Multifunctional bi-continuous composite foams with ultralow percolation thresholds

Similar documents
Supporting Information for

Supporting Information

Graphene Aerogel Composites Derived From Recycled. Cigarette Filter for Electromagnetic Wave Absorption

Supporting Information

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Supporting Information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Tuning the Shell Number of Multi-Shelled Metal Oxide. Hollow Fibers for Optimized Lithium Ion Storage

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

Supporting Information

Electronic Supplementary Information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with. Gui-Xiang Huang, Chu-Ya Wang, Chuan-Wang Yang, Pu-Can Guo, Han-Qing Yu*

Supporting Information

Supporting Infromation

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Supporting Information

An Advanced Anode Material for Sodium Ion. Batteries

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Supporting Information

Supporting Information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Supporting Information

Supporting Information

for highly efficient and stable corrosive-water evaporation

Self-floating nanostructural Ni-NiO x /Ni foam for solar thermal water evaporation

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Supporting Information. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst

Supporting Information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires. by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts

Supporting Information

Supporting information

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite

In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for Highperformance All-Solid-State Pseudocapacitor

Supporting Information

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries

Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities

Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation

High-performance Supercapacitors Based on Electrochemicalinduced. Vertical-aligned Carbon Nanotubes and Polyaniline

MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS

Supporting Information

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion

Supporting Information

Electronic Supplementary Information

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction

Electronic Supporting Information

Supporting Information

Supporting Information. Unique Core-Shell Concave Octahedron with Enhanced Methanol Oxidation Activity

Supporting Information

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Supporting Information for

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supporting Information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Cloth for High-Efficient Electrocatalytic Urea Oxidation

Supporting Information

Supporting information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Supporting Information

Electronic Supplementary Information

bifunctional electrocatalyst for overall water splitting

Supporting Information

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Supporting Information

Supporting Information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Supporting information

Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO x Hole Contacts

Bioinspired Cobalt-Citrate Metal-Organic Framework as An Efficient Electrocatalyst for Water Oxidation

Supporting Information

One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for. electrocatalytic nitrogen reduction to ammonia

Bimetallic Thin Film NiCo-NiCoO as Superior Bifunctional Electro- catalyst for Overall Water Splitting in Alkaline Media

Electronic Supplementary Information

Supplementary Information for

Supporting Information. Supercapacitors

Supporting Information. Oxalate-Assisted Formation of Uniform Carbon-Confined SnO 2 Nanotubes with Enhanced Lithium Storage

Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric

Supporting Information. High-Performance Graphene Sponges Reinforced with Polyimide for. Room Temperature Piezoresistive Sensing

Supporting information

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Transcription:

Supporting Information for Multifunctional bi-continuous composite foams with ultralow percolation thresholds Jiabin Xi 1,, Yingjun Liu 1,, Ying Wu 1,4, Jiahan Hu 1, Weiwei Gao 1, Erzhen Zhou 1,3, Honghui Chen 2, Zichen Chen 3, Yongsheng Chen 2 & Chao Gao 1, * 1 MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China 2 The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China. 3 Department of Mechanical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China 4 School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China E-mail: chaogao@zju.edu.cn The authors contributed equally to this paper. S-1

Figure S1. SEM images of (a) the surface of gbccf-3, and (b) interior of the gbccf-3 with a thickness of 10 mm. S-2

Figure S2. Linear contraction ratios, calculated by (1-original volume/volume after annealing) 1/3, of BCCFs after 1000 C treatment. S-3

Figure S3. Structural model of BCCFs for calculation of percolation thresholds In this structural model, the pores inner the BCCFs are deemed as hollow cubic boxes which are surrounded by the graphene sheets. The lateral size of the graphene boxes are denoted as w, which corresponds to the lateral size of graphene sheets in BCCFs. We assume that the percolation network is formed when the graphene sheets can construct such structural model. Therefore, the percolation threshold of graphene in this model is 100 3 vol % 300 vol % Where Φ c is the percolation threshold, l is the thickness of graphene (0.334 nm), w is the lateral size of graphene sheets (50 10 3 nm). Therefore, the theoretical percolation threshold of gbccfs is 0.002 vol%. S-4

Figure S4. Strain-stress curves of (a) MF and BCCFs; and (b) GAs. S-5

Figure S5. RL curves of (a) sbccf-3; (b) sbccf-5; (c) gbccf-1; and (d) gbccf-7. S-6

Figure S6. Real and imaginary permittivity of (a,b) gbccf-1, and (c,d) gbccf-5 with different compression ratios. S-7

Figure S7. RL curves of gbccf-5 with different compression ratio at an original thickness of 6 mm. S-8

Figure S8. (a) Real and (b) imaginary permittivity curves of gbccf-3 at different compression cycles. S-9

Table S1. Filler content, volume fraction and density of BCCF samples Graphene filler content (mg cm -3 ) Graphene volume fraction vol% MFs BCCF-0.1 BCCF-0.2 BCCF-0.5 BCCF-1 BCCF-3 BCCF-5 BCCF-7 0 0.07 0.14 0.34 0.68 2.04 3.40 4.76 0 0.003 0.006 0.015 0.031 0.093 0.155 0.216 Density (mg cm -3 ) 10.00 10.07 10.14 10.34 10.68 12.04 13.40 14.76 S-10

Table S2. Comparison of microwave absorption performance of BCCFs are previous works. Category of functional fillers Carbon Carbon-magnetic composites Thick- Filler fraction Tested frequency range materials ness wt% (GHz) (mm) RL max Absorption bandwidth (db) (GHz) gbccf-5 0.34 4 2-18 -35 9.0 (9.0-18) gbccf-3 0.20 10 2-18 -13 8.1 (4.3-9.1, 14.7-18) Refs This work Carbon nanotube-graphene foam 0.16 10 2-18 -39.5 16 (2-18) 1 Graphene foam 0.14 9-10 2-18 -30.5 13.9 (4.1-18) 2 HCNFs/CF 15 2.5 2-18 -32 9.8 (9.2-18) 3 Carbon coils CFs 10 3.0 2-18 -30 9.6 (8.4-18) 4 Graphene networks 1 3.5 2-18 -44.5 7.5 (9.3-16.8) 5 Cross-stacking aligned CNT films coated with PANI 70 2.0 2-18 -47.7 4.4 (10.8-15.2) 6 SWCNTs 5 2.0 2-18 -21.9 2.6 (7.5-10.1) 7 Graphene/CuS 5 2.5 2-18 -32.8 2.6 (8.8-12.4) 8 Carbon foam composite 20 2.5 2-18 -45.12 2.5 (6.9-9.4) 9 Cl-CF 67 1 2-18 -12 10 (8-18) 10 Graphite-coated FeNi 40 2.5 2-18 -23 8.5 (9.5 18.0) 11 G-Fe 3 O 4 -Fe-ZnO 20 2.5 2-18 -32.5 6.8 (11.2-18.0) 12 (Fe, Ni-C) nanocapsules 40 2.0 2-18 -26.9 5.7 (12.3 18.0) 13 Cr-Graphene 2.0 32.4 2-18 -32.4 5.6 (12.4 18) 14 Graphene-Fe3O4-SiO2-NiO 25 1.8 2-18 -51.5 5.3 (12.3 17.6) 15 Graphene/MnFe2O4 5 3.0 2-18 -29.0 4.9 (8.0 12.9) 16 Fe3O4-Carbon nanorods 55 2.0 2-18 -27.9 4.7 (13.1-17.8) 17 SiO 2 -Fe 3 O 4 core/shell nanorod array/graphene 20 3.5 2-18 -23.5 4.7 (8.0-12.7) 18 rgo/fe 3 O 4 50 1.7 2-18 -65.1 4.6 (13.4-18) 19 S-11

Graphene/Fe 20 2.5 2-18 -31.5 4.5 (12-16.5) 20 Graphene/carbonyl iron 60 3 2-18 -52.46 4.2 (7.8-12.0) 21 FeCo/C/BaTiO3 40 2 2-18 -41.7 4.2 (9.8-14.0) 22 GN pfe3o4-zno 30 3.0 2-18 -33.8 4.0 (3.7-5.2, 13.3-15.8) 23 Fe3O4-Al2O3-CNCs 25 2.0 2-18 -28.3 3.5 (10.5-14.0) 24 Fe 3 O 4 -graphene 10 3 2-18 ~-21 3.5 (7-10.5) 25 PEDOT-graphene-Co3O4 50 2 2-18 -51.1 3.1 (9.4-12.5) 26 Fe 3 O 4 /graphene 15 1.48 2-18 -30.1 3 (15-18) 27 graphene/poly (3,4-ethylenedioxythiophene) 50 2.9 2-18 -56.5 3 (7.6-10.6) 28 Conductive polymer Conductive polymer-magnetic composites Inorganic dielectric or magnetic materials /Fe 3 O 4 Laminated graphene/ Fe 3 O 4 40 2 2-18 -15.38 2.8 (10.4-13.2) 29 -Fe2O3/MWNTs/PBO 12 2.7 2-18 -32.7 2.7 (11.2-13.9) 30 polypyrrole aerogel 7 2.5 2-18 ~-24 6.20 (10.72-16.92) 31 PEDOT Nanofiber-Graphene 25 2 2-18 -48.1 3.1 (9.2-12.3) 32 Fe 3 O 4 -PEDOT 50 vol% 2.5 1-18 -29 7.2 (10.3-17.5) 33 PANI-BaFe11Ti0.5Co0.5O19 50 2 2-18 -32.5 5.4 (12.1 17.5) 34 PS-P(Py-PyCOOH)-Ni 50 2 1-18 -20.1 4.59 (9.16 13.75) 35 M-BaFe12O19 50 vol% 2 2-18 -28.5 8.7 (9.3-18) 36 Co-CoO 50 1.3 2-18 -90.2 7.2 (10.8-18) 37 Hollow CdSe 70 4 2-18 -31 3.6 (4.0-6.6, 17.0-18) 38 3.1 (3.6-5.4, Fe3O4@SnO2 nanorods 80 4.0 2-18 -27.4 16.2-17.5) 39 BaTiO3 nano-torus 16.7 2.8 2-18 -28.4 3.0 (10.1-13.1) 40 (Mn0.5Co0.5)3O4 16.7 2.5 2-18 -20.7 3.0 (7.4-10.4) 41 BaTiO3 nanowire 16.7 3.0 2-18 -24.6 2.4 (8.0-10.4) 42 TiN 45 3 2-18 -27 1.4 (6.1-7.5) 43 S-12

REFERENCES (1) Chen, H.; Huang, Z.; Huang, Y.; Zhang, Y.; Ge, Z.; Qin, B.; Liu, Z.; Shi, Q.; Xiao, P.; Yang, Y.; Zhang, T.; Chen, Y., Synergistically Assembled MWCNT/Graphene Foam with Highly Efficient Microwave Absorption in Both C and X Bands. Carbon 2017, 124, 506-514. (2) Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y., Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam. Adv. Mater. 2015, 27, 2049-2053. (3) Liu, L.; He, P.; Zhou, K.; Chen, T., Microwave Absorption Properties of Helical Carbon Nanofibers-Coated Carbon Fibers. AIP Adv. 2013, 3, 082112. (4) Liu, L.; He, P.; Zhou, K.; Chen, T., Microwave Absorption Properties of Carbon Fibers with Carbon Coils of Different Morphologies (Double Microcoils and Single Nanocoils) Grown on Them. J. Mater. Sci. 2014, 49, 4379-4386. (5) Liu, W.; Li, H.; Zeng, Q.; Duan, H.; Guo, Y.; Liu, X.; Sun, C.; Liu, H., Fabrication of Ultralight Three-Dimensional Graphene Network with Strong Electromagnetic Wave Absorption Properties. J. Mater. Chem. A 2015, 3, 3739-3747. (6) Sun, H.; Che, R.; You, X.; Jiang, Y.; Yang, Z.; Deng, J.; Qiu, L.; Peng, H., Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities. Adv. Mater. 2014, 26, 8120-8125. (7) Liu, Z.; Bai, G.; Huang, Y.; Li, F.; Ma, Y.; Guo, T.; He, X.; Lin, X.; Gao, H.; Chen, Y., Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites. J. Phys. Chem. C 2007,111, 13696-13700. (8) Zhang, X.-J.; Wang, G.-S.; Wei, Y.-Z.; Guo, L.; Cao, M.-S., Polymer-Composite with High Dielectric Constant and Enhanced Absorption Properties Based on Graphene CuS Nanocomposites and Polyvinylidene Fluoride. J. Mater. Chem. A 2013, 1, 12115-12122. (9) Wang, C.; Ding, Y.; Yuan, Y.; He, X.; Wu, S.; Hu, S.; Zou, M.; Zhao, W.; Yang, L.; Cao, A.; Li, Y., Graphene Aerogel Composites Derived from Recycled Cigarette Filters for Electromagnetic Wave Absorption. J. Mater. Chem. C 2015, 3, 11893-11901. (10) Qing, Y. C.; Zhou, W. C.; Jia, S.; Luo, F.; Zhu, D. M., Electromagnetic and Microwave Absorption Properties of Carbonyl Iron and Carbon Fiber Filled Epoxy/Silicone Resin Coatings. Appl. Phys. A 2010, 100, 1177-1181. (11) Liu, X. G.; Ou, Z. Q.; Geng, D. Y.; Han, Z.; Jiang, J. J.; Liu, W.; Zhang, Z. D., Influence of a Graphite Shell on the Thermal and Electromagnetic Characteristics of FeNi Nanoparticles. Carbon 2010, 48, 891-897. (12) Ren, Y.-L.; Wu, H.-Y.; Lu, M.-M.; Chen, Y.-J.; Zhu, C.-L.; Gao, P.; Cao, M.-S.; Li, C.-Y.; Ouyang, Q.-Y., Quaternary Nanocomposites Consisting of Graphene, Fe 3 O 4 @Fe core@shell, and ZnO Nanoparticles: Synthesis and Excellent Electromagnetic Absorption Properties. ACS Appl. Mater. Interfaces 2012, 4, 6436-6442. (13) Liu, X. G.; Li, B.; Geng, D. Y.; Cui, W. B.; Yang, F.; Xie, Z. G.; Kang, D. J.; Zhang, Z. D., (Fe, Ni)/C Nanocapsules for Electromagnetic-Wave-Absorber in the Whole Ku-Band. Carbon 2009, 47, 470-474. (14) Bai, X.; Zhai, Y.; Zhang, Y., Green Approach to Prepare Graphene-Based Composites with High Microwave Absorption Capacity. J. Phys. Chem. C 2011, 115, 11673-11677. (15) Wang, L.; Huang, Y.; Sun, X.; Huang, H.; Liu, P.; Zong, M.; Wang, Y., Synthesis and S-13

Microwave Absorption Enhancement of Graphene@Fe 3 O 4 @SiO 2 @NiO Nanosheet Hierarchical Structures. Nanoscale 2014, 6, 3157-3164. (16) Zhang, X.-J.; Wang, G.-S.; Cao, W.-Q.; Wei, Y.-Z.; Liang, J.-F.; Guo, L.; Cao, M.-S., Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RGO)-MnFe 2 O 4 Nanocomposites and Polyvinylidene Fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471-7478. (17) Chen, Y.-J.; Xiao, G.; Wang, T.-S.; Ouyang, Q.-Y.; Qi, L.-H.; Ma, Y.; Gao, P.; Zhu, C.-L.; Cao, M.-S.; Jin, H.-B., Porous Fe 3 O 4 /Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties. J. Phys. Chem. C 2011, 115, 13603-13608. (18) Ren, Y.; Zhu, C.; Zhang, S.; Li, C.; Chen, Y.; Gao, P.; Yang, P.; Ouyang, Q., Three-Dimensional SiO 2 @Fe 3 O 4 Core/Shell Nanorod Array/Graphene Architecture: Synthesis and Electromagnetic Absorption Properties. Nanoscale 2013, 5, 12296-12303. (19) Yin, Y.; Zeng, M.; Liu, J.; Tang, W.; Dong, H.; Xia, R.; Yu, R., Enhanced High-Frequency Absorption of Anisotropic Fe 3 O 4 /Graphene Nanocomposites. Sci. Rep. 2016, 6. (20) Chen, Y.; Lei, Z.; Wu, H.; Zhu, C.; Gao, P.; Ouyang, Q.; Qi, L.-H.; Qin, W., Electromagnetic Absorption Properties of Graphene/Fe Nanocomposites. Mater. Res. Bull. 2013, 48, 3362-3366. (21) Zhu, Z.; Sun, X.; Xue, H.; Guo, H.; Fan, X.; Pan, X.; He, J., Graphene Carbonyl Iron Cross-Linked Composites with Excellent Electromagnetic Wave Absorption Properties. J. Mater. Chem. C 2014, 2, 6582-6591. (22) Jiang, J.; Li, D.; Geng, D.; An, J.; He, J.; Liu, W.; Zhang, Z., Microwave Absorption Properties of Core Double-Shell FeCo/C/BaTiO 3 Nanocomposites. Nanoscale 2014, 6, 3967-3971. (23) Sun, D.; Zou, Q.; Wang, Y.; Wang, Y.; Jiang, W.; Li, F., Controllable Synthesis of Porous Fe 3 O 4 @ZnO Sphere Decorated Graphene for Extraordinary Electromagnetic Wave Absorption. Nanoscale 2014, 6, 6557-6562. (24) Wang, G.; Gao, Z.; Tang, S.; Chen, C.; Duan, F.; Zhao, S.; Lin, S.; Feng, Y.; Zhou, L.; Qin, Y., Microwave Absorption Properties of Carbon Nanocoils Coated with Highly Controlled Magnetic Materials by Atomic Layer Deposition. ACS Nano 2012, 6, 11009-11017. (25) Zhang, L.; Yu, X.; Hu, H.; Li, Y.; Wu, M.; Wang, Z.; Li, G.; Sun, Z.; Chen, C., Facile Synthesis of Iron Oxides/Reduced Graphene Oxide Composites: Application for Electromagnetic Wave Absorption at High Temperature. Sci. Rep. 2015, 5. (26) Liu, P.-B.; Huang, Y.; Sun, X., Excellent Electromagnetic Absorption Properties of Poly(3,4-Ethylenedioxythiophene)-Reduced Graphene Oxide Co 3 O 4 Composites Prepared by a Hydrothermal Method. ACS Appl. Mater. Interfaces 2013, 5, 12355-12360. (27) Liu, X.; Guo, H.; Xie, Q.; Luo, Q.; Wang, L.-S.; Peng, D.-L., Enhanced Microwave Absorption Properties in GHz Range of Fe 3 O 4 /C Composite Materials. J. Alloys Compd. 2015, 649, 537-543. (28) Li, X.; Yi, H.; Zhang, J.; Feng, J.; Li, F.; Xue, D.; Zhang, H.; Peng, Y.; Mellors, N. J., Fe 3 O 4 Graphene Hybrids: Nanoscale Characterization and their Enhanced Electromagnetic Wave Absorption in Gigahertz Range. J. Nanopart. Res. 2013, 15. (29) Sun, X.; He, J.; Li, G.; Tang, J.; Wang, T.; Guo, Y.; Xue, H., Laminated Magnetic Graphene with Enhanced Electromagnetic Wave Absorption Properties. J. Mater. Chem. C 2013, 1, 765-777. (30) Chen, Y.; Liu, X.; Mao, X.; Zhuang, Q.; Xie, Z.; Han, Z., γ-fe 2 O 3 S-14

MWNT/Poly(p-Phenylenebenzobisoxazole) Composites with Excellent Microwave Absorption Performance and Thermal Stability. Nanoscale 2014, 6, 6440-6447. (31) Xie, A.; Wu, F.; Sun, M.; Dai, X.; Xu, Z.; Qiu, Y.; Wang, Y.; Wang, M., Self-Assembled Ultralight Three-Dimensional Polypyrrole Aerogel for Effective Electromagnetic Absorption. Appl. Phys. Lett. 2015, 106, 222902. (32) Zhang, X.; Huang, Y.; Liu, P., Enhanced Electromagnetic Wave Absorption Properties of Poly(3,4-Ethylenedioxythiophene) Nanofiber-Decorated Graphene Sheets by Non-Covalent Interactions. Nano-Micro Lett. 2015, 8, 131-136. (33) Zhou, W.; Hu, X.; Bai, X.; Zhou, S.; Sun, C.; Yan, J.; Chen, P., Synthesis and Electromagnetic, Microwave Absorbing Properties of Core Shell Fe 3 O 4 Poly(3,4-Ethylenedioxythiophene) Microspheres. ACS Appl. Mater. Interfaces 2011, 3, 3839-3845. (34) Du, L.; Du, Y.; Li, Y.; Wang, J.; Wang, C.; Wang, X.; Xu, P.; Han, X., Surfactant-Assisted Solvothermal Synthesis of Ba(CoTi) x Fe 12 2x O 19 Nanoparticles and Enhancement in Microwave Absorption Properties of Polyaniline. J. Phys. Chem. C 2010, 114, 19600-19606. (35) Li, W.; Qiu, T.; Wang, L.; Ren, S.; Zhang, J.; He, L.; Li, X., Preparation and Electromagnetic Properties of Core/Shell Polystyrene@Polypyrrole@Nickel Composite Microspheres. ACS Appl. Mater. Interfaces 2013, 5, 883-891. (36) Li, L.; Chen, K.; Liu, H.; Tong, G.; Qian, H.; Hao, B., Attractive Microwave-Absorbing Properties of M-BaFe 12 O 19 Ferrite. J. Alloys Compd. 2013, 557, 11-17. (37) Liu, T.; Pang, Y.; Zhu, M.; Kobayashi, S., Microporous Co@CoO Nanoparticles with Superior Microwave Absorption Properties. Nanoscale 2014, 6, 2447-2454. (38) Cao, M.; Lian, H.; Hu, C., Ligand-Assisted Fabrication of Hollow CdSe Nanospheres via Ostwald Ripening and their Microwave Absorption Properties. Nanoscale 2010, 2, 2619-2623. (39) Chen, Y. J.; Gao, P.; Wang, R. X.; Zhu, C. L.; Wang, L. J.; Cao, M. S.; Jin, H. B., Porous Fe 3 O 4 /SnO 2 Core/Shell Nanorods: Synthesis and Electromagnetic Properties. J. Phys. Chem. C 2009, 115(28), 10061-10064. (40) Xia, F.; Liu, J.; Gu, D.; Zhao, P.; Zhang, J.; Che, R., Microwave Absorption Enhancement and Electron Microscopy Characterization of BaTiO 3 Nano-Torus. Nanoscale 2011, 3, 3860-3867. (41) Zhao, P.; Liang, C.; Gong, X.; Gao, R.; Liu, J.; Wang, M.; Che, R., Microwave Absorption Enhancement, Magnetic Coupling and AB Initio Electronic Structure of Monodispersed (Mn 1 x Co x ) 3 O 4 Nanoparticles. Nanoscale 2013, 5, 8022-8028. (42) Yang, J.; Zhang, J.; Liang, C.; Wang, M.; Zhao, P.; Liu, M.; Liu, J.; Che, R., Ultrathin BaTiO 3 Nanowires with High Aspect Ratio: a Simple One-Step Hydrothermal Synthesis and their Strong Microwave Absorption. ACS Appl. Mater. Interfaces 2013, 5, 7146-7151. (43) Gong, C.; Zhang, J.; Yan, C.; Cheng, X.; Zhang, J.; Yu, L.; Jin, Z.; Zhang, Z., Synthesis and Microwave Electromagnetic Properties of Nanosized Titanium Nitride. J. Mater. Chem. 2012, 22, 3370-3376. S-15