Competing orders and quantum criticality in the high temperature superconductors

Similar documents
Quantum transitions of d-wave superconductors in a magnetic field

Quantum phase transitions in antiferromagnets and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors

Vortices in the cuprate superconductors

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors by a magnetic field

Competing orders and quantum criticality in the cuprate superconductors

Quantum phase transitions of correlated electrons in two dimensions

Order and quantum phase transitions in the cuprate superconductors

Understanding correlated electron systems by a classification of Mott insulators

Quantum phase transitions in Mott insulators and d-wave superconductors

Understanding correlated electron systems by a classification of Mott insulators

Order and quantum phase transitions in the cuprate superconductors

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Magnetic phases and critical points of insulators and superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors

Tuning order in cuprate superconductors

Magnetic phases and critical points of insulators and superconductors

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Subir Sachdev Harvard University

Quantum spin systems - models and computational methods

Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor

NEURON SCATTERING STUDIES OF THE MAGNETIC FLUCTUATIONS IN YBa 2 Cu 3 O 7¹d

Impurity effects in high T C superconductors

Subir Sachdev Harvard University

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Neutron scattering from quantum materials

Small and large Fermi surfaces in metals with local moments

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Quantum Melting of Stripes

Spin dynamics in high-tc superconductors

Detecting boson-vortex duality in the cuprate superconductors

Mean field theories of quantum spin glasses

Dual vortex theory of doped antiferromagnets

A New look at the Pseudogap Phase in the Cuprates.

The Hubbard model in cold atoms and in the high-tc cuprates

Inhomogeneous spin and charge densities in d-wave superconductors

Spin-wave dispersion in half-doped La3/2Sr1/2NiO4

Lecture 2: Deconfined quantum criticality

Quantum Criticality: Competing Ground States in Low Dimensions

Talk online at

Quantum disordering magnetic order in insulators, metals, and superconductors

The bosonic Kondo effect:

Quantum Phase Transitions

The underdoped cuprates as fractionalized Fermi liquids (FL*)

Quantum theory of vortices in d-wave superconductors

Quantum criticality of Fermi surfaces in two dimensions

Magnetism in correlated-electron materials

A quantum dimer model for the pseudogap metal

SESSION 2. (September 26, 2000) B. Lake Spin-gap and magnetic coherence in a high-temperature superconductor

From the pseudogap to the strange metal

Influence of higher d-wave gap harmonics on the dynamical magnetic susceptibility of high-temperature superconductors

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

New insights into high-temperature superconductivity

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Quantum phase transitions and the Luttinger theorem.

Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Experimental Evidence for TopologicalDoping in the Cuprates

Spin liquids on the triangular lattice

Quantum Phase Transitions

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

High-energy magnon dispersion in the half-filled Hubbard model: A comparison with La 2 CuO 4

Can superconductivity emerge out of a non Fermi liquid.

arxiv:cond-mat/ v1 [cond-mat.supr-con] 23 Feb 1999

The phase diagrams of the high temperature superconductors

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

Deconfined Quantum Critical Points

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Strongly Correlated Systems:

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Emergent light and the high temperature superconductors

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Numerical diagonalization studies of quantum spin chains

Unusual magnetic excitations in a cuprate high-t c superconductor

Quantum Criticality and Black Holes

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee

Topological order in insulators and metals

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

Emergent gauge fields and the high temperature superconductors

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

2. Spin liquids and valence bond solids

μsr Studies on Magnetism and Superconductivity

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

What's so unusual about high temperature superconductors? UBC 2005

The Superfluid-Insulator transition

Evidence for two distinct energy scales in the Raman spectra of. Abstract

Quasi-1d Antiferromagnets

Magnetism and Superconductivity in Decorated Lattices

Excitations in antiferromagnetic cores of superconducting vortices

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Superconducting Stripes

Transcription:

Competing orders and quantum criticality in the high temperature superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

Outline I. Theoretical Models of Quantum Phase Transitions A. Quantum Ising Chain B. Coupled Ladder Antiferromagnet C. Square Lattice Antiferromagnet II. III. Magnetic transitions in a d-wave superconductor A. Survey of some recent experiments on the high temperature superconductors. B. Effect of an applied magnetic field Conclusions

I.A Quantum Ising Chain ( x z z gσ + σ σ ) H = I J i i i+ 1 i Quasiclassical dynamics Quasiclassical dynamics i χω ( ) = dt σ j () t, σk ( 0) e = T k 7/4! 0 A ( 1 iω / Γ +...) π kt B Γ R = 2 tan 16! z z iωt S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997). R σσ z j z k = = ~ j 1 2 1 2 1 k P. Pfeuty Annals of Physics, 57, 79 (1970) ( + ) ( ) 1/4

I.B Coupled Ladder Antiferromagnet N. Katoh and M.Imada, J. Phys. Soc. Jpn. 63, 4529 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo,and H. Takayama, cond-mat/0107115. S=1/2 spins on coupled 2-leg ladders H = < ij> J ij " S i " S j 0 λ 1 J λ J

λ close to 1 Square lattice antiferromagnet Experimental realization: La CuO 2 4 Ground state has long-range magnetic (Neel) order " S i = ( ) i 1 + x iy N 0 0 Excitations: 2 spin waves

λ close to 0 Weakly coupled ladders 1 = 2 ( ) Paramagnetic ground state " S = i Excitation: S=1 exciton (spin collective mode) Energy dispersion away from antiferromagnetic wavevector ε = + ck 2 2 2 0

T=0 Spin gap λ c Neel order N0 0 1 λ Quantum paramagnet S " = 0 Neel " state S N 0

Quantum field theory: φα S b 3-component antiferromagnetic order parameter Oscillations of φ α about zero (for r > 0) spin-1 collective mode λ close to λ c (( ) 2 ( ) 2 ) g ( ) 2 x α τ α α α 1 = d xdτ φ + c φ + rφ + φ 2 4! 2 2 2 2 r > 0 λ < λ c r < 0 λ > λ c Imχ ( k, ω ) ε = + 2 2 ck 2 T=0 spectrum ω

I.C Square Lattice Antiferromagnet H = J S " S " Action: i< j S Missing: Spin Berry Phases A b ij i j 1 = d xdτ φ + c φ + V φ 2 (( ) 2 ( ) 2 ) ( ) x α τ α α 2 2 2 S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989). isa e Berry phases induce bond charge order in quantum disordered phase with φ α = 0 ; Dual order parameter N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

Square lattice with first(j 1 ) and second (J 2 ) neighbor exchange interactions H = J S " S " i< j ij i j 1 = 2 ( ) N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). O. P. Sushkov, J. Oitmaa, and Z. Weihong, Phys. Rev. B 63, 104420 (2001). M.S.L. du Croo de Jongh, J.M.J. van Leeuwen, W. van Saarloos, Phys. Rev. B 62, 14844 (2000). K.Park and S.Sachdev, cond-mat/0108214. Neel state Onset of bond-charge order: Z 4 order parameter Co-existence Spin-Peierls (or plaquette) state Bond-centered charge order Vanishing of spin gap and Neel order: φ 4 field theory J 2 / J 1 See however L. Capriotti, F. Becca, A. Parola, S. Sorella, cond-mat/0107204.

Quantum dimer model D. Rokhsar and S. Kivelson Phys. Rev. Lett. 61, 2376 (1988) Quantum entropic effects prefer one-dimensional striped structures in which the largest number of singlet pairs can resonate. The state on the upper left has more flippable pairs of singlets than the one on the lower left. These effects lead to a broken square lattice symmetry near the transition to the Neel state. N. Read and S. Sachdev Phys. Rev. B 42, 4568 (1990).

Properties of paramagnet with bond-charge-order Stable S=1 spin exciton quanta of 3-component φα ε k = + ck + ck 2 2 2 2 x x y y 2 Spin gap S=1/2 spinons are confined by a linear potential.

Effect of static non-magnetic impurities (Zn or Li) Zn Zn Zn Zn Spinon confinement implies that free S=1/2 moments form near each impurity χ impurity ( T 0) = SS ( + 1) kt 3 B A.M Finkelstein, V.E. Kataev, E.F. Kukovitskii, G.B. Teitel baum, Physica C 168, 370 (1990).

Further neighbor magnetic couplings La 2CuO4 #" S 0 Experiments Magnetic order T=0 Confined, paramagnetic Mott insulator has #" S = 0 1. Stable S=1 spin exciton. 2. S=1/2 moments near non-magnetic impurities 3. Broken translational symmetry:- bondcentered charge order. Concentration of mobile carriers δ in e.g. La Sr CuO 2 δ δ 4 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A.V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994)

Neutron scattering in YBCO YBa 2Cu 3O7 S=1 exciton near antiferromagnetic ordering wavevector Q = (π,π) Resolution limited width H.F. Fong, B. Keimer, D. Reznik, D.L. Milius, and I.A. Aksay, Phys. Rev. B 54, 6708 (1996)

Measurement of spin susceptibility near non-magnetic (Zn/Li) impurities Li Inverse local susceptibilty in YBCO 7 Li NMR below T c J. Bobroff, H. Alloul, W.A. MacFarlane, P. Mendels, N. Blanchard, G. Collin, and J.-F. Marucco, Phys. Rev. Lett. 86, 4116 (2001) See also D. L. Sisson, S. G. Doettinger, A. Kapitulnik, R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 61, 3604 (2000). SS ( + 1) Measured χimpurity( T 0) = with S = 1/ 2 in underdoped sample. 3kT B Not expected from BCS theory, which predicts χ ( T 0) for a non-magnetic impurity with strong potential impurity scattering.

Neutron scattering measurements of phonon spectra Discontinuity in the dispersion of a LO phonon of the O ions at wavevector k = π/2 : evidence for bond-charge order with period 2a k = 0 k = π La 1.85 Sr 0.15 CuO 4 Oxygen Copper YBa 2 Cu 3 CuO 6.95 R. J. McQueeney, T. Egami, J.-H. Chung, Y. Petrov, M. Yethiraj, M. Arai, Y. Inamura, Y. Endoh, C. Frost and F. Dogan, cond-mat/0105593. R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82, 628 (1999). L. Pintschovius and M. Braden, Phys. Rev. B 60, R15039 (1999).

Further neighbor magnetic couplings T=0 #" S = 0 La 2CuO4 #" S 0 Experiments Magnetic order Concentration of mobile carriers δ in e.g. La Sr CuO 2 δ δ 4 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A.V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994) Universal properties of magnetic quantum phase transition do not change along this line

II.A Magnetic transitions in a d-wave superconductor Ψ h : strongly coupled to φ α, but do not damp φ α as long as < 2 h Ψ 1,2 : decoupled from φ α Leading universal properties of transition are identical to that in an insulator

Neutron scattering measurements of dynamic spin susceptibility at an incommensurate wavevector: T and ω dependent divergence scaling as a function of!ω/ kt B G. Aeppli, T.E. Mason, S,M. Hayden, H.A. Mook, and J. Kulda, Science 278, 1432 (1998).

II.B Effect of magnetic field on SDW order in SC phase T=0, H=0 Superconductor (SC) + Spin density wave (SDW) Superconductor (SC) r c r (some parameter in the Hamiltonian, possibly carrier concentration) Many experimental indications that the cuprate superconductors are not too far from such a quantum phase transition: G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). Y. S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999). S. Katano, M. Sato, K. Yamada, T. Suzuki, and T. Fukase Phys. Rev. B 62, 14677 (2000). B. Lake, G. Aeppli et al., Science 291, 1759 (2001). Y. Sidis, C. Ulrich, P. Bourges, et al., cond-mat/0101095. H. Mook, P. Dai, F. Dogan, cond-mat/0102047. J.E. Sonier et al., preprint.

Main results (extreme Type II superconductivity) T=0 Elastic scattering intensity I( H) H 3H 1 a ln I(0) H H c2 = + c2 H ( r rc ) ~ ln 1/ ( ( r rc )) S = 1 exciton energy ε ( H) ε(0) H 3H c2 = 1 b ln H c2 H All functional forms are exact. Similar results apply to other competing orders e.g. SC + staggered flux E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001)

Structure of quantum theory Charge-order is not critical: can neglect Berry phases. Generically, momentum conservation prohibits decay of S=1 exciton φ α into S=1/2 fermionic excitations at low energies. Virtual pairs of fermions only renormalize parameters in the effective action for φ α. Zeeman coupling only leads to corrections at order H 2 Simple Landau theory couplings between φ α and superconducting order ψ are allowed (S.-C. Zhang, Science 275, 1089 (1997)), e.g.: 2 2 2 2 V φ V φ + λφ ψ S b ( ) ( ) α α α 1 = d xdτ φ + c φ + V φ 2 (( ) 2 ( ) 2 ) ( ) x α τ α α 2 2 2

Dominant effect: uniform softening of spin excitations by superflow kinetic energy r v s 1 r Spatially averaged superflow kinetic energy H 3H v ln 2 c2 s Hc2 H See D. P. Arovas et al., Phys. Rev. Lett. 79, 2871 (1997) for a different viewpoint.

( x) Influence of ψ on extended spin eigenmodes: ψ ψ 1 2x ( x) = 1 outside each vortex core because 2 ( x) In SC phase, spin gap obeys: 2 of superflow kinetic energy 3.0H c2 = 1 ln 2Hc2 H 3.0H 2 c2 ( H ) = ( 0) ln 2 3v 2Hc2 H Ng 1 g In SC+SDW phase, intensity of elastic scattering obey s: H 24π c v 6v H 3.0H = + 2 3v 2Hc2 H g 1 g c2 ( ) I( 0) ln I H H

Intensity (counts/min) 35 30 25 Elastic neutron scattering off La CuO 2 4+ y B. Khaykovich, Y. S. Lee, S. Wakimoto, K. J. Thomas, M. A. Kastner, and R.J. Birgeneau, preprint. H = 7.5 T k H = 0 T h H c I(H)/I(0) - 1 1.2 1 0.8 0.6 0.4 0.86 0.87 0.88 0.89 0.9 0.91 h (r.l.u.) Solid line --- fit to : 0.2 0 0 1 2 3 4 5 6 7 8 9 ( ) ( 0) I H a is the only fitting parameter Best fit value - a = 2.4 with H I H (T) c2 = 1+ a ln Hc2 H c2 H = 60T 3.0H

Neutron scattering of La 2-xSrxCuO 4 at x=0.1 B. Lake, G. Aeppli, et al. H Hc Solid line - fit to : I( H) a ln H H 2 = c2

Neutron scattering off La Sr CuO 2-x x 4 ( x = 0.163, SC phase) in H=0 ( red dots) and H=7.5T ( blue dots). B. Lake, G. Aeppli et al., Science 291, 1759 ( 2001) Elastic neutron scattering off La Sr CuO 2-x x 4 ( x = 0.10, SC + SDW phase) in H=0 (blue dots) and H=5T ( red do ts). B. Lake, H. Ronnow et al., cond-mat/0104026

Further neighbor magnetic couplings La 2CuO4 #" S 0 Conclusions Experiments Magnetic order #" S = 0 T=0 Concentration of mobile carriers δ Confined, paramagnetic Mott insulator has 1. Stable S=1 spin exciton. φ α 2. Broken translational symmetry:- bondcentered charge order. 3. S=1/2 moments near non-magnetic impurities Theory of magnetic ordering quantum transitions in antiferromagnets and superconductors leads to quantitative theories for Spin correlations in a magnetic field Effect of Zn/Li impurities on collective spin excitations