Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Size: px
Start display at page:

Download "Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014"

Transcription

1 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013)! HRI, Allahabad,Cold Atom Workshop, February, 2014

2 Cold IIT Delhi Cold Delhi Chaitanya Joshi and Sankalpa Ghosh, European Physics Journal B, 68, 467 (2009). Rashi Sachdeva, Sonika Johri and Sankalpa Ghosh, Physical Review, A, 82, (2010) Rashi Sachdeva and Sankalpa Ghosh, Physical Review A, 85, (2012) Adhip Agarwala, Madhurima Nath, Jasleen Lugani, K. Thyagarajan and Sankalpa Ghosh, Physical Review A Vol (2012) Bikash Padhi and Sankalpa Ghosh, Physical Review A, Vol 111, (2012) Rashi Sachdeva and Sankalpa Ghosh, arxiv: cond-mat ( communicated) Jasleen Laguna, K. Thyagarajan and Sankalpa Ghosh, Journal of Physics B : At. Mol. and Opt. Physics, Vol 47, (2014).!2

3

4 CAVITY OPTOMECHANICS:BASICS Marquardt, Les Houches Lectures, 2011 P. Meystre, arxiv: (quant-ph) H = ~!(x)â â + ˆp2 2m mˆx 2 Upto a Linear approximation, the position dependent resonant frequency is!(x)! c (1 ˆx L ) This leads to H = ~! c â â + ˆp2 2m m 2 mˆx 2 ~g 0 â â(ˆb + ˆb Last Term is the optomechanical coupling by which a mode in the Fabry Perot cavity is coupled with the vibrating mode of a mechanical object

5 ENTERS ATOMS IN A CAVITY

6 Basic Theory = 3 +2gcos(!t + ) 1 2 second term! ( + + ) (e i + e i ) ating wave approximation ignores fast oscillating term near resonant condi second term ( + e i + e i ) The interaction between a single two level atom and a photon (single mode) in dipole approximation is given by Jaynes Cumming Model Ĥ JC = ~! at 2 ˆz + ~! c â â + ~g 0 (ˆ â +ˆ a )+Ĥapple + Ĥ!6

7 !7

8 atoms Ultracold quantum gases in a nutshell Atomic wave packets overlap Macroscopic wave function Superfluid behaviour i.e. flow without friction W. Ketterle, Nobel Lecture (2001)

9 Time of Flight imaging Common Technique: Time of Flight imaging

10 CAVITY OPTOMECHANICS WITH MANY ATOMS Slide from T. Esslinger s Talk

11

12 Excited modes of BEC:realization of a two level macro atom e 2ikx + e 2ikx Ψ ( x) = c ( t) p = 0 + c ( t) p = ± 2! k Ψ( x) 2 = 0 N + c 2 N 2 cos(2kx)cos(4 ω r t)

13 CAVITY OPTOMECHANICS WITH A BEC ( ZURICH EXPERIMENT)

14 Quantum Simulation: There is plenty room at bottom -R. P. Feynman

15 First Step towards simulation (Non Linear Schroedinger Equation) Feynman Lecture- Vol 3 A seminar on superconductivity Bose Einstein condensation leads to Macroscopic quantum state The interaction strength can be controlled from positive to negative and can be made 0 as well as infnity

16 Idea of Quantum Simulation 4He absorbed in! porous medium and! granular superconductor Mott Insulator ( U(V)>>t(J)) integer atoms per site No phase coherence No number fluctuations! H = t ( â i+â j + h.c)+ U 2 <i, j> i ˆn i ( ˆn i 1) µ i ˆn i Bose Hubbard Model Ultracold 87 Rb atoms in! optical lattice : much! Simpler and controllable Superfluid (t(j)>>u) Delocalized atoms Long range phase coherence (macroscopic wave function) Number fluctuation present

17 Cold atomic systems as Quantum simulators Use optical lattices V 0 M.Greiner et. al Nature (2002) Counter- propagating laser beams phase coherence phase incoherence

18 electron in a magnetic field:cyclotron motion v R R c

19 THE CURIOUS TALE OF LANDAU LEVELS B=0 KF

20 PRL 109, (2012) N type InSb (110) surface Experiment Theory

21 J Solyom : Fundamental of Solids Vol. 2 (Springer)

22 Density of states and oscillation of thermodynamic quantities J Solyom : Fundamental of Solids Vol. 2 (Springer)

23 SHUBNIKOV de HAAS OSCILLATION AND DE HAAS VAN ALPHEN EFFECT Ashcroft and Mermin: Solid state Physics

24 Interaction under control, can we simulate a magnetic field OF NEUTRAL ULTRA COLD ATOMS? Motivation: Quantum Hall Effect, more recently Topological Insulator Our modest motivation: simulation of the atomic analogue of SdH oscillation

25 Artificial magnetic field for neutral atoms. Rotation of neutral atoms trapped in a harmonic trap causes appearance of an effective magnetic field. H = p2 2m m!2 r 2 L z Introduce A = r The hamiltonian in the co-rotating frame is H = 1 2m (p ma ) m(!2 2 )r 2 Rotating trapped Bose-Einstein condensates Rev. Mod. Phys. 81, 647 Published 18 May 2009! Alexander L. Fetter 12 February 2014!25

26 z Experiments on rotating condensates Ω The condensate is stirred with a moving laser beam and image is taken after ballistic expansion K. Madison, F. Chevy, V. Bretin, P. Rosenbuch, J. Dalibard (ENS Group) 200 µm Clear proof of superfluidity Evidence for quantum vortices ENS 0 Ω c Rotation frequency Ω Coddington et al. PRL 91 (2003), JILA Towards quantum Hall effect?

27 NIST WAY (Spielman et al.) Y. J. Lin et al. PRL 102, (2009) 2 H =! x x + 2m [( k aa ) 2 k 2 ] y

28 Observation of vortices and vortex lattice(nist) Y J. Lin et al, Nature 462, 628 (2009)

29 Ultra cold fermions (From Debi Jin s slide)

30 Natur

31 The System under consideration Phys. Rev. Lett. 111, (2013), Bikash Padhi and SG 12 February 2014!31

32 For cavity opto-mechanics with degenerate Fermi gas see Kanamoto, Meystre (PRL, 2010)

33

34

35 A schematic introduction to Bosonization for one dimensional fermions In one dimension kf=πn0 The low energy long wavelength theory for a one dimensional system of fermions Can be written in terms of particle-hole excitation about the Fermi points that are bosonic in nature and obeys linear dispersion C. Kane, Boulder Lectures

36 More mathematical introduction to Bosonization There are many resources on this theory: just type review articles on bosonization for one dimensional fermions in Google.

37 Landau Level Bosonization : Schematics n=3 +kf B n=1 n=2 H Westfahl et Al. PRB, 55, R7347 (1997) -kf n=0!37

38

39

40 Analogue of Shubnikov de Hass oscillation for neutral atoms

41

42 Oscillations again

43

44

45 BISTABLE CAVITY TRANSMISSION WITH SYNTHETIC MAGNETIC FIELD Cavity relaxation rate Padhi and Ghosh, Phys. Rev. Lett. 111, (2013) Phys. Rev. Lett. 111, (2013)

46

47 Thank You! Ph. D. positions are available!47

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

From cavity optomechanics to the Dicke quantum phase transition

From cavity optomechanics to the Dicke quantum phase transition From cavity optomechanics to the Dicke quantum phase transition (~k; ~k)! p Rafael Mottl Esslinger Group, ETH Zurich Cavity Optomechanics Conference 2013, Innsbruck Motivation & Overview Engineer optomechanical

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

BEC meets Cavity QED

BEC meets Cavity QED BEC meets Cavity QED Tilman Esslinger ETH ZürichZ Funding: ETH, EU (OLAQUI, Scala), QSIT, SNF www.quantumoptics.ethz.ch Superconductivity BCS-Theory Model Experiment Fermi-Hubbard = J cˆ ˆ U nˆ ˆ i, σ

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016 Ana Maria Rey Okinawa School in Physics 016: Coherent Quantum Dynamics Okinawa, Japan, Oct 4-5, 016 What can we do with ultra-cold matter? Quantum Computers Lecture II-III Clocks and sensors Synthetic

More information

Optical Flux Lattices for Cold Atom Gases

Optical Flux Lattices for Cold Atom Gases for Cold Atom Gases Nigel Cooper Cavendish Laboratory, University of Cambridge Artificial Magnetism for Cold Atom Gases Collège de France, 11 June 2014 Jean Dalibard (Collège de France) Roderich Moessner

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

Informal Workshop on Cold atoms and Quantum Simulations. Monday 3 and Tuesday 4 December Program. Monday, December 3

Informal Workshop on Cold atoms and Quantum Simulations. Monday 3 and Tuesday 4 December Program. Monday, December 3 Informal Workshop on Cold atoms and Quantum Simulations Monday 3 and Tuesday 4 December 2012 Venue: Department of Theoretical Physics and History of Science UPV/EHU, Seminar room Program Monday, December

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

What are we going to talk about: BEC and Nonlinear Atom Optics

What are we going to talk about: BEC and Nonlinear Atom Optics What are we going to talk about: BEC and Nonlinear Atom Optics Nobel Prize Winners E. A. Cornell 1961JILA and NIST Boulder, Co, USA W. Ketterle C. E. Wieman 19571951MIT, JILA and UC, Cambridge.M Boulder,

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang QC12, Pohang, Korea Experimental realization of spin-orbit coupling in degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

More information

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang Hangzhou Workshop on Quantum Matter, 2013 Experimental realization of spin-orbit coupled degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Thermalisation and vortex formation in a mechanically perturbed condensate. Vortex Lattice Formation. This Talk. R.J. Ballagh and Tod Wright

Thermalisation and vortex formation in a mechanically perturbed condensate. Vortex Lattice Formation. This Talk. R.J. Ballagh and Tod Wright Thermalisation and vortex formation in a mechanically perturbed condensate Jack Dodd Centre ACQAO R.J. Ballagh and Tod Wright Jack Dodd centre for Photonics and Ultra-cold Atoms Department of Physics University

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Experimental realization of Bose Einstein condensation (BEC) of dilute atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley, et al. (1995, 1997)] has ignited a virtual explosion of research.

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS Artificial gauge potentials for neutral atoms Fabrice Gerbier Workshop Hadrons and Nuclear Physics meet ultracold atoms, IHP, Paris January

More information

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Gunnar Möller & Nigel R Cooper Cavendish Laboratory, University of Cambridge Physical Review Letters 108, 043506 (2012) LPTHE / LPTMC

More information

February 15, Kalani Hettiarachchi. Collaborators: Valy Rousseau Ka-Ming Tam Juana Moreno Mark Jarrell

February 15, Kalani Hettiarachchi. Collaborators: Valy Rousseau Ka-Ming Tam Juana Moreno Mark Jarrell February 15, 2015 Kalani Hettiarachchi Collaborators: Valy Rousseau Ka-Ming Tam Juana Moreno Mark Jarrell Cold Atoms Ø On Surface of Sun: Miss many aspects of nature Ø Surface of Earth: Different states

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

Many-Body Physics with Quantum Gases

Many-Body Physics with Quantum Gases Many-Body Physics with Quantum Gases Christophe Salomon Okinawa Summer school on quantum dynamics September 26-October 6, 2017 Ecole Normale Supérieure, Paris Summary of lectures Quantum simulation with

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

Measuring atomic NOON-states and using them to make precision measurements

Measuring atomic NOON-states and using them to make precision measurements Measuring atomic NOON-states and using them to make precision measurements David W. Hallwood, Adam Stokes, Jessica J. Cooper and Jacob Dunningham School of Physics and Astronomy, University of Leeds, Leeds,

More information

Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence.

Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence. Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence. Kirk Madison Vincent Bretin Frédéric Chevy Peter Rosenbuch Wendel Wohlleben Jean Dalibard

More information

Topology and many-body physics in synthetic lattices

Topology and many-body physics in synthetic lattices Topology and many-body physics in synthetic lattices Alessio Celi Synthetic dimensions workshop, Zurich 20-23/11/17 Synthetic Hofstadter strips as minimal quantum Hall experimental systems Alessio Celi

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Explana'on of the Higgs par'cle

Explana'on of the Higgs par'cle Explana'on of the Higgs par'cle Condensed ma7er physics: The Anderson- Higgs excita'on Press release of Nature magazine Unity of Physics laws fev pev nev µev mev ev kev MeV GeV TeV pk nk µk mk K Cold atoms

More information

Strongly correlated systems: from electronic materials to cold atoms

Strongly correlated systems: from electronic materials to cold atoms Strongly correlated systems: from electronic materials to cold atoms Eugene Demler Harvard University Collaborators: E. Altman, R. Barnett, I. Cirac, L. Duan, V. Gritsev, W. Hofstetter, A. Imambekov, M.

More information

Exotic superfluidity in optical lattices

Exotic superfluidity in optical lattices Universität Hamburg Exotic superfluidity in optical lattices Andreas Hemmerich when bosons condense in excited states AH 11/13! Optical lattice = Ultracold atoms in a lattice made of light How cold is

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture. Nanoelectronics 14 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 27/February/2018 (P/T 005) Quick Review over the Last Lecture Function Fermi-Dirac distribution f ( E) = 1 exp E µ [( ) k B

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Measuring entanglement in synthetic quantum systems

Measuring entanglement in synthetic quantum systems Measuring entanglement in synthetic quantum systems ψ?? ψ K. Rajibul Islam Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo research.iqc.uwaterloo.ca/qiti/

More information

sun surface water boiling water freezing liquid nitrogen cosmic background radiation superfluidity, superconductivity laser cooling

sun surface water boiling water freezing liquid nitrogen cosmic background radiation superfluidity, superconductivity laser cooling Fasi quantistiche della materia verso lo zero assoluto SIF Napoli, 20 settembre 2012 Massimo Inguscio Dipartimento di Fisica e Astronomia & LENS Università di Firenze INO-CNR Verso lo zero assoluto...

More information

III.3 Transport mésoscopique et effets thermoélectriques dans les gaz atomiques ultra-froids

III.3 Transport mésoscopique et effets thermoélectriques dans les gaz atomiques ultra-froids Chaire de Physique de la Matière Condensée III.3 Transport mésoscopique et effets thermoélectriques dans les gaz atomiques ultra-froids Antoine Georges Cycle 2014-2015 1 er juin 2015 III.3 Ultra-Cold Atomic

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions Lecture 4 Bose Einstein condensate (BEC) Optical lattices Nano in Dubna and Russia Conclusions Bose Einstein condensate (BEC) - definition -history - main characteristics - laser cooling - role of interaction

More information

The Remarkable Bose-Hubbard Dimer

The Remarkable Bose-Hubbard Dimer The Remarkable Bose-Hubbard Dimer David K. Campbell, Boston University Winter School, August 2015 Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory International Institute

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 17 Dec 2003

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 17 Dec 2003 Quantum fluctuations of a vortex in an optical lattice arxiv:cond-mat/37v [cond-mat.stat-mech] 7 Dec 3 J.-P. Martiainen and H. T. C. Stoof Institute for Theoretical Physics, Utrecht University, Leuvenlaan

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 1, 2014 2 Synopsis. This course reviews recent progress in

More information

CURRICULUM VITAE (Last update: April, 2014)

CURRICULUM VITAE (Last update: April, 2014) CURRICULUM VITAE (Last update: April, 2014) Name : Sankalpa Ghosh Address for Correspondence : Department of Physics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110067, India. Phone: (+91)

More information

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas:

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas: Lecture 1 2D quantum gases: the static case Low dimension quantum physics Quantum wells and MOS structures Jean Dalibard, Laboratoire Kastler Brossel*, ENS Paris * Research unit of CNRS, ENS, and UPMC

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Lecture 3 : ultracold Fermi Gases

Lecture 3 : ultracold Fermi Gases Lecture 3 : ultracold Fermi Gases The ideal Fermi gas: a reminder Interacting Fermions BCS theory in a nutshell The BCS-BEC crossover and quantum simulation Many-Body Physics with Cold Gases Diluteness:

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

Quantum Oscillations in underdoped cuprate superconductors

Quantum Oscillations in underdoped cuprate superconductors Quantum Oscillations in underdoped cuprate superconductors Aabhaas Vineet Mallik Journal Club Talk 4 April, 2013 Aabhaas Vineet Mallik (Journal Club Talk) Quantum Oscillations in underdoped cuprate superconductors

More information

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice Nature 462, 74 77 (5 November 2009) Team 6 Hyuneil Kim Zhidong Leong Yulia Maximenko Jason Merritt 1 Outline Background

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Measuring Entanglement Entropy in Synthetic Matter

Measuring Entanglement Entropy in Synthetic Matter Measuring Entanglement Entropy in Synthetic Matter Markus Greiner Harvard University H A R V A R D U N I V E R S I T Y M I T CENTER FOR ULTRACOLD ATOMS Ultracold atom synthetic quantum matter: First Principles

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

Topological Bandstructures for Ultracold Atoms

Topological Bandstructures for Ultracold Atoms Topological Bandstructures for Ultracold Atoms Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106,

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Leonardo Mazza Scuola Normale Superiore, Pisa Seattle March 24, 2015 Leonardo Mazza (SNS) Exotic Phases in Alkaline-Earth Fermi

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

Quantum Many-Body Phenomena in Arrays of Coupled Cavities

Quantum Many-Body Phenomena in Arrays of Coupled Cavities Quantum Many-Body Phenomena in Arrays of Coupled Cavities Michael J. Hartmann Physik Department, Technische Universität München Cambridge-ITAP Workshop, Marmaris, September 2009 A Paradigm Many-Body Hamiltonian:

More information

First Program & Quantum Cybernetics

First Program & Quantum Cybernetics First Program & Quantum Cybernetics 15 December 2011 Kyoto Development of Optical Lattice Quantum Simulator Kyoto University, JST Y. Takahashi First Program : Analogue Quantum Computer/Quantum Simulation

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Basic concepts of cold atomic gases

Basic concepts of cold atomic gases ECT* Workshop January 2015 Basic concepts of cold atomic gases Franco Dalfovo INO-CNR BEC Center Dipartimento di Fisica, Università di Trento Plan for the lectures: v Cold gases and BEC v Order parameter

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

Ultracold Atoms in optical lattice potentials

Ultracold Atoms in optical lattice potentials ICTP SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 2005 Ultracold Atoms in optical lattice potentials Experiments at the interface between atomic physics and condensed

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information