Stefano Gariazzo. Light sterile neutrino: the 2018 status. IFIC, Valencia (ES) CSIC Universitat de Valencia

Similar documents
Status of Light Sterile Neutrinos Carlo Giunti

Sterile Neutrinos. Carlo Giunti

Sterile Neutrinos in July 2010

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino

Status of the Sterile Neutrino(s) Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino

Two hot issues in neutrino physics

C. Giunti Sterile Neutrino Mixing NOW Sep /25

Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos. Carlo Giunti

Status and prospects of neutrino oscillations

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

Impact of light sterile!s in LBL experiments "

Status of Sterile Neutrinos Carlo Giunti

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

ev-scale Sterile Neutrinos

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

Overview of Reactor Neutrino

Neutrino Anomalies & CEνNS

arxiv: v1 [hep-ph] 15 Apr 2019

Short baseline neutrino oscillation experiments at nuclear reactors

The Daya Bay Reactor Neutrino Experiment

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics: Lecture 12

Dark Radiation and Inflationary Freedom


Critical Review on Neutrino Anomalies. Carlo Giunti

The Hunt for Sterile Neutrinos. H. Ray, University of Florida

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Analysis of Neutrino Oscillation experiments

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Oscillations And Sterile Neutrinos

Sterile neutrino oscillations

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

How to make the short baseline sterile neutrino compatible with cosmology

Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, Guangdong, , China

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

NEUTRINOS II The Sequel

Particle Physics: Neutrinos part II

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

Solar and atmospheric ν s

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

Neutrino Mass Limits from Cosmology

Reactor Anomaly an Overview. Petr Vogel, Caltech INT Seattle 11/6/2013

Neutrino Oscillations

How large is the "LSND anomaly"?

The Reactor Antineutrino Anomaly

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti

The future of neutrino physics (at accelerators)

Daya Bay and joint reactor neutrino analysis

Accelerator Neutrino Experiments News from Neutrino 2010 Athens

PoS(ICRC2017)1024. First Result of NEOS Experiment. Kim Siyeon. Affiliation:Chung-Ang University. On behalf of NEOS Collaboration

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Neutrino Oscillations

On Minimal Models with Light Sterile Neutrinos

- Future Prospects in Oscillation Physics -

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

The Double Chooz Project

Grand Unification Theories

Sterile neutrinos: to be or not to be?

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Updated three-neutrino oscillation parameters from global fits

Neutrino Oscillation and CP violation

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Neutrinos in Supernova Evolution and Nucleosynthesis

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007

Known and Unknown for Neutrinos. Kim Siyeon Chung-Ang g University Lecture at Yonsei Univ.

Recent results from Super-Kamiokande

Short baseline experiments and sterile neutrinos. Nick van Remortel Solvay-Francqui Workshop on Neutrinos May

Particle Physics: Neutrinos part II

Prospects of Reactor ν Oscillation Experiments

Precise Determination of the 235 U Reactor Antineutrino Cross Section per Fission Carlo Giunti

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Neutrinos: status, models, string theory expectations

Short-Baseline Neutrino Anomalies Carlo Giunti. Selected Puzzles in Particle Physics Laboratori Nazionali di Frascati December 2016

New Results for ν µ ν e oscillations in MINOS

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Recent Results from T2K and Future Prospects

GLOBAL ANALYSIS OF NEUTRINO DATA

Sterile Neutrinos. Patrick Huber. Center for Neutrino Physics Virginia Tech

The Daya Bay and T2K results on sin 2 2θ 13 and Non-Standard Neutrino Interactions (NSI)

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Chapter 2 Neutrino Oscillation

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Largeθ 13 Challenge and Opportunity

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

Long baseline experiments

Implications of cosmological observables for particle physics: an overview

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Transcription:

Stefano Gariazzo IFIC, Valencia (ES) CSIC Universitat de Valencia gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/ Light sterile neutrino: the 08 status The Magnificent CEνNS, Chicago, 03//08

Neutrino Oscillations - Some theory Electron (anti)neutrino disappearence 3 Muon (anti)neutrino disappearence 4 Electron (anti)neutrino appearence [ev ] m 4 Global Fit σ σ 3σ 5 Global fit 6 Sterile neutrinos and CEνNS 4 3 sin ϑ eµ = 4 U e4 U µ4 3σ Dis App 7 Conclusions

Neutrino Oscillations - Some theory Electron (anti)neutrino disappearence 3 Muon (anti)neutrino disappearence 4 Electron (anti)neutrino appearence 5 Global fit 6 Sterile neutrinos and CEνNS 7 Conclusions

The Standard Model of Particle Physics st nd 3rd generation standard matter unstable matter force carriers Goldstone bosons outside standard model 6 quarks (+6 anti-quarks) 6 leptons (+6 anti-leptons).3 umev up 4.8 MeV d down 5 ekev electron < ν ev e e neutrino R/G/B R/G/B /3 / /3 / / /.8 cgev R/G/B /3 charm / 95 smev /3 strange / 5.7 µ MeV muon ν < 90 kev µ µ neutrino R/G/B / / 73. GeV topt 4.7 GeV b bottom.777 τgev tau < ν8. MeV τ τ neutrino R/G/B R/G/B /3 / /3 / / / charge colors mass spin g gluon γ photon color 80.4 GeV ± 9. GeV W ± Z strong nuclear force (color) 5. GeV H Higgs electromagnetic force (charge) 0 weak nuclear force (weak isospin) graviton gravitational force (mass) fermions (+ anti-fermions) increasing mass 5 bosons (+ opposite charge W ) [D. Galbraith & C. Burgard, 0] S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3

The Standard Model of Particle Physics st nd 3rd generation standard matter unstable matter force carriers Goldstone bosons outside standard model 6 quarks (+6 anti-quarks) 6 leptons (+6 anti-leptons).3 umev up 4.8 MeV d down 5 ekev electron < ν ev e e neutrino R/G/B R/G/B /3 / /3 / / /.8 cgev R/G/B /3 charm / 95 smev /3 strange / 5.7 µ MeV muon ν < 90 kev µ µ neutrino R/G/B / / 73. GeV topt 4.7 GeV b bottom.777 τgev tau < ν8. MeV τ τ neutrino R/G/B R/G/B /3 / /3 / / / charge colors mass spin g gluon γ photon color 80.4 GeV ± 9. GeV W ± Z strong nuclear force (color) 5. GeV H Higgs electromagnetic force (charge) 0 weak nuclear force (weak isospin) graviton gravitational force (mass) fermions (+ anti-fermions) increasing mass 5 bosons (+ opposite charge W ) [D. Galbraith & C. Burgard, 0] S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3

Three Neutrino Oscillations ν α = 3 U αk ν k (α = e, µ, τ) k= U αk described by 3 mixing angles θ, θ 3, θ 3 and one CP phase δ CP Current knowledge of the 3 active ν mixing: [de Salas et al. (08)] NO: Normal Ordering, m < m < m 3 IO: Inverted Ordering, m 3 < m < m m = (7.55 +0.0 0.6 ) 5 ev m3 = (.50 ± 0.03) 3 ev (NO) = (.4 +0.03 0.04 ) 3 ev (IO) sin (θ ) = 0.30 +0.00 0.06 sin (θ 3 ) = 0.06 +0.008 = 0.0 +0.007 sin (θ 3 ) = 0.547 +0.00 0.007 (NO) 0.008 (IO) 0.030 (NO) = 0.55 +0.08 0.030 (IO) First hints for δ CP 3/π χ χ 0 5 5 0 0. 0.3 0.4 0 5 5 0 sin θ 7 8 m [-5 ev ] sin θ 3 sin θ 3 0.5 0.06 0.0 0.04 0.08 0.4 0.6..4.6 m 3 [-3 ev ] see also: http://globalfit.astroparticles.es 0 0.5.5 S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3 δ/π

Two types of neutrinos flavor neutrinos ν α ν α = U αk ν k massive neutrinos ν k ν(t = 0) = ν α = U α ν + U α ν + U α3 ν 3 ν ν ν α ν 3 ν β source L detector ν(t > 0) = ν β = U α e ie t ν + U α e ie t ν + U α3 e ie 3t ν 3 ν α Ek = p + mk define t = L P να νβ (L) = ν α ν(l) = ( U βk U αku βju αj exp i m kj L ) E k,j m ij = m i m j S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 3/3

A large family In principle, previous discussion is valid for N neutrinos only constraint: there are exactly three flavor neutrinos in the SM [LEP, Phys. Rept. 47 (006) 57, arxiv:hep-ex/0509008] N (Z) ν =.9840 ± 0.008 through the measurement of the Z resonance e + e Z ν a ν a 0 a=e,µ,τ σ had [nb] 30 0 ALEPH DELPHI L3 OPAL neutrinos α > 3 must be sterile average measurements, error bars increased by factor ν 3ν 4ν 86 88 90 9 94 E cm [GeV] sterile neutrino = SM singlet: no couplings with other SM particles S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 4/3

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 4/3 A large family In principle, previous discussion is valid for N neutrinos N N mixing matrix, N flavor neutrinos, N massive neutrinos ν e U e U e U e3 U e4. ν ν µ U µ U µ U µ3 U µ4 ν ν τ = U τ U τ U τ3 U τ4 ν 3 ν s U s U s U s 3 U s 4 ν 4............

A large family In principle, previous discussion is valid for N neutrinos N N mixing matrix, N flavor neutrinos, N massive neutrinos ν e U e U e U e3 U e4. ν ν µ U µ U µ U µ3 U µ4 ν ν τ = U τ U τ U τ3 U τ4 ν 3 ν s U s U s U s 3 U s 4 ν 4............ Our case will be 3 (active)+ (sterile), a perturbation of 3 neutrinos case ν 6 angles m 4 m l ν l =,, 3 3 Dirac ν α ν 3 ν β CP phases m4 ev ν 4 m4 3 Majorana m43 CP phases L source detector S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 4/3

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 5/3 Short BaseLine (SBL) P να ν β (L) = ν α ν(l) = k,j U βk U αku βju αj exp ( i m kj L E ) If m 4 m l, faster oscillations ν 4 oscillations are averaged in most neutrino oscillation experiments Effect of 4th neutrino only visible as global normalization Short BaseLine (SBL) oscillations: m 4 L E At SBL, oscillations due to m and m 3 do not develop

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 5/3 Short BaseLine (SBL) P να ν β (L) = ν α ν(l) = k,j U βk U αku βju αj exp ( i m kj L E ) If m 4 m l, faster oscillations ν 4 oscillations are averaged in most neutrino oscillation experiments Effect of 4th neutrino only visible as global normalization Short BaseLine (SBL) oscillations: m 4 L E At SBL, oscillations due to m and m 3 do not develop APPearance (α β) ( ) ν α source of ( ) ν α ( ) ν β detect different flavor ( ) ν β

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 5/3 Short BaseLine (SBL) P να ν β (L) = ν α ν(l) = k,j U βk U αku βju αj exp ( i m kj L E ) If m 4 m l, faster oscillations ν 4 oscillations are averaged in most neutrino oscillation experiments Effect of 4th neutrino only visible as global normalization Short BaseLine (SBL) oscillations: m 4 L E At SBL, oscillations due to m and m 3 do not develop APPearance (α β) DISappearance ( ) ν α source of ( ) ν α ( ) ν β detect different flavor ( ) ν β ( ) ν α source of ( ) ν α ( ) ν s goes undetected

Short BaseLine (SBL) P να ν β (L) = ν α ν(l) = k,j U βk U αku βju αj exp ( i m kj L E ) If m 4 m l, faster oscillations ν 4 oscillations are averaged in most neutrino oscillation experiments Effect of 4th neutrino only visible as global normalization Short BaseLine (SBL) oscillations: m 4 L E At SBL, oscillations due to m and m 3 do not develop APPearance (α β) DISappearance ( ) ν α source of ( ) ν α ( ) ν β ( ) ν α ( ) detect different source ν s goes flavor ( ) ν β of ( ) ν α undetected CP violation cannot be observed in SBL experiments! S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 5/3

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 6/3 New mixings in the 3+ scenario 4 4 mixing matrix: U e U e U e3 U e4 U µ U µ U µ3 U µ4 U τ U τ U τ3 U τ4 U s U s U s 3 U s 4

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 6/3 New mixings in the 3+ scenario 4 4 mixing matrix: U e U e U e3 U e4 U µ U µ U µ3 U µ4 U τ U τ U τ3 U τ4 U s U s U s 3 U s 4 ϑ 4 ϑ 4 ϑ 34

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 6/3 New mixings in the 3+ scenario 4 4 mixing matrix: U e U e U e3 U e4 U µ U µ U µ3 U µ4 U τ U τ U τ3 U τ4 U s U s U s 3 U s 4 ϑ 4 ϑ 4 ϑ 34 DISappearance ( ) m P SBL sin ϑ ( ) αα sin 4 L ν ( ) α ν α 4E sin ϑ αα = 4 U α4 ( U α4 ) ( ) ν e ( ) ν e U e4 = sin ϑ 4 reactor gallium ( ) ν µ ( ) ν µ accelerator atmospheric U µ4 = cos ϑ 4 sin ϑ 4

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 6/3 New mixings in the 3+ scenario 4 4 mixing matrix: U e U e U e3 U e4 U µ U µ U µ3 U µ4 U τ U τ U τ3 U τ4 U s U s U s 3 U s 4 ϑ 4 ϑ 4 ϑ 34 DISappearance ( ) m P SBL sin ϑ ( ) αα sin 4 L ν ( ) α ν α 4E sin ϑ αα = 4 U α4 ( U α4 ) ( ) ν e ( ) ν e U e4 = sin ϑ 4 ( ) ν µ ( ) ν µ U µ4 = cos ϑ 4 sin ϑ 4 reactor gallium accelerator atmospheric APPearance ( ) m P SBL sin ϑ ( ) ν ( ) αβ sin 4 L α ν 4E β sin ϑ αβ = 4 U α4 U β4 ( ) ν µ ( ) ν e sin ϑ eµ = 4 U e4 U µ4 quadratically suppressed! for small U e4, U µ4 LSND MiniBooNE KARMEN OPERA...

Neutrino Oscillations - Some theory Electron (anti)neutrino disappearence 3 Muon (anti)neutrino disappearence 3σ (solid dashed) Reactor Anomaly Gallium Anomaly 4 Electron (anti)neutrino appearence [ev ] m 4 5 Global fit 6 Sterile neutrinos and CEνNS 7 Conclusions NEOS+DANSS σ σ 3σ 3 sin ϑ ee

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 7/3 Gallium anomaly [SAGE, 006][Laveder, 007][Giunti&Laveder, 0] L.9 m L 0.6 m Gallium radioactive source experiments: GALLEX and SAGE ν e sources: e + 5 Cr 5 V + ν e e + 37 Ar 37 Cl + ν e E 0.75 MeV In the detector: E 0.8 MeV ν e + 7 Ga 7 Ge + e 3/ 500 kev 3/ 7 Ga 5/ 75 kev / 7 Ge 3 kev cross sections of the transitions from [Krofcheck et al., PRL 55 (985) 5] [Frekers et al., PLB 706 (0) 34]

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 7/3 Gallium anomaly [SAGE, 006][Laveder, 007][Giunti&Laveder, 0] L.9 m L 0.6 m Gallium radioactive source experiments: GALLEX and SAGE ν e sources: e + 5 Cr 5 V + ν e e + 37 Ar 37 Cl + ν e E 0.75 MeV In the detector: E 0.8 MeV ν e + 7 Ga 7 Ge + e Test detection of solar ν e 3/ 500 kev R =N exp N cal 0.7 0.8 0.9.0. GALLEX SAGE Cr Cr R = 0.84 ± 0.05.9σ deficit GALLEX SAGE Cr Ar 3/ 7 Ga 5/ / 7 Ge 3 kev cross sections of the transitions from 75 kev [Krofcheck et al., PRL 55 (985) 5] [Frekers et al., PLB 706 (0) 34]

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 8/3 Reactor Antineutrino Anomaly (RAA) 0: new reactor ν e fluxes by Huber and Mueller+ (HM) [Huber, PRC 84 (0) 0467] [Mueller et al., PRC 83 (0) 05465] Previous reactor rates evaluated with new fluxes deficit [PRD 83 (0) 073006] R = N exp N cal 0.70 0.80 0.90.00..0 Bugey 3 Bugey 4 Chooz Daya Bay Double Chooz Gosgen 3 L ILL Krasnoyarsk Nucifer [m] Palo Verde RENO Rovno88.8σ deficit R = 0.934 ± 0.04 Rovno9 SRP Suppression at detector due to active-sterile oscillations?

Can we trust the HM fluxes? Data / Predicted 0.5 MeV.4..0 Data No oscillation Reactor flux uncertainty Total systematic uncertainty Best fit: sin θ 3 = 0.090 800 0.8 Fast neutron (a) Accidental 5000 600 9 8 Li/ He 0.6 400 3 4 5 6 7 8 [Double Chooz, arxiv:406.7763] Events / 0. MeV (Data - MC) / MC 000 5000 0. 0 0. Near Visible Energy (MeV) 00 0 3 4 5 6 7 8 Prompt Energy Data [Daya Bay, arxiv:508.0433] MC 3 4 5 6 7 8 Prompt Energy (MeV) Events / 0. MeV 04: bump in the spectrum around 5 MeV! (b) 0 9 8 cannot be explained Li/ He 5 Cf by SBL oscillations 0. 0. 3 4 5 Prompt 6 Energy 7 (MeV) 8 [RENO, arxiv:5.05849] (Data - MC) / MC 500 00 500 0. 0 0. 50 Fast neutron Accidental (averaged at the observed distances) Prompt Energy 0 Far Data many attempts of MC possible explanations, how to clarify the issue? 3 4 5 6 7 8 3 4 5 6 7 8 Prompt Energy (MeV) S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 9/3

Can we trust the HM fluxes? Data / Predicted 0.5 MeV.4..0 Data No oscillation Reactor flux uncertainty Total systematic uncertainty Best fit: sin θ 3 = 0.090 800 0.8 Fast neutron (a) Accidental 5000 600 9 8 Li/ He 0.6 400 3 4 5 6 7 8 [Double Chooz, arxiv:406.7763] Events / 0. MeV (Data - MC) / MC 000 5000 0. 0 0. Near Visible Energy (MeV) 00 0 3 4 5 6 7 8 Prompt Energy Data [Daya Bay, arxiv:508.0433] MC 3 4 5 6 7 8 Prompt Energy (MeV) Events / 0. MeV 04: bump in the spectrum around 5 MeV! (b) 0 9 8 cannot be explained Li/ He 5 Cf by SBL oscillations 0. 0. 3 4 5 Prompt 6 Energy 7 (MeV) 8 [RENO, arxiv:5.05849] (Data - MC) / MC 500 00 500 0. 0 0. 50 Fast neutron Accidental (averaged at the observed distances) Prompt Energy 0 Far Data many attempts of MC possible explanations, how to clarify the issue? 3 4 5 6 7 8 Model independent information! (i.e. take ratio of spectra at 3 different 4 5 distances) 6 7 8 Prompt Energy (MeV) S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 9/3

NEOS Single detector experiment ε [PRL 8 (07) 80] S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3 Events /day/0 kev 60 50 40 30 0 (a) Prompt Energy [MeV] Data signal (ON-OFF) Data background (OFF) MC 3ν (H-M-V) MC 3ν (Daya Bay) 7 6 5 4 3 3 4 5 6 7 8 Neutrino Energy [MeV] 3 Data/Prediction..0 (b) NEOS/H-M-V Systematic total Data/Prediction 0.9. 3 4 5 6 7 (c) NEOS/Daya Prompt BayEnergy [MeV] Systematic total.0 (.73 ev, 0.050) (.3 ev, 0.4) 0.9 3 4 5 6 7 Prompt Energy [MeV] Ratio to DayaBay measurement to be model independent

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3 Ratio Bottom/Top DANSS Single movable detector 0.78 0.76 0.74 0.7 [arxiv:804.04046] 0.7 0.68 0.66 3σ preference for 3+ oscillations 0.64 3 4 5 6 7 Positron energy, MeV Detector can be at.5,.5 or.5 m from reactor core [D.Svirida@NOW08]

Model-independent fit of ( ) ν e DIS [SG et al., PLB 78 (08) 3] σ DANSS NEOS NEOS + DANSS [ev ] m 4 The NEOS and DANSS region perfectly overlap at m 4.3 ev sin ϑ ee 0.05 NEOS+DANSS σ σ 3σ 3 sin ϑ 4 0.0 sin ϑ ee S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3

Model-independent fit of ( ) ν e DIS [SG et al., PLB 78 (08) 3] DANSS + NEOS + RAA + Gallium 3σ (solid dashed) Reactor Anomaly Gallium Anomaly [ev ] m 4 DANSS + NEOS do not agree with Gallium and RAA NEOS+DANSS σ σ 3σ 3 sin ϑ ee S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3

Model-independent fit of ( ) ν e DIS [SG et al., PLB 78 (08) 3] 3σ (solid dashed) NEOS+DANSS All data: [ev ] m 4 Fit dominated by DANSS + NEOS MIν e Dis σ σ 3σ 3 sin ϑ ee S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 3/3 More to come... [STEREO, arxiv:806.0096] = current DANSS+NEOS best fit [SG et al., PLB 78 (08) 3] [PROSPECT, arxiv:806.0784] 4 [ev ] m m 4 (ev ) RAA 95% C.L. RAA 99% C.L. RAA: Best fit STEREO Exclusion Sensitivity (66 days) : 90% C.L. STEREO Exclusion (66 days) : 90% C.L. sin (θee) [Neutrino-4, arxiv:809.56] PROSPECT Exclusion, 95% CL PROSPECT Sensitivity, 95% CL SBL + Gallium Anomaly (RAA), 95% CL sin θ 4 [SoLiD, arxiv:806.046]

Neutrino Oscillations - Some theory Electron (anti)neutrino disappearence 3 Muon (anti)neutrino disappearence 4 Electron (anti)neutrino appearence 5 Global fit 6 Sterile neutrinos and CEνNS 7 Conclusions [ev ] m 4 99% CL CDHSW (984) CCFR (984) ATM SB MB ν µ (0) SB MB ν µ (0) IceCube (06) MINOS (06) MINOS+ (07) 3 U µ4

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 4/3 IceCube and DeepCore IceCube 4 High energy µ events 30 GeV < E < 0 TeV O( km) L O( 4 km) 0 m 4 /ev IceCube 99% CL Exclusions IC86 rate+shape IC86 shape only (blind result) IC59 result 0 sin θ 4 [PRL 7 (06) 0780]

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 4/3 IceCube and DeepCore IceCube 4 High energy µ events 30 GeV < E < 0 TeV O( km) L O( 4 km) IceCube string DeepCore string DeepCore Corridor 00 m DeepCore 0 m 4 /ev IceCube 99% CL Exclusions IC86 rate+shape IC86 shape only (blind result) IC59 result 0 Depth [ m ] 500 600 700 800 900 000 0 00 300 00 m Veto cap DOMs m vertical spacing Dust layer bad optical properties DeepCore 50 HQE DOMs 7 m vertical spacing sin θ 4 400 [PRL 7 (06) 0780] 0.04 0.03 0.0 0.0 Absorption [ / m ]

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 4/3 m 4 /ev IceCube and DeepCore IceCube 4 High energy µ events 0 30 GeV < E < 0 TeV O( km) L O( 4 km) Uτ4 = sin θ34 cos θ4 6 4 0.30 0 ln L8 0.5 0.0 0.5 0. DeepCore 5 3 tracklike events 6 GeV E 60 GeV SK, NO (05), 90 % C.L. SK, NO (05), 99 % C.L. 99% C.L. 90% C.L. IceCube, NO (06), 90 % C.L. IceCube, NO (06), 99 % C.L. IceCube, IO (06), 90 % C.L. IceCube, IO (06), 99 % C.L. 90% C.L. 99% C.L. IceCube 99% CL Exclusions IC86 rate+shape IC86 shape only (blind result) IC59 result 0 sin θ 4 [PRL 7 (06) 0780] 0.05 0.00 3 Uµ4 = sin θ4 [PRD 95 (07) 0] Both also constrain U τ4 0 4 6 8 ln L

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 5/3 ν µ ) MINOS & MINOS+ µ P(ν Near (ND, 500 m) and far (FD, 800 km) detector 0.8 0.6 0.4 Reconstructed energy (GeV) ND CC ν µ FD 0.8 0.6 0.4 GeV E 40 GeV, peak at 3 GeV 0. 0. 0 0 ν s ) µ - P(ν 0.8 0.6 0.4 0. ND NC FD 3-flavor prob. m4 = 0.05 ev m4 = 0.50 ev m4 = 5.00 ev 0.8 0.6 0.4 0. 0 - - 3 L / E (km / GeV) [PRL 7 (06) 5803]: far-to-near ratio [arxiv:7.06488]: full two-detectors fit 0

ν µ ) MINOS & MINOS+ µ P(ν Near (ND, 500 m) and far (FD, 800 km) detector 0.8 0.6 0.4 Reconstructed energy (GeV) ND CC ν µ FD 0.8 0.6 0.4 3 GeV E 40 GeV, peak at 3 GeV Systematics: 0. 0 0. 0 ν s ) µ - P(ν 0.8 0.6 0.4 0. ND NC FD 3-flavor prob. m4 = 0.05 ev m4 = 0.50 ev m4 = 5.00 ev 0.8 0.6 0.4 0. ) 4 (ev m 90% C.L. Sensitivity Statistics only Energy Scale Hadron Production Cross Sections Backgrounds Other Systematics Total Systematics 0 - - 3 L / E (km / GeV) [PRL 7 (06) 5803]: far-to-near ratio [arxiv:7.06488]: full two-detectors fit 0 3 4 0.56 POT MINOS 0 5.80 POT MINOS+ ν µ mode simulation 3 sin (θ 4 ) [arxiv:7.06488] S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 5/3

ν µ ) MINOS & MINOS+ µ P(ν Near (ND, 500 m) and far (FD, 800 km) detector 0.8 0.6 0.4 Reconstructed energy (GeV) ND CC ν µ FD 0.8 0.6 0.4 GeV E 40 GeV, peak at 3 GeV Sensitivity and exclusion limit: 3 0.56 POT MINOS 0 5.80 POT MINOS+ ν µ mode 0. 0 0. 0 ν s ) µ - P(ν 0.8 0.6 0.4 0. ND NC FD 3-flavor prob. m4 = 0.05 ev m4 = 0.50 ev m4 = 5.00 ev 0.8 0.6 0.4 0. ) 4 (ev m 0 - - 3 L / E (km / GeV) [PRL 7 (06) 5803]: far-to-near ratio [arxiv:7.06488]: full two-detectors fit 0 3 4 4 MINOS & MINOS+ data 90% C.L. 90% C.L. Sensitivity (σ and σ) 3 sin (θ 4 ) [arxiv:7.06488] S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 5/3

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 6/3 Global fit of ( ) ν µ DIS [SG+, preliminary] [ev ] m 4 99% CL CDHSW (984) CCFR (984) ATM SB MB ν µ (0) SB MB ν µ (0) IceCube (06) MINOS (06) MINOS+ (07) 3 U µ4 MINOS(+) dominates at small m 4

Neutrino Oscillations - Some theory Electron (anti)neutrino disappearence 3 Muon (anti)neutrino disappearence 4 Electron (anti)neutrino appearence [ev ] m 4 σ LSND MiniBooNE KARMEN NOMAD BNL E776 ICARUS OPERA 5 Global fit 6 Sterile neutrinos and CEνNS Combined σ σ 3σ 4 3 sin ϑ eµ = 4 U e4 U µ4 7 Conclusions

LSND Beam Stop Overburden [PRD 64 (00) 07] ν µ ν e, 0 E/(MeV) 5.8 30 m well known source of ν µ : p + target π + at rest µ + + ν µ µ + at rest e + + ν e + ν µ L 30 m ν e + p n + e + No signal seen in KARMEN (L 8 m) [PRD 65 (00) 0] LSND Detector Water Plug and Veto System Beam Excess 7.5 5.5 7.5 5.5 0 Electronics Caboose Beam Excess p(ν _ µ ν_ e,e+ )n p(ν _ e,e+ )n other 3.8σ 0.4 0.6 0.8..4 L/E ν (meters/mev) S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 7/3

MiniBooNE purpose: check LSND signal L 54 m, 00 MeV E 3 GeV ) (ev m no money, no near detector LSND 90% CL 68% CL 90% CL 95% CL 99% CL 3σ CL 4σ CL KARMEN 90% CL OPERA 90% CL Excess Events/MeV Events/MeV 5 4 3 ν sample Data (stat err.) ν from µ +/- e +/- ν e from K 0 ν e from K π 0 misid Nγ dirt other Constr. Syst. Error Best Fit 0 0. 0.4 0.6 0.8..4.6 3.0 QE E ν (GeV).8.6.4. 0.8 0.6 0.4 0. [arxiv:805.8] 0 ν e :.84 0 ν e :.7 POT POT ν + ν excess 3 LSND 99% CL sin θ 0 0. 0. 0.4 0.6 0.8..4.6 3.0 QE E ν (GeV) S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 8/3

MiniBooNE purpose: check LSND signal L 54 m, 00 MeV E 3 GeV ) (ev m no money, no near detector LSND 90% CL 68% CL 90% CL 95% CL 99% CL 3σ CL 4σ CL KARMEN 90% CL OPERA 90% CL Excess Events/MeV Events/MeV 5 4 3 ν sample Data (stat err.) ν from µ +/- e +/- ν e from K 0 ν e from K π 0 misid Nγ dirt other Constr. Syst. Error Best Fit 0 0. 0.4 0.6 0.8..4.6 3.0 QE E ν (GeV).8.6.4. 0.8 0.6 0.4 0. [arxiv:805.8] MicroBooNE will check 0 ν e :.84 POT 0 low energy ν e :.7 excess POT ν + ν excess 3 LSND 99% CL sin θ 0 0. 0. 0.4 0.6 0.8..4.6 3.0 QE E ν (GeV) S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 8/3

Global fit of ( ) ν µ ( ) ν e APP [SG+, preliminary] S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 9/3 [ev ] m 4 σ LSND MiniBooNE KARMEN NOMAD BNL E776 ICARUS OPERA ICARUS and OPERA exclude MiniBooNE best fit LSND and MiniBooNE only partially in agreement Combined σ σ 3σ 4 3 sin ϑ eµ = 4 U e4 U µ4 KARMEN cuts part of LSND region

Neutrino Oscillations - Some theory Electron (anti)neutrino disappearence 3 Muon (anti)neutrino disappearence 4 Electron (anti)neutrino appearence [ev ] m 4 Global Fit σ σ 3σ 5 Global fit 6 Sterile neutrinos and CEνNS 4 3 sin ϑ eµ = 4 U e4 U µ4 3σ Dis App 7 Conclusions

APPearance - DISappearance tension Without 08 data: [SG+, preliminary] [ev ] m 4 Global Fit σ σ 3σ 4 3 sin ϑ eµ = 4 U e4 U µ4 3σ ν e Dis ν µ Dis Dis App S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 0/3

[ev ] m 4 APPearance - DISappearance tension Without 08 data: Status after Neutrino 08: [SG+, preliminary] Global Fit σ σ 3σ Global Fit σ σ 3σ 4 3 sin ϑ eµ = 4 U e4 U µ4 3σ ν e Dis ν µ Dis Dis App [ev ] m 4 4 3 sin ϑ eµ = 4 U e4 U µ4 S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 0/3 3σ Dis App

[ev ] m 4 APPearance - DISappearance tension Without 08 data: Global Fit 4 3 sin ϑ eµ = 4 U e4 U µ4 3σ ν e Dis ν µ Dis Dis App [ev ] m 4 ithout 08 data: 3σ ν e σdis σ ν µ 3σDis Dis App µ4 [ev ] m 4 Status after Neutrino 08: 4 3 sin ϑ eµ = 4 U e4 U µ4 ] [SG+, preliminary] Global Fit S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 0/3 3σ σ σ 3σ Dis App

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3 May something be wrong? [Dentler+, JHEP 08 (08) 0] (03 data from MiniBooNE)

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3 May something be wrong? [Dentler+, JHEP 08 (08) 0] (03 data from MiniBooNE) No improvements if MiniBooNE is not considered

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3 May something be wrong? [Dentler+, JHEP 08 (08) 0] (03 data from MiniBooNE) ( ) ν µ DIS also constrain U e4, while ( ) ν e DIS do not constrain U µ4

May something be wrong? [Dentler+, JHEP 08 (08) 0] (03 data from MiniBooNE) Only removing LSND or all ( ) ν µ constraints the fit is almost acceptable No reason to do so! S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3

Neutrino Oscillations - Some theory Electron (anti)neutrino disappearence 3 Muon (anti)neutrino disappearence 4 Electron (anti)neutrino appearence 5 Global fit 6 Sterile neutrinos and CEνNS 7 Conclusions

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3 Present and future... [Papoulias+, PRD 97 (08) 033003] COHERENT: 4.57 kg CsI m 4 0 90%C.L. full syst. simple syst. 0 sin θ new Assumption: all DIS mixing angles are equal sin ϑ ee = sin ϑ µµ = sin θ new not competitive (yet)

m 4 Present and future... [Papoulias+, PRD 97 (08) 033003] 0 COHERENT: 4.57 kg CsI 90%C.L. full syst. simple syst. 0 sin θ new Assumption: all DIS mixing angles are equal sin ϑ ee = sin ϑ µµ = sin θ new R m 4 (ev ) [Cañas+, PLB 776 (08) 45].05 E = 4 MeV E = 6.5 MeV 0.95 0.9 0.85 0 0. MINER m MINER 3m MINER 5m RED0 5m RED0 9m Texono CONNIE 0 0 30 L (m) 0% eff, Q f =.0 50% eff, Q f =.0 50% eff, Q f = 0. + not competitive (yet) 0.0 0.00 TEXONO-like reactor experiment 0.0 0. sin θ ee S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /3

Neutrino Oscillations - Some theory Electron (anti)neutrino disappearence 3 Muon (anti)neutrino disappearence 4 Electron (anti)neutrino appearence 5 Global fit 6 Sterile neutrinos and CEνNS 7 Conclusions

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 3/3 Conclusions first model-independent hints from reactors ( ) ν e DIS, some discrepancy with Gallium anomaly and RAA 3 nothing seen in ( ) ν µ DIS strong upper bounds on U µ4, but also first constraints on U τ4 strong APP-DIS tension What are LSND and MiniBooNE observing? Systematics or LSν or new physics? 4 incoming CEνNS experiments will enter the game!

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 3/3 Conclusions first model-independent hints from reactors ( ) ν e DIS, some discrepancy with Gallium anomaly and RAA 3 nothing seen in ( ) ν µ DIS strong upper bounds on U µ4, but also first constraints on U τ4 strong APP-DIS tension What are LSND and MiniBooNE observing? Systematics or LSν or new physics? 4 incoming CEνNS experiments will enter the game! Thank you for the attention!

8 LSν Constraints from oscillation experiments 9 Cosmological constraints

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /6 Fraction of 5 MeV excess (%) Fuel evolution Reactor fluxes produced by decay fissions of 35 U 38 U 39 Pu 4 Pu Can we use time evolution to identify source of 5 MeV bump? 3. 3.8.6.4 0.35 F 39 0.3 Data Constant 5 MeV excess Best fit. 0.5 0.55 0.6 0.65 F 35 [RENO, arxiv:806.00574] 0.5 F39 Fi 0.36 0.3 0.8 Fuel fractions in reactors change with time 0.4 EH EH 0.0 0 03 04 05.0 Year 0.8 0.6 0.4 0. F35 F38 F39 F4 0.0 0.4 0.6 0.8 0.30 0.3 0.34 0.36 F 39 [Daya Bay, PRL 8 (07) 580]

σ39 [ 43 cm / fission] Fuel evolution Fit bump amplitude as a function of flux normalizations 5.5 5.0 4.5 4.0 3.5 3.0 Daya Bay Huber model w/ 68% C.L. σ38 = (. ±. 0) 43 σ4 = (6. 04 ± 0. 60) 43 C.L 68% 95% 99.7% 5. 5.6 6.0 6.4 6.8 7. σ 35 [ 43 cm / fission] 9 4 χ 4 9 [Daya Bay, PRL 8 (07) 580] χ / fission] cm -43 [ 39 y 5 5 4 3 Normalization of 35 U flux smaller than prediction! 99.7% C.L. 95.5% C.L. 68.3% C.L. 5.5 6 6.5 70 5-43 y cm / fission] χ [ 35 Model RENO [RENO, arxiv:806.00574] Again, we need model-independent information! take ratios at different distances to avoid normalization dependency S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /6

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /6 Gallium anomaly and RAA revisited [SG et al., PLB 78 (08) 3] detection efficiencies in Gallium experiments fit with free parameters: normalization of spectra of reactor fuels

S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 /6 Gallium anomaly and RAA revisited [SG et al., PLB 78 (08) 3] detection efficiencies in Gallium experiments fit with free parameters: normalization of spectra of reactor fuels χ 0 3 4 5 6 7 8 9 Reactor spectra: r 35 r 38 r 39 0. 0.4 0.6 0.8.0..4 r k 99.73% 99% 95.45% 90% 68.7% 35 U flux normalization smaller than at σ χ η S 0 4 6 8 0.5 0.6 0.7 0.8 0.9 Gallium efficiencies: 0.5 0.6 0.7 0.8 0.9 η G MIν edis σ σ 3σ 0 4 6 8 χ SAGE efficiency η S smaller than at σ

8 LSν Constraints from oscillation experiments 9 Cosmological constraints

[to be precise: N eff is slightly smaller at CMB decoupling, when the LSν starts to be non-relativistic] S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 3/6 LSν thermalization Using SBL best-fit parameters for the LSν ( m 4, θ s): [Hannestad et al., JCAP 07 (0) 05] [Mirizzi et al., PRD 86 (0) 053009] (colors coding N eff ) (L: lepton asymmetry) Unless L O( 3 ), N eff See also: [Saviano et al., PRD 87 (03) 073006], [Hannestad et al., JCAP 08 (05) 09]

LSν constraints from cosmology CMB+local: [Planck Collaboration, 08] Neff 3.8 3.6 3.4 3. 0.5.0.0 5.0 70 69 68 67 66 65 H0 [km s Mpc ] [Archidiacono et al., JCAP 08 (06) 067] N eff.0 0.8 0.6 0.4 0. ΛCDM+N eff +m s : TT ΛCDM+N eff +m s : TT+HST ΛCDM+N eff +m s : TT+HST+BAO 0.0 0.0 0.8.6.4 3. 4.0 m s [ev] 7.0 7. 70.4 69.6 68.8 68.0 67. 66.4 H0 [km/s/mpc] 0.0 0.4 0.8..6 mν, eff sterile [ev] { Neff < 3.9 < 0.65 ev m eff s (Planck8+BAO) [m s < ev] free N dataset eff [m s < ev] N eff = (TT) N eff < 3.5 m s < 0.66 ev (+H 0) N eff < 3.9 m s < 0.55 ev (+BAO) N eff < 3.8 m s < 0.53 ev BBN constraints: N eff =.90 ± 0. (BBN+Y p ) [Peimbert et al., 06] Summary: N eff = from LSν incompatible with m s ev! Planck8=Planck 08 TT,TE,EE + lowe + lensing All the constraints are at σ CL S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 4/6

Incomplete Thermalization Active-sterile oscillations in the early Universe: mixing parameters from SBL data = N eff [Hannestad et al., 0] [Mirizzi et al., 0] Many probes constrain N eff <. Do we need a mechanism to suppress oscillations and full thermalization of ν s? to compensate N eff = with additional mechanisms in Cosmology? Some ideas (an incomplete list!): large lepton asymmetry [Foot et al., 995; Mirizzi et al., 0; many more] new neutrino interactions [Bento et al., 00; Dasgupta et al., 04; Hannestad et al., 04; Saviano et al., 04; Archidiacono et al. 06; many more] entropy production after neutrino decoupling [Ho et al., 03] very low reheating temperature [Gelmini et al., 004; Smirnov et al., 006] time varying dark energy components [Giusarma et al., 0] larger expansion rate at the time of ν s production [Rehagen et al., 04] freedom in the Primordial Power Spectrum (PPS) of scalar perturbations from inflation compensate damping due to N eff 3.046 [SG et al., 05] S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 5/6

Solving both σ 8 and H 0 Tension? [Planck Collaboration, 05] S. Gariazzo Light sterile neutrino: the 08 status The Magnificent CEνNS, 03//08 6/6 Planck TT+lowP +lensing +lensing+bao ΛCDM 0.9 +Neff +Neff+Σmν +Neff +Neff+Σmν σ8 0.8 0.7 0.9 +Σmν +Neff+m eff ν, sterile +Σmν +Neff+m eff ν, sterile σ8 0.8 0.7 0.4 0.3 0.40 0.48 Ω m 0.4 0.3 0.40 0.48 Ω m 56 64 7 H 0 56 64 7 H 0 dashed: local measurements ΛCDM model, ΛCDM + ν a,s models: full cosmological dataset H 0 increases σ 8 increases (and viceversa)! The correlations do not help.