in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

Similar documents
Measuring many-body topological invariants using polarons

Impurities and disorder in systems of ultracold atoms

Cooperative Phenomena

New theoretical approaches to Bose polarons

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

synthetic condensed matter systems

Dynamic properties of interacting bosons and magnons

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

Disordered Ultracold Gases

Quantum Electrodynamics with Ultracold Atoms

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

A Mixture of Bose and Fermi Superfluids. C. Salomon

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

arxiv: v1 [cond-mat.quant-gas] 26 Apr 2016

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

1. Cold Collision Basics

When superfluids are a drag

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Condensate fraction for a polarized three-dimensional Fermi gas

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Adiabatic trap deformation for preparing Quantum Hall states

Topological Bandstructures for Ultracold Atoms

Interaction between atoms

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices

Bogoliubov theory of disordered Bose-Einstein condensates

Reference for most of this talk:

Quantum Properties of Two-dimensional Helium Systems

Exploring new aspects of

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Bose-Bose mixtures in confined dimensions

From cavity optomechanics to the Dicke quantum phase transition

Perfect screening of the Efimov effect by the dense Fermi sea

Lecture 4. Feshbach resonances Ultracold molecules

Few-body problems in ultracold alkali-earth atoms and superfluid Boson-Fermion mixture

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

Lattice modulation experiments with fermions in optical lattices and more

Probing the Optical Conductivity of Harmonically-confined Quantum Gases!

Simulation of Quantum Many-Body Systems

Bose-Hubbard Model (BHM) at Finite Temperature

Loop current order in optical lattices

Diagrammatic Monte Carlo study of polaron systems

Spinor Bose gases lecture outline

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

MRSEC. Inflation and coherent dynamics in a Bose-Einstein condensate driven across a quantum critical point. Cheng Chin. Funding:

Symmetry properties, density profiles and momentum distribution of multicomponent mixtures of strongly interacting 1D Fermi gases

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

An impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches

Dynamics of two and three component Fermi mixtures

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Low- and High-Energy Excitations in the Unitary Fermi Gas

Fermi gases in an optical lattice. Michael Köhl

Interference experiments with ultracold atoms

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Design and realization of exotic quantum phases in atomic gases

Non-equilibrium time evolution of bosons from the functional renormalization group

Simulation of Quantum Many-Body Systems

Superfluidity of a 2D Bose gas (arxiv: v1)

General quantum quenches in the transverse field Ising chain

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems

Confining ultracold atoms on a ring in reduced dimensions

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Nonequilibrium dynamics of interacting systems of cold atoms

Informal Workshop on Cold atoms and Quantum Simulations. Monday 3 and Tuesday 4 December Program. Monday, December 3

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems

Fermi polaron-polaritons in MoSe 2

Measuring entanglement in synthetic quantum systems

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Quantum superpositions and correlations in coupled atomic-molecular BECs

Dimensional BCS-BEC crossover

Lecture I: (magnetic) dipolar gases. Lecture II: Rydberg Rydberg interaction. Lecture III : Rydberg ground state interaction

Soliton Molecules in the Impurity Component of Self-Trapping Bosonic Impurity

Matter wave interferometry beyond classical limits

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

F. Chevy Seattle May 2011

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Lecture 3. Bose-Einstein condensation Ultracold molecules

Bottleneck accumulation of hybrid bosons in a ferrimagnet

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

SUPPLEMENTARY INFORMATION

Static and Dynamic Properties of One-Dimensional Few-Atom Systems

Bose polarons and rotating gases in an ultracold Bose-Fermi gas mixture of 40 K and 87 Rb atoms

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

Dynamical Condensation of ExcitonPolaritons

Learning about order from noise

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

arxiv: v3 [cond-mat.quant-gas] 25 Feb 2014

tunneling theory of few interacting atoms in a trap

Artificial magnetism and optical flux lattices for ultra cold atoms

Transcription:

1 Polaron Seminar, AG Widera AG Fleischhauer, 05/06/14 Introduction to polaron physics in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany Graduate School of Materials Science in Mainz, Kaiserslautern, Germany

2 Motivation Q: What is a polaron? A: a long-lived quasiparticle compromised of an impurity dressed by phonons. e phonon

3 Motivation Polaron s in BECs BECs single impurity Anderson et al., Science 269 (1995) z y x q Frese et al, PRL 85 (2000)

4 Outline Fröhlich Hamiltonian in a BEC derivation from first principles conditions for the approach Polaron properties (MF polaron theory) ground state energy

5 Bogoliubov-Fröhlich Hamiltonian derivation from first principles see e.g. Tempere et al., PRB 80 (2009) Bruderer et al., PRA 76 (2007)

6 Fröhlich Hamiltonian Microscopic model: Z apple H = d 3 ~r ˆ r 2 (~r) + g BB ˆ (~r) 2m B 2 ˆ(~r) ˆ(~r) Z apple r + d 3 ~r ˆ 2 (~r) 2M + g IB ˆ (~r) ˆ(~r) ˆ(~r). +traps or lattices 87 Rb 133 Cs pseudo-potentials: V IB (~r) =g IB (~r) ˆ(~r) ˆ(~r) Bose field impurity field

7 Fröhlich Hamiltonian BEC - Bogoliubov theory Hamiltonian ˆ(~r) =L 3/2 X ~k H B = X ~k BEC ˆ0 = p N 0 e i ~r ˆ~k ˆ ˆ~k 2 2m B + 1 L 3 X, 0, discrete set of modes [ ˆ, ˆ 0 ]=, 0 g BB 2 ˆ + ˆ 0 ˆ~k 0 ˆ weakly interacting BEC H B = E 0 + X ~k ~ ˆ k 2 ˆ~k + g BBN 0 2m B 2L 3 X 6=0 2 ˆ ˆ~k + ˆ ˆ + ˆ ˆ ~k

8 Fröhlich Hamiltonian Bogoliubov transformation ˆ~k = cosh ~k â ~k sinh ~k â, phonons: â ~k, â Bogoliubov phonons: 8 H B = E 0 0 + X ~k k â â ~k 6 4 BEC characterization: BEC 10 18...10 21 m 3 1µm c 1mm/s 2 0 0 1 2 3 k = ck p 1+( k) 2 /2

9 Fröhlich Hamiltonian Boson - impurity interaction H IB = g IB L 3 Z d 3 ~r ˆ (~r) X ~k, ~k 0 e i ( 0 ) ~r ˆ ˆ~k 0 ˆ(~r) BEC ˆ0 = p N 0 2 H IB = g IB L 3 4N 0 + X ~k6=0 e p i ~r N ˆ 0 ~ +h.c. + X k, 0 6=0 e i( 0 ) ~r ˆ ˆ~k 0 3 5 BEC mean field shift phonon-impurity scattering phonon-phonon scattering

Fröhlich Hamiltonian H IB = g IB L 3 2 4N 0 + X ~k6=0 e p i ~r N ˆ 0 ~ +h.c. + X k, 0 6=0 e i( 0 ) ~r ˆ ˆ~k 0 3 5 Phonon-impurity scattering ˆ~k = cosh ~k â ~k sinh ~k â, H a = Z d 3 ~r ˆ (~r) X ~k6=0 Vk disc e i ~r â ~k +â ~ ˆ(~r) k scattering amplitude V disc k = g IB L 3 p N0 k 2 /2m B 2g BB BEC + k 2 /2m B 1/4 modified by Bogoliubov mixing angles ~k

11 Fröhlich Hamiltonian H IB = g IB L 3 2 4N 0 + X ~k6=0 e p i ~r N ˆ 0 ~ +h.c. + X k, 0 6=0 e i( 0 ) ~r ˆ ˆ~k 0 3 5 continuum limit L 1 N 0 L 3 = BEC â ~k scattering amplitude 2 L 3/2 â( ) [â( ), â ( 0 )] = ( 0 ) V disc k = g IB L 3 p N0 k 2 /2m B 2g BB BEC + k 2 /2m B 1/4 0.5 1 (c) V k = g IB p BEC (2 ) 3/2 ( k) 2 2+( k) 2 1/4 0 0 1 2 3

12 Fröhlich Hamiltonian Phonon-phonon scattering X ˆ ˆ~k N ph 1 X L 3 k< = 1 (2 ) 3 (2 ) 3 L 3 X k< 1 (2 ) 3 H IB = g IB L 3 Z 3 2 4N 0 + X ~k6=0 d 3 3 e p i ~r N ˆ 0 ~ +h.c. + X k hh a-a i hh a i hh a-a i g IB N ph 3 hh a i g IB p BEC 1 s, 0 6=0 N ph 3 e i( 0 ) ~r ˆ ˆ~k 0 3 5 condition for Fröhlich model BEC N ph 3

13 Fröhlich Hamiltonian condition for Fröhlich model (alternative derivation: Bruderer et.al., PRA 2007) g IB 3 2c/ typical numbers (priv.comm., Farina) =1.3µm, c =0.4mm/s, a IB = 34nm g IB 2 /c =0.2 Fröhlich Hamiltonian: Z H = d 3 k â ( )â( )+g IB BEC + Z r + d 3 ~r ˆ 2 Z (~r) 2M + d 3 ~ h kvk e i ~r â( )+â ( )i ˆ(~r)

14 Model parameters polaron energy see Tempere et al., PRB 80 (2009) Rath & Schmidt, PRA 88 (2013) Shashi et al., PRA in press (2014)

15 Model parameters units length scale healing length: time scale via speed of sound: /c energy scale ~c/ ~ =1 mass scale boson mass m B free parameters parameter typical value weak coupling strong coupling BEC density BEC 1...10 3 small large impurity-boson scattering length a IB 10 2...10 3 small large impurity mass M 10 1...10 1 large small van-der-waals length `vdw 10 3 large small

16 Polaron energy Infinite mass limit H = g IB BEC + M 1 Z classical impurity d 3 k k â â + V k â ~k +â integrable model Û = Y ~k exp ~k â ~k ~k â ~k Û â ~k Û =â ~k + ~k Û ĤÛ = g IB BEC + Z d 3 k k â â ~k V 2 k k

17 Polaron energy ground state energy momentum cut-off E 0 = g IB BEC 4 Z 0 dk k 2 V k 2 k UV-scaling k k 2 V k 1 Z dk k 2 V 2 Z k dk 1= 1 1 k UV divergent?

18 Polaron energy Lippmann-Schwinger equation remember pseudo potential k(~r) = (0) k (~r)+eikr r f(k)+o(r 2 ) low-energies: universal f(k) = a IB 1+ika IB for k. 1/`vdW =: see e.g. Bloch et al., RMP (2008) strategy: use pseudo potential V (~r) =g IB (~r) with same scattering length 1 = 2 a IB g IB 1 m B + 1 M + 2 see e.g. Rath & Schmidt, PRA (2013)

19 Polaron energy ground state energy g IB = 2 a IB m B apple 1+a IB 2 + O(a2 IB) E 0 = g IB BEC 4 Z 0 dk k 2 V k 2 k E 0 =2 a IB BEC m B Z d 3 V 2 k k +4 a2 IB m B UV convergent

20 Summary Fröhlich Hamiltonian in a BEC ˆ, ˆ ˆ, â~k condition: ˆ0 = p N 0 g IB 3 2c/ Z H = d 3 k â ( )â( )+g IB BEC + Z r + d 3 ~r ˆ 2 Z (~r) 2M + d 3 ~ h kvk e i ~r â( )+â ( )i ˆ(~r) Polaron properties, localized impurity ground state energy 1 = 2 a IB g IB 1 m B + 1 M + 2

21 Related work experiments: Schirotzek et al., PRL 102 (2009) Scelle et al., PRL 111 (2013) Fukuhara et al., Nature Phys. 9 (2013) theory: Tempere et al., PRB 80 (2009) Bruderer et al., PRA 76 (2007) NJP 10 (2008) Cucchietti & Timmermans, PRL 96 (2006) Casteels et al., Laser Phys. 21 (2011) Shashi et al., to appear in PRA (2014) Observation of the Fermi polaron Deep lattice Bose polaron Spin-impurity polarons in a BEC Feynman path integral treatment Strong coupling treatment (lattice) Strong coupling treatment (continuum) RF spectra of Fröhlich polaron in BEC

22 Thanks to Eugene Demler Aditya Shashi Dmitry Abanin Shashi et al., arxiv:1401.0952 (2014) Grusdt et al., in preparation Grusdt et al., in preparation Radio frequency spectroscopy of polarons in ultracold Bose gases Bosonic lattice polaron Bloch oscillations Renormalization group treatment of polarons in ultracold Bose gases

and thanks for your attention 23