Quantum transitions of d-wave superconductors in a magnetic field

Similar documents
Competing orders and quantum criticality in the high temperature superconductors

Quantum phase transitions in antiferromagnets and d-wave superconductors

Vortices in the cuprate superconductors

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors by a magnetic field

Quantum phase transitions in Mott insulators and d-wave superconductors

Competing orders and quantum criticality in the cuprate superconductors

Understanding correlated electron systems by a classification of Mott insulators

Quantum phase transitions of correlated electrons in two dimensions

Order and quantum phase transitions in the cuprate superconductors

Understanding correlated electron systems by a classification of Mott insulators

Order and quantum phase transitions in the cuprate superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors

Tuning order in cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Magnetic phases and critical points of insulators and superconductors

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Magnetic phases and critical points of insulators and superconductors

Small and large Fermi surfaces in metals with local moments

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Quantum disordering magnetic order in insulators, metals, and superconductors

Mean field theories of quantum spin glasses

A quantum dimer model for the pseudogap metal

Quantum spin systems - models and computational methods

A New look at the Pseudogap Phase in the Cuprates.

Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor

The underdoped cuprates as fractionalized Fermi liquids (FL*)

Detecting boson-vortex duality in the cuprate superconductors

Dual vortex theory of doped antiferromagnets

From the pseudogap to the strange metal

Impurity effects in high T C superconductors

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Lecture 2: Deconfined quantum criticality

Quantum theory of vortices in d-wave superconductors

Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Talk online at

Spin liquids on the triangular lattice

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Subir Sachdev Harvard University

The Hubbard model in cold atoms and in the high-tc cuprates

Quantum Phase Transitions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Quantum Criticality and Black Holes

Quantum criticality of Fermi surfaces in two dimensions

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Quantum phase transitions and the Luttinger theorem.

Spin-wave dispersion in half-doped La3/2Sr1/2NiO4

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee

Deconfined Quantum Critical Points

Subir Sachdev Harvard University

The bosonic Kondo effect:

arxiv:cond-mat/ v1 4 Aug 2003

High-energy magnon dispersion in the half-filled Hubbard model: A comparison with La 2 CuO 4

NEURON SCATTERING STUDIES OF THE MAGNETIC FLUCTUATIONS IN YBa 2 Cu 3 O 7¹d

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Neutron scattering from quantum materials

Quantum Melting of Stripes

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

arxiv:cond-mat/ v1 [cond-mat.supr-con] 23 Feb 1999

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

2. Spin liquids and valence bond solids

Emergent gauge fields and the high temperature superconductors

Topological order in the pseudogap metal

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Inhomogeneous spin and charge densities in d-wave superconductors

Quantum Criticality: Competing Ground States in Low Dimensions

The phase diagrams of the high temperature superconductors

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Emergent light and the high temperature superconductors

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

What's so unusual about high temperature superconductors? UBC 2005

Quantum Phase Transitions

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum criticality of Fermi surfaces

Magnetism in correlated-electron materials

Topological order in insulators and metals

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Talk online: sachdev.physics.harvard.edu

Quantum theory of vortices and quasiparticles in d-wave superconductors

Numerical diagonalization studies of quantum spin chains

New insights into high-temperature superconductivity

Can superconductivity emerge out of a non Fermi liquid.

Excitations in antiferromagnetic cores of superconducting vortices

SESSION 2. (September 26, 2000) B. Lake Spin-gap and magnetic coherence in a high-temperature superconductor

Strongly Correlated Systems:

μsr Studies on Magnetism and Superconductivity

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology

Critical Dynamics of The Superconductor Transition

Electrical transport near a pair-breaking superconductor-metal quantum phase transition

Luigi Paolasini

General relativity and the cuprates

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin dynamics in high-tc superconductors

Transcription:

Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

Further neighbor magnetic couplings La CuO4 T=0!" S 0 Experiments Magnetic order Universal properties of magnetic quantum phase transition do not change along this line!" S = 0 Concentration of mobile carriers δ in e.g. La Sr CuO δ δ 4 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 411 (199). A.V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994)

Outline I. Magnetic ordering transitions in two-dimensional quantum antiferromagnets: NMR measurements of Zn/Li impurities and neutron scattering measurements of phonon spectra. II. III. Effect of magnetic field on antiferromagnetic order in superconductor. Comparison of predictions with neutron scattering experiments. Conclusions

I. Magnetic quantum transition in the insulator (δ=0) φ α α =1,,3 Neel order parameter Action: S b 1 = d xdτ φ + c φ + V φ Missing: Spin Berry Phases (( ) ( ) ) ( ) x α τ α α S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 344 (1989). A isa e Berry phases induce bond charge order in quantum disordered phase with φ α = 0 ; e.g. spin-peierls or plaquette order (need not be quasi-1d) Dual order parameter N. Read and S. Sachdev, Phys. Rev. Lett. 6, 1694 (1989).

Square lattice with first(j 1 ) and second (J ) neighbor exchange interactions H = J S " S " i< j ij i j 1 = ( ) N. Read and S. Sachdev, Phys. Rev. Lett. 6, 1694 (1989). O. P. Sushkov, J. Oitmaa, and Z. Weihong, Phys. Rev. B 63, 10440 (001). M.S.L. du Croo de Jongh, J.M.J. van Leeuwen, W. van Saarloos, Phys. Rev. B 6, 14844 (000). Neel state Spin-Peierls (or plaquette) state Bond-centered charge order See however L. Capriotti, F. Becca, A. Parola, S. Sorella, cond-mat/010704. Onset of bond-charge order: Z 4 order parameter Co-existence Vanishing of spin gap and Neel order: φ 4 field theory J / J 1

Properties of paramagnet with bond-charge-order Stable S=1 spin exciton quanta of 3-component φα ε k = + ck + ck x x y y Spin gap S=1/ spinons are confined by a linear potential. S=0 holes can similarly be confined in pairs. E. Fradkin and S. Kivelson, Mod. Phys. Lett B 4, 5 (1990). S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 19 (1991).

Effect of static non-magnetic impurities (Zn or Li) Zn Zn Zn Zn Spinon confinement implies that free S=1/ moments form near each impurity χ impurity ( T 0) = SS ( + 1) kt 3 B A.M Finkelstein, V.E. Kataev, E.F. Kukovitskii, G.B. Teitel baum, Physica C 168, 370 (1990). J. Bobroff, H. Alloul, W.A. MacFarlane, P. Mendels, N. Blanchard, G. Collin, and J.-F. Marucco, Phys. Rev. Lett. 86, 4116 (001) D. L. Sisson, S. G. Doettinger, A. Kapitulnik, R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 61, 3604 (000).

Further neighbor magnetic couplings La CuO4 Magnetic order!" S 0 Experiments Concentration of mobile carriers δ in e.g. T=0 La!" S = 0 Sr CuO δ δ 4 Summary: Confined, paramagnetic Mott insulator has 1. Stable S=1 spin exciton φ α. (resonance mode). Broken translational symmetry:- bond charge order. (phonon spectra) 3. Pairing of holes. 4. S=1/ moments near non-magnetic impurities. (NMR experiments) Properties of paramagnetic insulator survive for a finite range of δ

Neutron scattering measurements of phonon spectra Discontinuity in the dispersion of a LO phonon of the O ions at wavevector k = π/ : evidence for bond-charge order with period a k = 0 k = π La 1.85 Sr 0.15 CuO 4 Oxygen Copper YBa Cu 3 CuO 6.95 R. J. McQueeney, T. Egami, J.-H. Chung, Y. Petrov, M. Yethiraj, M. Arai, Y. Inamura, Y. Endoh, C. Frost and F. Dogan, cond-mat/0105593. R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 8, 68 (1999). L. Pintschovius and M. Braden, Phys. Rev. B 60, R15039 (1999).

Computation of phonon damping by non-linear coupling to fluctuating spin-peierls order with period a K. Park and S. Sachdev, cond-mat/0104519

Further neighbor magnetic couplings T=0!" S = 0 La CuO4!" S 0 Experiments Magnetic order Concentration of mobile carriers δ in e.g. La Sr CuO δ δ 4 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 411 (199). A.V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994) Universal properties of magnetic quantum phase transition do not change along this line

III. Effect of magnetic field on SDW order in SC phase T=0, H=0 Superconductor (SC) + Spin density wave (SDW) Superconductor (SC) r c r (some parameter in the Hamiltonian, possibly carrier concentration) Many experimental indications that the cuprate superconductors are not too far from such a quantum phase transition: G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 78, 143 (1997). Y. S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999). S. Katano, M. Sato, K. Yamada, T. Suzuki, and T. Fukase Phys. Rev. B 6, 14677 (000). B. Lake, G. Aeppli et al., Science 91, 1759 (001). Y. Sidis, C. Ulrich, P. Bourges, et al., cond-mat/0101095. H. Mook, P. Dai, F. Dogan, cond-mat/010047. J.E. Sonier et al., preprint.

Main results (extreme Type II superconductivity) T=0 Elastic scattering intensity I( H) H 3H 1 a ln I(0) H H c = + c H ( r rc ) ~ ln 1/ ( ( r rc )) S = 1 exciton energy ε ( H) ε(0) H 3H 1 b ln H c = c H All functional forms are exact. Similar results apply to other competing orders e.g. SC + staggered flux E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. in press, cond-mat/010319.

Structure of quantum theory Charge-order is not critical: can neglect Berry phases. Generically, momentum conservation prohibits decay of S=1 exciton φ α into S=1/ fermionic excitations at low energies. Virtual pairs of fermions only renormalize parameters in the effective action for φ α. Zeeman coupling only leads to corrections at order H Simple Landau theory couplings between φ α and superconducting order ψ are allowed (S.-C. Zhang, Science 75, 1089 (1997)), e.g.: V φ V φ + λφ ψ S b ( ) ( ) α α α 1 = d xdτ φ + c φ + V φ (( ) ( ) ) ( ) x α τ α α

Theory should account for quantum spin fluctuations All effects are ~ H except those associated with H induced superflow. Can treat SC order in a static Ginzburg-Landau theory Action F / T + S + S GL b c 4 ψ FGL = d x ψ + + x ia ( ) ψ v Sc = d xdτ φα ψ S b 1/ T 1 g 0 ( ( ) ( ) ) ( ) x α τ α α α = d x dτ φ + c φ + rφ + φ 4!

Self-consistent Hartree theory of quantum spin fluctuations (large N limit) ( xx,, ) = ( x, ) ( x, ) χ ω δ φ ω φ ω n αβ α n β n ( ω ) n c x + V ( x) χ( x, x, ωn) = δ( x x ) V ( x) ( ) ( / 6 ) (,, ) = r+ v ψ x + NgT χ x x ω ( ) ( ) " 1 + ψ x x ia ψ( x) + ( NvT / ) χ( x, x, ωn) ψ( x) = 0 V ( x) local classical energy of spin fluctuations; can become negative in vortex cores for v > 0. However, spin gap remains finite because of quantum fluctuations ω ω n n n

Energy Lowest energy spin-exciton eigenmode V ( x) # Spin gap 0 x Vortex cores As 0, #, because of self interaction, g, of spin excitations. A.J. Bray and M.A. Moore, J. Phys. C 15, L765 (198). J.A. Hertz, A. Fleishman, and P.W. Anderson, Phys. Rev. Lett. 43, 94 (1979).

Dominant effect: uniform softening of spin excitations by superflow kinetic energy r v s 1 r Spatially averaged superflow kinetic energy H 3H v ln c s Hc H See D. P. Arovas et al., Phys. Rev. Lett. 79, 871 (1997) for a different viewpoint.

( x) Influence of ψ on extended spin eigenmodes: ψ ψ 1 x ( x) = 1 outside each vortex core because ( x) In SC phase, spin gap obeys: of superflow kinetic energy 3.0H c = 1 ln Hc H 3.0H c ( H ) = ( 0) ln 3v Hc H Ng 1 g In SC+SDW phase, intensity of elastic scattering obey s: H 4π c v 6v H 3.0H = + 3v Hc H g 1 g c ( ) I( 0) ln I H H

Intensity (counts/min) 35 30 5 Elastic neutron scattering off La CuO 4+ y B. Khaykovich, Y. S. Lee, S. Wakimoto, K. J. Thomas, M. A. Kastner, and R.J. Birgeneau, preprint. H = 7.5 T k H = 0 T h H c I(H)/I(0) - 1 1. 1 0.8 0.6 0.4 0.86 0.87 0.88 0.89 0.9 0.91 h (r.l.u.) Solid line --- fit to : 0. 0 0 1 3 4 5 6 7 8 9 ( ) ( 0) I H a is the only fitting parameter Best fit value - a =.4 with H I H (T) H 3.0H 1 a ln c = + Hc H c = 60T

Neutron scattering of La -xsrxcuo 4 at x=0.1 B. Lake, G. Aeppli, et al. H Hc Solid line - fit to : I( H) a ln H H = c

Presence of vortex lattice leads to supermodulation in the spin exciton spectrum Computation of spin susceptibility χ ( k, ω) in self-consistent large N theory of φ fluctuations in a vortex lattice α 0.8 0.7 r = 0.1, H/H c = 0.04 Intensity 0 ω 0.6 0.5 0.4 5.000 10.00 15.00 0.3 0.00 0. 5.00 6.00 0.1 0.0 0.0 0.5 1.0 1.5.0.5 3.0 3.5 k π / ( vortex lattice spacing)

Consequences of a finite London penetration depth (finite κ)

Further neighbor magnetic couplings La CuO4!" S 0 Conclusions Experiments Magnetic order!" S = 0 T=0 Concentration of mobile carriers δ Confined, paramagnetic Mott insulator has 1. Stable S=1 spin exciton. φ α. Broken translational symmetry:- bondcentered charge order. 3. Pairing of holes. 4. S=1/ moments near non-magnetic impurities Theory of magnetic ordering quantum transitions in antiferromagnets and superconductors leads to quantitative theories for Spin correlations in a magnetic field Effect of Zn/Li impurities on collective spin excitations