp. 1947 1949, 2001. [20] E. M. Freer, O. Grachev, X. Duan, S. Martin, and D. P. Stumbo, High-yield self-limiting single-nanowire assembly with dielectrophoresis, Nature Nanotechnology, vol.5,no.7,pp.525 530, 2010. [21] L. Guo, H. Zhang, D. Zhao et al., High responsivity nanowires based UV detector fabricated by the dielectrophoresis method, Sensors and Actuators B: Chemical,vol.166-167,pp. 12 16, 2012. [22] D. Wang, R. Zhu, Z. Zhou, and X. Ye, Controlled assembly of zinc oxide nanowires using dielectrophoresis, Applied Physics Letters, vol. 90, no. 10, Article ID 103110, 2007.

Nanotechnology International International Corrosion Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International Nanomaterials Submit your manuscripts at Materials Nanoparticles Nanomaterials Advances in Materials Science and Engineering Nanoscience Scientifica Coatings Crystallography The Scientific World Journal Textiles Ceramics International Biomaterials