What is Elliptic Flow?

Similar documents
Thermal Forces and Brownian Motion

Angular Correlations of Hadrons Measured at the LHC

1 Widrow-Hoff Algorithm

pt-inclusive 2-particle correlations; p-p, Cu-Cu, Au-Au BES

Jets, flows and Joseph Fourier

1. Calibration factor

Top Quark Mass Measurements at the Tevatron. Gianluca Petrillo (for the CDF and DØ collaborations) University of Rochester

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Viscous Damping Summary Sheet No Damping Case: Damped behaviour depends on the relative size of ω o and b/2m 3 Cases: 1.

Problem set 2 for the course on. Markov chains and mixing times

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of.

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Quark-Parton Phase Transitions and the Entropy Problem in Quantum Mechanics

Open charm reconstruction at mid-rapidity in the ALICE Experiment at LHC

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

GEM4 Summer School OpenCourseWare

Top Quark Mass from Reconstruction

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform?

Chapter 9 Sinusoidal Steady State Analysis

Heavy flavour production measurement with ALICE at the LHC

Theory of! Partial Differential Equations!

Wave Mechanics. January 16, 2017

Lecture 23 Damped Motion

Machine Learning Basics: Estimators, Bias and Variance

A Bayesian Approach to Spectral Analysis

HIGGS&AT&HADRON&COLLIDER

Forecasting optimally

11. The Top Quark and the Higgs Mechanism

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure data

Thus the force is proportional but opposite to the displacement away from equilibrium.

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

Measurement of forward-rapidity heavy-flavour muons in proton-proton collisions at s = 7 TeV with ALICE

Measurements of the top quark mass and decay width with the D0 detector

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Searches for supersymmetry at CMS

Theory of! Partial Differential Equations-I!

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

Event geometrical anisotropy and fluctuation viewed by HBT interferometry

Supplementary Materials for

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

Lecture 18 GMM:IV, Nonlinear Models

Ensamble methods: Boosting

Ensamble methods: Bagging and Boosting

Magnetic Properties of Light Nuclei from Lattice QCD

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

Generalized Least Squares

GMM - Generalized Method of Moments

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

Multipoles and Coherent Gluon Radiation Plenary session

b denotes trend at time point t and it is sum of two

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

IB Physics Kinematics Worksheet

M x t = K x F t x t = A x M 1 F t. M x t = K x cos t G 0. x t = A x cos t F 0

Tracking. Announcements

Ch 43. Elementary Particles Fundamental forces in Nature

Ultra-Relativistic Heavy Ion Collision Results

arxiv: v1 [hep-ex] 10 Oct 2011

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS

Fluctuations and Search for the QCD Critical Point

Unsteady Mass- Transfer Models

1. VELOCITY AND ACCELERATION

Multivariate analysis of H b b in associated production of H with t t-pair using full simulation of ATLAS detector

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

A Dynamic Model of Economic Fluctuations

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

Detecting nonlinear processes in experimental data: Applications in Psychology and Medicine

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Vehicle Arrival Models : Headway

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

Flow Harmonic Probability Distribution in Heavy Ion Collision

Sound waves before recombination

dp dt For the time interval t, approximately, we can write,

Stochastic Structural Dynamics. Lecture-6

Many Electron Theory: Time dependent perturbations and propagation.

Using the Kalman filter Extended Kalman filter

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Event anisotropy at RHIC

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

The expectation value of the field operator.

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

TOP-QUARK MASS MEASUREMENTS AT THE LHC

8.1 Force Laws Hooke s Law

METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION

Hydrodynamic response to initial state fluctuations

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 13, Number 1/2012, pp

Moment Analysis of Hadronic Vacuum Polarization Proposal for a lattice QCD evaluation of g µ 2

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

EE3723 : Digital Communications

Perfect-fluid hydrodynamics for RHIC successes and problems

CHAPTER 16 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

The motions of the celt on a horizontal plane with viscous friction

Transcription:

Wha is Ellipic Flow? To Trainor (for he STAR collaboraion) Monreal July, 7

Agenda Aziuh auocorrelaions Nonflow and inijes Quadrupole (flow) syseaics A-A eccenriciy odels Universal quadrupole rends Flow flucuaions Quadrupole y dependence Wha is ellipic flow? Trainor

Auocorrelaions and Power Specra n i i Q i= = ρ( φ) = r δ ( φ φ ) = u( φ ) π FT FT Q RT r u( φ ) n = i i i= π Q Q d + = + π [ π ] [ π ] π = ρ ( φ ) φ ρ( φ) ρ( φ φ ) cos( φ ) A power specru: Wiener-Khinchine heore aziuh auocorrelaion: Q = n r + n n r φ D rando walk ( ) cos( ) n r V V ρ ( φ ) δ ( φ ) cos( φ ) A arxiv:74.674 RT V = n( n ) v signal = + + π [ π ] = [ π ] correlaions Trainor 3

Convenional EP Flow Analysis single-paricle densiy: ρ( φ) = ρ + v cos( [ φ Ψr ]) = noe assues only sinusoidal flow coponens Ψ r : rue reacion plane no observable. Even-wise flow vecors:. Even-plane angle fro Q : 3. Enseble average: Q n = r u( φ ) i= an Qy Ψ = Qx obs v = cos( [ φ Ψ ]) i i 4. Correc for even-plane resoluion: v = v obs / cos( ( Ψ Ψr )) Trainor 4

v Relaion o Aziuh Auocorrelaion n V V ρ ( φ ) δ ( φ ) cos( φ ) A = + + π [ π ] = [ π ] V u u n v n, n ( φi ) ( φ j) = j i= n u( φ j) n j i Q = n u( φi ) V n i= Q V cos( [ φ Ψ ]) obs n V cos( [ Ψ Ψr ]) v v {EP} v {} Trainor 5 obs v aziuh auocorrelaion assues only flow coponens n Q = i u( φ j ) j i reove auocorrelaion (even-plane resoluion) - fro sandard ehod convenional flow analysis is a D auocorrelaion in disguise

ρ[] / ρ ref GeV Cenraliy Trends.8.6.4...8.6.4. projecion ono φ flow = = 4 6 away-side ridge Pearson s covariance ν ρ j / ρ ref, σ η, σ φ.5.5.75.5.5.75.5.5 A φ ref ref = ref sae-side peak n / = + cos( φ ) + π Trainor = π n 6 σ η σ φ peak apliude 4 6 inijes ν ρ ρ[] ρ[ ] ( ) = + cos( φ ) + ρ ρ ρ σ V subrac saisical reference ν NONFLOW

η φ η φ ρ / ρ ref.5.4.3.. ρ / ρ ref -. -. φ.5.4.3.. -. -. 4 φ sar preliinary 3 4 ρ / ρ ref 3.3. φ - -.5 - - -.5.5 ρ (, ).5 η φ ρ.4 ref - -.5 η -.5 - Modeling D Auocorrelaions Michael Daugheriy daa hisogras -3% cenral Au-Au GeV -.5.5 = +. -. + -..5 4 -.5.5 3 sae-side peak -.5- - -.5 η η ρ / ρ ref.5.4.3.. -. -. φ 4 large dipole ρ / ρ ref 3.5.4.3.. -. -. φ 4 Trainor 7 - - -.5- David Keler odel fis ρ[] ρ ref.5 -.5.5 η +.5 -.5.5 3HBT, elecrons - -.5- - quadrupole η ρ / ρ ref.5.4.3.. -. -. φ 4 3 - ρ[] - -.5- ρ sall ref.5 -.5.5 addiional D Gaussian on η, negligible for cenral collisions η

v Quadrupole Cenraliy Syseaics.8.7.6.5.4.3.. N-N n v ρ[] π ρ ref 6 GeV 7 GeV GeV sar preliinary v {} 4 6 ν ρ[] / ρ ref.8.6.4..8.6.4. D-proj- X[]- X[]-6 v-7 v{} v{4} v {4} GeV 6 GeV v {} sar preliinary 7 GeV s NN Trainor 8. ransfor 4 6 priary D easureens D auocorrelaion odel fis dashed curves: all have coon shape apliudes follow linear dependence on log( ν David Keler / GeV)

Quadrupole Energy Syseaics /ε ρ[]/ ρ ref (ν~6).6.5.4.3...49*log( s NN / GeV) / log(/ ) sar preliinary 6 GeV 7 GeV GeV quadrupole s NN (GeV) r..s. flucuaions (GeV/c).6.5.4.3.. J. Phys. G 33, 45 (7) p flucuaions inijes σ p:n (STAR) SSC correced uncorreced Φ p (CERES) s NN (GeV) differen physics coon energy rend suggess a coon underlying echanis Trainor 9

poin-like objecs acing a a disance N-N inbias: ineracing spheres ε.9.8.7.6.5.4.3.. A-A Eccenriciy poin-like nucleons acing a a disance iniu-bias inersecing spheres poin-like nucleon flucuaions 3 4 n par ε.9.8.7.6.5.4.3.. N-N paricipan opical poin nucleons glue 3 4 5 6 ν poin-like nucleon srucure Minbias N-N ineracions are no poin-like objecs acing a a disance The W-S disribuion ay beer describe low-x glue we use he opical Glauber eccenriciy Trainor

Universal Cenraliy and Energy Trends /ε ρ[] / ρ ref - - GeV 6 GeV 7 GeV.45 n binary sar preliinary /ε n par / ρ[] / ρ ref 3 3 n bin (b, s NN ) n (b, s bin NN ) - - Au-Au GeV Au-Au 6 GeV Pb-Pb 7 GeV Cu-Cu GeV Cu-Cu 6 GeV.9 n binary sar preliinary Au-Au D correced v /ε.3.5..5..5 sar preliinary hydro GeV 6 GeV 7 GeV LDL /S dn ch / dη universal rends represen all A-A syses for energies above GeV is his hydro-inspired fora relevan o daa? quadrupole represened by iniial condiions; no ediu properies, EoS, viscosiy, hydro v ε does no describe daa Trainor

Quadrupole ν and s NN Dependence Cenraliy dependence is universal Energy dependence consisen wih QCD Opical eccenriciy represens low-x glue Cobined rends reveal a universal relaion Ideal hydro v ε no observed in daa Wha is ellipic flow in N-N collisions? Trainor

Flow Flucuaions I: v {} v {4} v {} v {4} = v 4 r ( + r / ) r 4 4 4 σ v nucl-ex/6 / v difference aribued o flow flucuaions v {} ~ D projecion of D auocorrelaion: quadrupole + inijes ρ[] / ρ ref.8.6.4...8.6.4. D-proj- X[]- X[]-6 v-7 v{} v{4} v {4} GeV 6 GeV v {} sar preliinary 7 GeV 4 6 v {4} ~ quadrupole only: no inijes ν v {} v {4} enirely due o inijes flow flucuaions are no required by hese daa Trainor 3

Flow Flucuaions II: Flow Vecor does he flow-vecor disribuion reveal flow flucuaions? = power disribuion: dn ( qɶ n vɶ ) ( vɶ v) dv exp exp dq ɶ ɶ + g( ν, n) σ v qɶ exp + g( ν, n) + nσ inferred variance Paul Sorensen s alk v assue ean v = siplify o D assued flow flucuaions change of variance wih rando rack discard assued o reveal flow flucuaions q Q / n inijes only easured wih D auocorrelaions g / []/ π ρ ρref bu, g (inijes) varies linearly wih n for rando discard FF I iplies widh variaion is doinaed by inijes Trainor 4

Flow Flucuaions III: Eccenriciy for GeV inijes fied wih cos(φ ): σ v /v ~ (π.4 ν.5 / n v ) " σ " π.4ν.4ν v g / π =.4ν we also observe:.9.8.7.6.5.4.3...5.5 v = = n v ρ[]/ ρref ν n bin.5 ε ν.5 ρ[]/ ρ.45n ε is-aking ref (o a few percen) σ bin " v " g /n.5 npar ε iplies sar preliinary D auocorrelaion D projecion inije correlaions 5 5 b (f) copare nucl-ex/6 bu hus,.9.8.7.6.5.4 ε op.3. ε par. poin-nucleon flucuaions 5 5 b (f) Trainor 5 σ ε,par /ε ~ ( / n par ε ) n / par ε, par " σ " σ ε v σ v, par ε sees o confir v ε rue flucuaions ay be sall

Wha Do We Learn Fro v ( p )? Cooper-Frye Foralis: ρ ( ) dn / d exp( [ ]/ T ) = exp( [cosh( y ) ]/ T ) µ ρ(, β ) exp( [ p u ]/ T ) anh( y ) = β boos = exp( [ γ { β p } ]/ T ) = exp( [ γ {cosh( y ) β sinh( y )} ]/ T ) = exp( [cosh( y y ) ]/ T ) µ source velociy Trainor 6 black-body radiaion Cooper-Frye expression black-body radiaion fro a boosed source relaivisic ransforaions siple on y

Quadrupole y Dependence and Boos β ( φ) = β [] + β []cos([ φ Ψ ]) r { ( p ) T} ρ[] = exp γ β ( φ) / quadrupole coponen dφρ[]( ; β( φ)) cos([ φ r ]) π Ψ V γ β[] p ρ[] ( ; β[]) i π T Fourier apliude v ρ[] ( ; β[]) γ β[] i p ρ[] ( ; β []) + ρ T nonflow ρ oal V v γ β[] ρoal = ρ[] ( ; β[]) i π p p T boosed M-B specru v boosed specra on y.5..5..5 iniu-bias even saple zero-viscosiy hydro: pions D. Teaney PRC 68, 3 boosed source siply described Trainor 7 y v / p V / p = ρ ref v / p.4...8.6.4. zero-viscosiy hydro: pions 4 6 3 4 p (GeV/c) y Phys. Rev. D 74, 36 (6). boos: M-B.9 y =. S Q.8 σ boos =.48.8.7 y β []=.8.6 H.6.5 p K π (. GeV/c).4.4.3 M-B... 3 4 3 4 nucl-ex/4933 GeV y

Quadrupole y Dependence and Boos β ( φ) = β [] + β []cos([ φ Ψ ]) r { ( p ) T} ρ[] = exp γ β ( φ) / quadrupole coponen dφρ[]( ; β( φ)) cos([ φ r ]) π Ψ V γ β[] p ρ[] ( ; β[]) i π T Fourier apliude v ρ[] ( ; β[]) γ β[] i p ρ[] ( ; β []) + ρ T nonflow ρ oal V v γ β[] ρoal = ρ[] ( ; β[]) i π p p T boosed M-B specru v boosed specra on y.5..5..5 iniu-bias even saple zero-viscosiy hydro: pions boosed source siply described Trainor 8 y v / p V / p = ρ ref v / p.4...8.6.4. zero-viscosiy hydro: pions 4 6 3 4 p (GeV/c) y Phys. Rev. D 74, 36 (6). boos: M-B.9 y =. S Q.8 σ boos =.48.8.7 y β []=.8.6 H.6.5 p K π (. GeV/c).4.4.3 M-B... 3 4 3 4 nucl-ex/4933 GeV y

Boos Cenraliy Dependence v.5 v / p.4. v.5 v / p.4...5..5 proons..8.6.4. proons. proons. proons 7-8%.5.8 4-5% y =.4..6.4 y =.7.5. v.5..5..5 3 p (GeV/c) Phys. Rev. C 7, 494 (5) proons 3 p (GeV/c) v / p.4...8.6.4. 3 proons y =.4-5% y 3 y 3 p (GeV/c) a sall fracion of eied hadrons carries he quadrupole ~ 5-%? σ boos.3 3 boos vs cenraliy y ~.5 ν ν quadrupole hadrons eerge fro a rapidly expanding cylinder Trainor 9 y.6.4..8.6.4. N-N iniu bias.8.6.88 β =.38 onopole y 3 4 5 6

Quadrupole y Dependence Hydro predicions apply o he nueraor of v, no he denoinaor Can hydro predic booss for differen ulipoles? Is a hydro descripion required? peried? Is ellipic flow acually glue-glue scaering? Trainor

Suary D angular auocorrelaions separae flow (quadrupole) fro nonflow (inijes) Quadrupole rends depend only on iniial paron condiions, no on syse evoluion or EoS Accurae daa inconsisen wih hydro expecaion v ε Opical Glauber eccenriciy beer odels low-x glue Claied flow flucuaions are a anifesaion of inijes Quadrupole y dependence reveals a boos disribuion Radial boos and quadrupole are presen in N-N collisions Ellipic flow ay represen a novel anifesaion of QCD Trainor