Semiconductors a brief introduction

Similar documents
FYS Vår 2016 (Kondenserte fasers fysikk)

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Intrinsic Carrier Concentration

Lecture 10: P-N Diodes. Announcements

Electrical Resistance

1. pn junction under bias 2. I-Vcharacteristics

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is:

Doped semiconductors: donor impurities

Basic Physics of Semiconductors

Chapter 2 Motion and Recombination of Electrons and Holes

Semiconductor Electronic Devices

Basic Physics of Semiconductors

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5.

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19

Introduction to Solid State Physics

Semiconductors. PN junction. n- type

Chapter 2 Motion and Recombination of Electrons and Holes

Schottky diodes: I-V characteristics

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

2.CMOS Transistor Theory

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below.

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

Solid State Device Fundamentals

Lecture 5: HBT DC Properties. Basic operation of a (Heterojunction) Bipolar Transistor

EECS130 Integrated Circuit Devices

Diode in electronic circuits. (+) (-) i D

IV. COMPARISON of CHARGE-CARRIER POPULATION at EACH SIDE of the JUNCTION V. FORWARD BIAS, REVERSE BIAS

Introduction to Semiconductor Devices and Circuit Model

Lecture 2. Dopant Compensation

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T

Summary of pn-junction (Lec )

Semiconductor Statistical Mechanics (Read Kittel Ch. 8)

Nonequilibrium Excess Carriers in Semiconductors

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D

Solar Photovoltaic Technologies

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Bipolar Junction Transistors

Quiz #3 Practice Problem Set

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design

Overview of Silicon p-n Junctions

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Heterojunctions. Heterojunctions

Solid State Device Fundamentals

Complementi di Fisica Lecture 24

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation.

Monolithic semiconductor technology

Lecture 3. Electron and Hole Transport in Semiconductors

ECE 442. Spring, Lecture - 4

Solids - types. correlates with bonding energy

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities.

EE105 - Fall 2006 Microelectronic Devices and Circuits

There are 7 crystal systems and 14 Bravais lattices in 3 dimensions.

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors

Metal Gate. Insulator Semiconductor

ELECTRICAL PROPEORTIES OF SOLIDS

Bohr s Atomic Model Quantum Mechanical Model

MODULE 1.2 CARRIER TRANSPORT PHENOMENA

Photodiodes. 1. Current and Voltage in an Illuminated Junction 2. Solar Cells

Nanomaterials for Photovoltaics (v11) 6. Homojunctions

Valence band (VB) and conduction band (CB) of a semiconductor are separated by an energy gap E G = ev.

ECE606: Solid State Devices Lecture 12 (from17) High Field, Mobility Hall Effect, Diffusion

Nanostructured solar cell

Electrical conductivity in solids. Electronics and Microelectronics AE4B34EM. Splitting of discrete levels (Si) Covalent bond. Chemical Atomic bonds

Lecture #1 Nasser S. Alzayed.

Introduction to Microelectronics

Modulation Doping HEMT/HFET/MODFET

Chapter 5 Carrier transport phenomena

Digital Integrated Circuit Design

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write:

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells

ECE606: Solid State Devices Lecture 14 Electrostatics of p-n junctions

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain

ECE606: Solid State Devices Lecture 9 Recombination Processes and Rates

Monograph On Semi Conductor Diodes

Applied Electronic I. Lecture Note By Dereje K. Information: Critical. Source: Apple. Ref.: Apple. Ref.

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors

Physics Oct Reading

SECTION 2 Electrostatics

ECE606: Solid State Devices Lecture 8

Forward and Reverse Biased Junctions

The power of analytical spectroscopy

Consider the circuit below. We have seen this one already. As before, assume that the BJT is on and in forward active operation.

Micron School of Materials Science and Engineering. Problem Set 7 Solutions

Semiconductor Device Modeling and Characterization EE5342, Lecture 21 -Sp 2002

Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices

Electronics and Semiconductors

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I

Physics Methods in Art and Archaeology

Lecture 3-7 Semiconductor Lasers.

Physics 7440, Solutions to Problem Set # 8

Lecture 9. NMOS Field Effect Transistor (NMOSFET or NFET)

ECE606: Solid State Devices Lecture 20. Heterojunction Bipolar Transistor

EE 485 Introduction to Photonics Photon Optics and Photon Statistics

Chapter If n is odd, the median is the exact middle number If n is even, the median is the average of the two middle numbers

Phys 102 Lecture 25 The quantum mechanical model of light

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

Free electron gas. Nearly free electron model. Tight-binding model. Semiconductors

Transcription:

Semicoductors a brief itroductio Bad structure from atom to crystal Fermi level carrier cocetratio Dopig Readig: (Sedra/Smith 7 th editio) 1.7-1.9 Trasport (drift-diffusio) Hyperphysics (lik o course homepage) basic itroductio to semicoductors (almost o equatios) Moder lectroics: F1 semicoductors 1

Atomic eergy levels M Quatum mechaics: Wavefuctio gives describes probablility to fid electro M L K L K x 0.1 m 0.1 m Moder lectroics: F1 semicoductors 2

2-atomic molecule Pauli priciple Atoms share valece electros 0.2 m Overlappig Valece electros x x x Moder lectroics: F1 semicoductors 0.1 m 0.2 m 0.1 m 3

16-atomic molecule 0.4 m 0.4 m x x x,y,z Moder lectroics: F1 semicoductors 0.1 m 0.4 m 4

10 23 -atomic molecule eergy bads ~ 10 23 levels 1 cm x,y,z x 1 cm Moder lectroics: F1 semicoductors 0.1 m 5

Valece ad coductio bads Coductio bad Valece bad Valece Bad: The highest bad that has electros Coductio Bad: The ext bad with higher eergy Metal: The valece bad is partially filled with electros Semicoductor / Isulator: The valece bad is filled x,y,z Moder lectroics: F1 semicoductors 6

ergy (ev) metals semicoductors - isulators Metal Coductio bad semicoductors 0 < g < 4 ev Si: g =1.12 ev Ge: g =0.67 ev Ga: g =3.42 ev Coductio bad Coductio bad isulators g > 4eV SiO 2 : g =9 ev Diamod (C): g =5.5 ev Coductio bad g g Valece bad Valece bad Valece bad Valece bad Moder lectroics: F1 semicoductors 7 x

What materials are semicoductors? Two atom basis (4 eighbours) 4 ow valece electros III B IV C V total 8 shared electros i valece shell -> filled! Al Ga Si Ge P As 4+14=8 3+5=8 I S Sb C GaP Si Ge IAs S g 5.5 ev 2.24 ev 1.12 ev 0.67 ev 0.34 ev 0 Type isulator Semi cod uc tors metal Moder lectroics: F1 semicoductors 8

ergy (ev) Thermal excitatio ach electros gets (average) kietic eergy ki =3/2 kt A electro ca be excited to the coductio bad g Higher T or smaller g -> more electros electro desity i coductio bad = (cm -3 ) electro desity i valece bad = 10 24 - (cm -3 ) p (cm -3 ): hole desity i valece bad =p without dopig Moder lectroics: F1 semicoductors 9

ergy (ev) Thermal excitatio Fermi level Fermi-Dirac distributio: The probability of a electro at a eergy level. C f ( ) exp(( 1 F ) / kt ) 1 g F Higher T higher probability that a level i the coductio bad has a electro. V Symmetrical about F (Fermi eergy). 50% chace to have electro at F xcited electro leave a positive hole i valece bad 0 1 probability Moder lectroics: F1 semicoductors 10

Holes vs electros Istead of describig all electros remaiig i valece bad, positive holes (missig electros) are itroduced ad treated as particles. T > 0 K C V e electro (egative) hole (positive) Moder lectroics: F1 semicoductors 11

lectro trasport - Apply voltage -> electric field moves charged electros - Filled bad: ½ of electros move i oe directio, ½ of electros i the other. - eed to chage velocity of some electros to get curret but all states are filled i.e. eed electros i coductio bad. T 0 K e T >> 0 K e metal semicoductor semicoductor C C V V Partially filled bad o available eergy states to move to leads to zero curret Moder lectroics: F1 semicoductors 12

eergy Carrier cocetratio probability of occupyig a state x umber of = available states populatio of coductio bad c Fermi-Dirac distributio x desity of states = carrier cocetratio Moder lectroics: F1 semicoductors 13

ergy (ev) Carrier cocetratio - simplified exp v F C p v exp kt g F c F kt c V Igore real desity of states, itroduce C, V effective desity of states at bad edges (describes how dese levels are) (Si: c =3.2*10 19 cm -3 / v =1.8*10 19 cm -3 ) Moder lectroics: F1 semicoductors 14

Itrisic carrier cocetratio ach electro excited from the valece bad to the coductio bad become a free carrier available for coductio Itrisic semicoductor: - =p= i (itrisic carrier cocetratio) - F is i the middle of the bad gap i p c v exp 2kT g T=300K Si g =1.11eV i =110 10 cm -3 Ge g =0.67 ev i = 210 13 cm -3 Moder lectroics: F1 semicoductors 15

Dopig with door atoms: -type c +1 v III IV V x P atom 5 valece electros B Al C Si P Doates electro to the coductio bad (mobile) Ioized atom positive (immobile) Ga I Ge S As Sb Moder lectroics: F1 semicoductors 16

Dopig with acceptor atoms: p-type c -1 v III IV V x Al atom 3 valece electros B Al C Si P Captures electro -> extra hole to the valece bad (mobile) Ioized atom egative (immobile) Ga I Ge S As Sb Moder lectroics: F1 semicoductors 17

Dopig extrisic semicoductor p c v F exp( kt v exp( kt c F ) ) p c v exp kt g 2 i Mass actio law p 2 i Idepedet of dopig - D : door atom desity (cm -3 ) / A : acceptor atom desity (cm -3 ) - For D >> i ( A =0) the dopig domiates majority carrier cocetratio = D ad p= i2 / D Moder lectroics: F1 semicoductors 18

dopig carrier desity Fermi-Dirac Carrier coc. electros c Itrisic g Fi holes v 0 1 p -type (doors) F V Fi kt l D i p-type (acceptors) Fp V Fi kt l i A Moder lectroics: F1 semicoductors 19

dopig carrier desity Fermi-Dirac Carrier coc. electros c Itrisic g Fi holes v 0 1 p -type (doors) F F Fi kt l D i p-type (acceptors) Fp Fi kt l i A Moder lectroics: F1 semicoductors 20

dopig carrier desity Fermi-Dirac Carrier coc. electros c Itrisic g Fi holes v 0 1 p -type (doors) F F Fi kt l D i p-type (acceptors) Fp Fi kt l i A Moder lectroics: F1 semicoductors 21

Trasport - drift J J p J qp ε Hole curret desity (A/cm 2 ) J v d p q ε J p lectro curret desity (A/cm 2 ) e J q q p 1 p p p +V µ / µ p electro / hole mobility (cm 2 /Vs) / p electro / hole cocetratio (cm -3 ) =1/=coductivity (S/m) = resistivity (Ωm) C V Moder lectroics: F1 semicoductors 22

Trasport effect of dopig J qv d qµ e : cotrolled by dopig µ : determied by itrisic semicoductor properties + scatterig phoo scatterig -type p-type Ioized impurity scatterig Moder lectroics: F1 semicoductors 23

Moder lectroics: F1 semicoductors Velocity saturatio 24 - At high electric fields (ε c 1.5x10 6 V/m) electros ca emit optical phoos (lattice vibratios) -> velocity saturates sat c d c d c c d d v µ v µ v µ v qµ qv J e e e e e e e e e e e / 1 ) (

Trasport - diffusio - Radom thermal motio gives movemet of particles from high to low cocetratio - o exteral forces - o particle iteractio - Rate depeds o cocetratio gradiet Moder lectroics: F1 semicoductors 25

(m -3 ) Trasport - diffusio Diffusio curret give by gradiet of electro (or hole) cocetratio J qd d( x) dx q kt q µ d( x) dx qv T µ d( x) dx o additio/removal of carriers betwee 0 < x < L -> costat curret -> liear cocetratio decrease J (0)= 0 (x) (L)= L x Moder lectroics: F1 semicoductors 26

2 mi exercise drift/diffusio Later... positio positio Sketch carrier distributio later with 1. o electric field 2. -field i pos. directio (->) Moder lectroics: F1 semicoductors 27

Summary - Discrete atomic eergy levels become bads whe atoms are joied i a crystal. - Semicoductors = filled valece bad, o electros i coductio bad (at T=0). Bad gap with o allowed states. - Carrier cocetratio () = Fermi-dirac distributio * desity of states - Dopig: c kt Doors (group V): adds mobile egative electros ad positive static ios. Moves Fermi level towards coductio bad. Acceptors (group III): adds mobile positive holes ad egative static ios. Moves Fermi level towards valece bad. 2 p = D ad p= i2 / D for D >> i - Carrier trasport: Drift: electric field moves charged particles. Depeds o field stregth. Diffusio: radom motio moves particles from high to low cocetratio. Depeds o cocetratio gradiet. J J, drift J, diff q ε qd Moder lectroics: F1 semicoductors i d dx exp( F 28 c )

p- juctios Charge distributio -> electric field -> potetial Curret trasport Breakdow mechaisms Small-sigal model Depletio / diffusio capacitaces Readig: (Sedra/Smith 7 th editio) 1.10-1.12, 3.1-3.3 Moder lectroics: F1 semicoductors 29

Why p-juctios? -type diode LD Solar cell P-type mitter BJT Base -type P -type Collector MOSFT Source -type Gate P-type Drai -type Substrate Moder lectroics: F1 semicoductors 30

- type P - type electros electros c c g g holes v v holes D door cocetratio 0 electro (majority) cocetratio p 0 hole (miority) cocetratio lectros: mobile, egative Ioized doors: ot mobile, positive A acceptor cocetratio p p0 hole (majority) cocetratio p0 electro (miority) cocetratio holes: mobile, positive Ioized acceptors: ot mobile, egative Moder lectroics: F1 semicoductors 31

Recombiatio p 2 0 0 i I equilibrium Importat for base curret i BJTs If there is a excess umber free carrriers p > i2 electros ca recombie with holes to reach equilibrium 0 = D + 0 < D + C Three electros recombie leavig three positive ioized door atoms v p > p 0 Moder lectroics: F1 semicoductors 32

P-juctio bad structure d J dx + Positive door - egative Acceptor -type Free electros Free holes P-type c v Large coc. differece -> large diffusio curret o e-field o drift curret c v I qa ε V T d( x) dx Moder lectroics: F1 semicoductors 33

P-juctio bad structure + Positive door - egative Acceptor Free electros Free holes -type P-type c v e c v I qa ε V T d( x) dx Moder lectroics: F1 semicoductors 34

P-juctio bad structure + Positive door - egative Acceptor Free electros Free holes -type P-type c v e c v e W Moder lectroics: F1 semicoductors o free carriers i depletio regio, charge eutral outside 35

charge desity -> electric field -> potetial Poisso equatio Depletio width ρ(x) ε s W = = dε(x) dx 2ε s q = d2 V(x) dx 2 - ρ charge desity [C/m -3 ] - ε s permitivity [F/m] - e electric field [V/m] - V potetial [V] 1 A + 1 D V 0 - V 0 built-i potetial [V] Q + =Aq D W 1 ρ [C/m -3 ] න dx e [V/m] න dx V(x) [V] + + + + + + + + X=W 2 x=w 2 V 0 x=-w 1 - - - - - - - - x=-w 1 x=0 W=W 1 +W 2 Moder lectroics: F1 semicoductors x=0 36

Built-i potetial P W=W 1 +W 2 c c qv 0 F qv 0 Fp v v depletio regio qv 0 = F Fp (built-i) Potetial barrier for electros ad holes! F Fp Fi Fi kt l kt l i i A D D A qv 0 0 kt l l kt l i i D 2 i A homework: calculate depletio width for Si p-juctio with D = A =10 17 cm -3 at bias voltages V=0 V ad V= -1 V. Moder lectroics: F1 semicoductors 37

2 mi exercise assymetric p-juctio Cosider a p-juctio with D =5* A (doors > acceptors) Sketch the 1) charge distributio 2) electric field 3) potetial -type D P-type A ρ ε V Moder lectroics: F1 semicoductors 38

Diode forward bias - Oly top of the electro distributio ca pass over the barrier - Icrease bias -> expoetially icreasig amout of electros ca pass - Reduce electric field but couteractig built-i potetial - Depletio width is reduced e P e P ev D ev D - V D + D pot =-qv D - V D + Moder lectroics: F1 semicoductors 39

cotact depletio regio cotact Miority carrier desity at depletio edges at forward bias forward bias p / p hole cocetratio i -side electro cocetratio i p-side p (x) p (x) p (x) p (x) p 0 p0 At equilibrium: p0 = i2 / A p 0 = i2 / D p -W 1 0 W 2 qvd W ) p exp qvd 1 p ( W2 ) p0 exp kt kt ( 0 Moder lectroics: F1 semicoductors 40

V D Diode forward bias e P J qε V T d dx I D pot =-ev D ev D V D J = J S (exp(v/v T )-1) - V D + Moder lectroics: F1 semicoductors J s = q D p p L 0 + D p L p0 = q 1 2 kt L p q μ i p + 1 kt D L q μ 41 i 2 A

Diode reverse bias e P J qε V T d dx I D pot =-ev D ev D V D -V D J 0 + V D - Moder lectroics: F1 semicoductors 42

Diode total curret J = J s e qv kt 1 Τ J s = saturatio curret desity = ideality factor (1-2) J s = q D p p L 0 + D p L p0 = q 1 2 kt L p q μ i p + 1 kt D L q μ i 2 A zero bias P forward bias reverse bias e diffusio curret drift curret diffusio curret drift curret diffusio curret drift curret Moder lectroics: F1 semicoductors 43

1 mi excercise Si vs Ge diode Si ( g =1.11 ev) p-juctio Ge ( g =0.67 ev) p-juctio P P I I V D??? V D Moder lectroics: F1 semicoductors 44

Zeer tuelig / Avalache Breakdow - High reverse bias gives eough e-field to eable tuelig - High eergy of electro/hole ca be lost by creatig ew e-h pairs through impact ioizatio tuelig e avalache multiplicatio e BV I V Moder lectroics: F1 semicoductors 45

small-sigal model - Wat to replace o-liear compoets with liear oes to simplify circuit calculatios - Costat V D + small varyig v d (t) = total voltage v D (t). v D (t) V D = + v d (t) t Liearize by Taylor expasio Moder lectroics: F1 semicoductors 46

Small-sigal model of diode (3.3.7) - Diode IV is o-liear so difficult to do calculatios - Apply costat V D ad small varyig v d (t) - Diode IV almost liear i a small regio Τ J = J s eqv kt D Τ 1 J s eqv D kt Small sigal resistace r d =V T /I D (V T =kt/q) Moder lectroics: F1 semicoductors 47

depletio-regio / juctio capacitace xample: paralell plate capacitor Defiitio: C Q V C e re0 W W 1 2 A -Q e r +Q W 1 +W 2 Q J = A q D (W 1 + W 2 ) W V 0 + V R o-liear relatioship betwee V R ad Q -> C(V R ) W 1 W 2 W 1 W 2 Moder lectroics: F1 semicoductors 48

depletio regio / juctio capacitace Defiitio C j = dq J dv R Applied bias (V R ) chages depletio width Depletio width W = 2ε s q 1 A + 1 D (V 0 + V R ) Charge o either side Q J = Aq D W 1 = Aq D A A + D W C j C J = A 2ε s q D A A + D 1 V 0 +V R V Icreasig V R Moder lectroics: F1 semicoductors 49

1 mi exercise p-juctio with forward bias I forward bias there is a diffusio curret flowig through the juctio. How does the CV curve behave? dq Oly C j C dv A B C C C C V V V o chage i capacitace Larger capacitace for forward bias Moder lectroics: F1 semicoductors Lower capacitace for forward bias 50

diffusio capacitace Forward bias -> iject miority carriers i eutral regios (electros i p-regio ad holes i -regio)-> extra charge dq. p p ( W ( W 2 p ) ) p0 p0 exp qv kt D C dq dv V+Dv V DQ -W 1 W 2 p0 W 2 (=0) x W p (legth of p-regio) Moder lectroics: F1 semicoductors 51

Total capacitace 80 70 60 C tot C tot =C j +C d Add capacitaces i parallel Capacitace (pf) 50 40 30 20 C j C d 10 C j : domiates for reverse bias 0-5 -4-3 -2-1 0 1 Voltage (V) C diff : domiates for forward bias. C diff 0 for reverse bias. r d (V D ) C j (V) C d (V) Moder lectroics: F1 semicoductors 52

Summary p-juctios p-juctios used i LDs, solar cells, BJT, MOSFTs Poissos equatios: charge distributio -> electric field -> potetial Drift is balaced by diffusio i ubiased p-juctio Curret give by ideal diode equatio: Forward bias: curret (diffusio) icreases expoetially Reverse bias: curret saturates qv J = J s e kt 1 Τ Capacitaces: Juctio capacitace due to chage i depletio width (domiates reverse bias) Diffusio capacitace due to chage i charge i p/ regio (domiates forward bias) Small-sigal model (ok for V << V T ): replace diode with resistor + capacitaces Moder lectroics: F1 semicoductors 53