Fracture mechanics. code_aster, salome_meca course material GNU FDL licence (

Similar documents
Continuation methods for non-linear analysis

SSNP102 - Rate of energy restitution for a plate notched in elastoplasticity: approaches Summarized

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

SSNP110 - Crack of edge in a rectangular plate finished in elastoplasticity

Introduction to Fracture

Version default Titre : Opérateur CALC_G Date : 07/12/2017 Page : 1/21 Responsable : GÉNIAUT Samuel Clé : U Révision : 73174f7ae6ec

Stress concentrations, fracture and fatigue

Mechanics of Earthquakes and Faulting

HPLP100 - Calculation of the rate of refund of the energy of a plate fissured in thermoelasticity

Cracks Jacques Besson

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Introduction to fracture mechanics

Contact and friction. Code_Aster, Salome-Meca course material GNU FDL licence (

MECHANICS OF 2D MATERIALS

Advanced Strength of Materials Prof S. K. Maiti Mechanical Engineering Indian Institute of Technology, Bombay. Lecture 27

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives

HSNV140 - Thermoplasticity with restoration of work hardening: test of blocked dilatometry

G1RT-CT A. BASIC CONCEPTS F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Powerful Modelling Techniques in Abaqus to Simulate

Linear Elastic Fracture Mechanics

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach

Tentamen/Examination TMHL61

Elastic-Plastic Fracture Mechanics. Professor S. Suresh

V Predicted Weldment Fatigue Behavior AM 11/03 1

Mechanics of Earthquakes and Faulting

CHAPTER 9 FAILURE PROBLEM SOLUTIONS

The variational approach to fracture: Jean-Jacques Marigo

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

Functions and formulas. Code_Aster, Salome-Meca course material GNU FDL licence (

Modelling of ductile failure in metal forming

Modeling Fracture and Failure with Abaqus

A Direct Derivation of the Griffith-Irwin Relationship using a Crack tip Unloading Stress Wave Model.

Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Numerical simulation of delamination onset and growth in laminated composites

A 3D Discrete Damage Modeling Methodology for Abaqus for Fatigue Damage Evaluation in Bolted Composite Joints

ALGORITHM FOR NON-PROPORTIONAL LOADING IN SEQUENTIALLY LINEAR ANALYSIS

NUMERICAL MODELING OF CRACK PATH PROPAGATION DEPENDING ON STEEL RATIO IN RC BEAMS LECTURE NOTES IRINA KERELEZOVA

Finite Element Investigation on the Stress State at Crack Tip by Using EPFM Parameters

CALCULATION OF FRACTURE MECHANICS PARAMETERS FOR AN ARBITRARY THREE-DIMENSIONAL CRACK, BY THE EQUIVALENT DOMAIN INTEGRAL METHOD 1

A novel approach to predict the growth rate of short cracks under multiaxial loadings

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

Virtual tests based on model reduction strategies for fatigue analysis

PROBLEM OF CRACK UNDER QUASIBRITTLE FRACTURE V.A. KOVTUNENKO

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress

Mixed-Mode Crack Propagation in Functionally Graded Materials

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Finite Element Analysis of Debonding Propagation in FM73 Joint under Static Loading

Weld Fracture. How Residual Stresses Affect Prediction of Brittle Fracture. Outline. Residual Stress in Thick Welds

Fracture Mechanics, Damage and Fatigue Non Linear Fracture Mechanics: J-Integral

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS

This guide is made for non-experienced FEA users. It provides basic knowledge needed to start your fatigue calculations quickly.

Frontiers of Fracture Mechanics. Adhesion and Interfacial Fracture Contact Damage

Topics in Ship Structures

After lecture 16 you should be able to

Application of a non-local failure criterion to a crack in heterogeneous media S. Bavaglia*, S.E. Mikhailov*

Damping. Code_Aster, Salome-Meca course material GNU FDL licence (

Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet

Critical applied stresses for a crack initiation from a sharp V-notch

Chapter 7. Highlights:

Size effect in the strength of concrete structures

Predicting Fatigue Life with ANSYS Workbench

Homework Problems. ( σ 11 + σ 22 ) 2. cos (θ /2), ( σ θθ σ rr ) 2. ( σ 22 σ 11 ) 2

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Fatigue Algorithm Input

Method for calculating the stress intensity factor for mode-i indentation with eccentric loads

IMECE CRACK TUNNELING: EFFECT OF STRESS CONSTRAINT

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

ME 2570 MECHANICS OF MATERIALS

Initiation de fissure dans les milieux fragiles - Prise en compte des contraintes résiduelles

Models of Bordet and Rice and Tracey

5 ADVANCED FRACTURE MODELS

Treatment of Constraint in Non-Linear Fracture Mechanics

FRACTURE MECHANICS FOR MEMBRANES

Life Prediction Methodology for Ceramic Matrix Composites

Transactions on Engineering Sciences vol 6, 1994 WIT Press, ISSN

NOTCH FRACTURE OF MEMS SENSORS MADE OF SINGLE CRYSTAL SILICON

CRACK INITIATION CRITERIA FOR SINGULAR STRESS CONCENTRATIONS Part I: A Universal Assessment of Singular Stress Concentrations

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

FRACTURE OF CRACKED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces.

STRAIN ASSESSMENT USFOS

MICROMECHANICAL MODELS FOR CONCRETE

Elastic Crack Interaction Limit of Two Interacting Edge Cracks in Finite Body

Delamination Modeling for Power Packages and Modules. Rainer Dudek, R. Döring, S. Rzepka Fraunhofer ENAS, Micro Materials Center Chemnitz

INFLUENCE OF TEMPERATURE ON BEHAVIOR OF THE INTERFACIAL CRACK BETWEEN THE TWO LAYERS

Studies on the affect of Stress Triaxiality on Strain Energy Density, and CTOD under Plane Stress Condition Subjected to Mixed Mode (I/II) Fracture

New Life in Fatigue KIVI NIRIA HOUSTON, WE HAVE A PROBLEM...

Course Notes. Hållfasthetslära Vk MHA100. Fatigue and Fracture Analysis MHA140. General. Teachers. Goals. School of Civil Engineering Period II 1998

GRIFFITH THEORY OF BRITTLE FRACTURE REVISITED: MERITS AND DRAWBACKS

Code_Aster. SDLV123 - Computation of G elastodynamic in infinite medium for a plane crack finite length

NUMERICAL INVESTIGATION OF THE LOAD CARRYING CAPACITY OF LAMINATED VENEER LUMBER (LVL) JOISTS WITH HOLES

Video Lecture on Engineering Fracture Mechanics, Prof. K. Ramesh, IIT Madras 1

Numerical Evaluation of Stress Intensity Factors (K I ) J-Integral Approach

FRACTURE IN HIGH PERFORMANCE FIBRE REINFORCED CONCRETE PAVEMENT MATERIALS

CRACK GROWTH SIMULATION IN THE COURSE OF INDUSTRIAL EQUIPMENT LIFE EXTENSION

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint

Transcription:

Fracture mechanics code_aster, salome_meca course material GNU FDL licence (http://www.gnu.org/copyleft/fdl.html)

Why fracture mechanics? 2 - code_aster and salome_meca course material GNU FDL Licence

Fracture mechanics: objectives and generalities Sane structure Initiation Propagation Failure Where? What shape? When? Propagate or not? Speed? Path? Does it fail? 3 - code_aster and salome_meca course material GNU FDL Licence

Fracture mechanics: objectives and generalities Damage mechanics Fracture mechanics Sane structure Initiation Propagation Failure Where? What shape? When? Propagate or not? Speed? Path? Does it fail? 4 - code_aster and salome_meca course material GNU FDL Licence

Applications of fracture mechanics Brittle fracture Ductile fracture Fatigue propagation Design Operation Lifetime assessment Maintenance Justification Repair 5 - code_aster and salome_meca course material GNU FDL Licence

Applications of fracture mechanics Cracking of a dam Cracks in UK AGRs Cracks in EDF turbines 6 - code_aster and salome_meca course material GNU FDL Licence

Outline Main criteria in fracture mechanics Linear fracture mechanics in code_aster Non linear fracture mechanics References 7 - code_aster and salome_meca course material GNU FDL Licence

Outline Main criteria in fracture mechanics Linear fracture mechanics in code_aster Non linear fracture mechanics References 8 - code_aster and salome_meca course material GNU FDL Licence

Basis on LEFM: Vocabulary Crack : mater discontinuity FR EN code_aster 2D 3D Front Fond Front - Tip FOND_FISS Point Edge Lèvres Lips LEVRE _SUP _INF Edge Face 9 - code_aster and salome_meca course material GNU FDL Licence

Basis on LEFM: Cracking modes y x z u x = 0 u y 0 u z = 0 u x 0 u y = 0 u z = 0 u x = 0 u y = 0 u z 0 10 - code_aster and salome_meca course material GNU FDL Licence

Basis on LEFM: local axis y M z x n r M θ a t Global axis Crack local axis σ ~ r 0 K i σ, a r Singular stress f θ u ~ r 0 K i σ, a r g θ 11 - code_aster and salome_meca course material GNU FDL Licence

Stress intensity factor K K depends on: crack geometry structure geometry loading conditions General cases: 2 examples: K I = σ πa cos 2 α 2a K II = σ πa cos α sin α Based on analytical solution, approximated solution or FEM calculations 2a b K I = σ πa cos πa b 1 2 12 - code_aster and salome_meca course material GNU FDL Licence

Stress intensity factor K Codified approaches Influence coefficients a σ σ x = σ 0 + σ 1 x t + σ 2 x t 2 + σ 3 x t 3 + σ 4 x t 4 t R 0 a x Calcul Polynomial fit K I = πa σ 0 i 0 + σ 1 i 1 a t + σ 2 i 2 a t 2 + σ3 i 3 a t 3 + σ4 i 4 a t 4 13 - code_aster and salome_meca course material GNU FDL Licence

Stress intensity factors K Mode ~ r 0 f σ ij ~ r 0 f u i K I σ θθ r, 0 2π r E 2π 8 1 ν 2 u 2 r K II σ rθ r, 0 2π r E 2π 8 1 ν 2 u 1 r K III σ θz r, 0 2π r E 2π 8 1 + ν u 3 r 14 - code_aster and salome_meca course material GNU FDL Licence

Contour integral: Rice Characterization of stress singularity Induced from energy conservation Independent of the considered contour For a plane cracked solid subjected to a mixed-mode load (modes I et II): u i J = w e n 1 σ ij n j x i C 1 ds x 2 C 1 n ds x 1 With w e = σ: ε the elastic energy density. 15 - code_aster and salome_meca course material GNU FDL Licence

Energy release rate: G (Griffith) Griffith s hypothesis Cracking energy is proportional to separated surface (material properties ) Total energy = Potential energy + Cracking energy Minimum total energy principle 2D example : E tot l = W l + 2γl E tot l + l = W l + l + 2γ l + l Minimum total energy principle: l E tot l + l < E tot l l + Δl W l + l W l < 2γ l 16 - code_aster and salome_meca course material GNU FDL Licence

Energy release rate: G (Griffith) F l F W l + l W l l W l + l W l l+δl G l+δl G U U 17 - code_aster and salome_meca course material GNU FDL Licence

Energy release rate: G (Griffith) Definition of G : variation of potential energy per virtual crack advance l l + dl G = dw dl 2D G = dw da 3D Potential energy Cracking energy 18 - code_aster and salome_meca course material GNU FDL Licence

G-theta method G = dw da Derivative difficult to compute directly G-θ method θ F = h t Γ θ : x x + h θ x F F Solution of variational equation: Γ 0 Gθ t ds = G θ = dw A 19 - code_aster and salome_meca course material GNU FDL Licence

G-theta method: implementation In 2D: θ 0 θ 0 R inf R sup θ 0 0 R inf R sup r In 3D: Discretisation of θ and G along front: s = 0 γ 0 s Γ 0 s = l s = 0 γ 1 s Γ 0 s = l s = 0 γ 2 s Γ 0 s = l φ 1 s s = 0 φ 2 s φ 3 s Γ 0 s = l 20 - code_aster and salome_meca course material GNU FDL Licence

Relation between parameters (Irwin) Linear elasticity G = 1 E K I 2 + K II 2 + 1 + ν E K III 2 Plane stress G = 1 ν E K I 2 + K II 2 + 1 + ν E K III 2 Plane strain, 3D G = J Plane elasticity (plane strain + plane stress) 21 - code_aster and salome_meca course material GNU FDL Licence

Material criterion Some material criterion Propagation if K I K Ic G G c or J Ic Concrete Hardened Steel Aluminium alloy Titanium Alloy Polymer K Ic 1MPa m K Ic 3MPa m K Ic 30MPa m K Ic 100MPa m K Ic 120MPa m! Be careful with FEM units! K s dimension: MPa m Glass, ceramics Aluminium Steel Pure metals G c 2J. m 2 G c 10kJ. m 2 G c 100kJ. m 2 G c 1MJ. m 2 G s dimension: J/m² or N/m 22 - code_aster and salome_meca course material GNU FDL Licence

Aside: fatigue s law (Paris) Principle of fatigue: Crack propagation by repetition of a weak load Paris fatigue propagation law da dn = c Km (c, m material parameters) Stage A : DK weak, slow or non propagation Stage B : DK moderate, propagation with a constant velocity Stage C : DK high, sudden failure See POST_RUPTURE operator 23 - code_aster and salome_meca course material GNU FDL Licence

Outline Main criteria in fracture mechanics Linear fracture mechanics in code_aster Non linear fracture mechanics References 24 - code_aster and salome_meca course material GNU FDL Licence

Fracture mechanics problem in code_aster Step 1 Meshing cracked structures Type of calculation: Thermo-Elastic (linear or non linear) Thermo-elastoplastic : See the end of the presentation Residual stresses (linear or non linear elasticity) Step 2 Thermo-mechanical computation Step 3 Crack definition Step 4 Computation of fracture mechanics parameters 25 - code_aster and salome_meca course material GNU FDL Licence

Crack definition in code_aster 26 - code_aster and salome_meca course material GNU FDL Licence

Crack definition in code_aster OUVERT In 2D In 3D FERME 27 - code_aster and salome_meca course material GNU FDL Licence

Crack definition in code_aster CONFIG_INIT NORMALE crack crack COLLEE DECOLLE (α<5 ) SYME No Yes LEVRE_SUP/INF LEVRE_SUP LEVRE_INF 28 - code_aster and salome_meca course material GNU FDL Licence

Displacement jump Displacement Jump Extrapolation Method (1) Operator POST_K1_K2_K3 N Analytical model (r 0): u 2 n ABSC_CURV_MAXI K 1 = E 2π 8 1 ν 2 u 2 r Extraction of node displacements along the crack front (normal direction) 5,0E-07 4,5E-07 4,0E-07 3,5E-07 3,0E-07 2,5E-07 2,0E-07 1,5E-07 1,0E-07 5,0E-08 0,0E+00 Computed displacement jump function K.sqrt(r) 0E+00 1E-05 2E-05 3E-05 4E-05 5E-05 6E-05 Curvilinear co-ordinate u 2 ~ r ABSC_CURV_MAXI 29 - code_aster and salome_meca course material GNU FDL Licence

Displacement Jump Extrapolation Method (2) 3 methods to extrapolate the displacement: Method 1 With quarter-node elements Without quarternode elements u 2 2 r = 64 1 ν2 2 2πE 2 K 1 2 One value of K for each consecutive node couple Maximal value 30 - code_aster and salome_meca course material GNU FDL Licence

Displacement Jump Extrapolation Method (3) Method 2: u 2 2 = r Without quarter-node elements With quarter-node elements 64 1 ν2 2 2πE 2 K 1 2 Method 3 Minimisation by least square error of J(k): J k = 1 2 max _absc U r k r 2 dr 0 One value of K Maximal slope Printed results: - in a table (resu file): only the max values of method 1, - in a table (resu file): an estimation of the relative difference between the 3 methods, - in the mess file (if INFO=2): computing details 31 - code_aster and salome_meca course material GNU FDL Licence

Usage of the POST_K1_K2_K3 operator FEM X-FEM From mechanical calculation Use different material from the one in Result! Type of mesh of the crack REGLE LIBRE Maximal distance of calculation 32 - code_aster and salome_meca course material GNU FDL Licence

POST_K1_K2_K3: advices Limited to plane or quasi-planar cracks (possibility to define only one normal) Choice of ABSC_CURV_MAXI: between 3 to 5 elements Precision of computation: error < 10 % for validation tests Precision is better if crack mesh is REGLE Verifications: Compare with different ABSC_CURV_MAXI Check errk1, errk2 and errk3 < 1% 33 - code_aster and salome_meca course material GNU FDL Licence

Operator CALC_G 34 - code_aster and salome_meca course material GNU FDL Licence

Operator CALC_G Example: NB_POINT_FOND=7 FEM X-FEM LAGRANGE only If crack has several fronts several CALC_G R_SUP R_INF 35 - code_aster and salome_meca course material GNU FDL Licence

Operator CALC_G Result from mechanical calculation 36 - code_aster and salome_meca course material GNU FDL Licence

Operator CALC_G Option = CALC_G In 3D/2D plane the local value G(s) is in J/m² in 2D-axisymetric, G is the energy by unit of radian. In order to obtain a local value of G, we need to divide by its radius R. G = 1 R Γ θ Option = CALC_K_G Also compute stress intensity factors Use of mathematical properties of G to separate contributions of K1, K2 and K3 Option = CALC_G_GLOB DO NOT USE! 37 - code_aster and salome_meca course material GNU FDL Licence

Operator CALC_G Smoothing options in 3D Default OR LISSAGE_THETA=LEGENDRE LISSAGE_G=LEGENDRE DEGRE=N LISSAGE_THETA=LAGRANGE LISSAGE_G=LAGRANGE THETA: [NB_POINT_FOND=N] 38 - code_aster and salome_meca course material GNU FDL Licence

Operator CALC_G Choice of smoothing in 3D : need to use different smoothing methods and compare the obtained results! LAGRANGE: no smoothing, oscillations can occur Reference (analytical solution) LAGRANGE with NB_POINT_FOND=20 (33): decrease of oscillations LEGENDRE: smooth results Results at the extremities of the crack front should be used with care Good if G is polynomial Energy release rate for an elliptical crack (test case sslv154a) Quadratic mesh with Barsoum elements 39 - code_aster and salome_meca course material GNU FDL Licence

Operator CALC_G To calculate only at given steps 40 - code_aster and salome_meca course material GNU FDL Licence

Operator CALC_G: general advice R_INF > 0 (imprecise computational results at crack front) ~ 2 elements R_SUP not too large (for example 5 or 6 elements) Use OPTION= CALC_K_G If LISSAGE LAGRANGE : If N front nodes > 25 use NB_POINT_FOND NB_POINT_FOND = N/5 or N/10 5 NB_POINT_FOND 50 Verifications: Compare with different R_INF and R_SUP Compare between LISSAGE LEGENDRE and LAGRANGE Compare different values of NB_POINT_FOND 41 - code_aster and salome_meca course material GNU FDL Licence

General advice Use a mesh with a tore around the crack front Not mandatory Results will be more regular if the R_SUP radius of the tore Use BlocFissure plugin in salome_meca to insert a crack in a mesh with a tore Computation on a structured mesh Computation on an unstructured mesh 42 - code_aster and salome_meca course material GNU FDL Licence

General advice General advices for meshed cracks: Element type : prefer quadratic elements with Barsoum << << crack crack crack Linear Quadratic Quadratic + Quarter nodes See MODI_MAILLAGE with OPTION= NŒUD_QUART POST_K1_K2_K3 CALC_G advice advice 3D if free or structured mesh 3D if structured mesh 43 - code_aster and salome_meca course material GNU FDL Licence

Outline Main criteria in fracture mechanics Linear fracture mechanics in code_aster Non linear fracture mechanics References 44 - code_aster and salome_meca course material GNU FDL Licence

Non Linear fracture mechanics Accounting for confined plasticity by plastic correction (RCC-M ZG5110 appendix) Replace crack length a by a virtual crack a + r y (Irwin s approach) with: r y = 1 6π K I σ s 2 σ s : yield stress r y : plastic zone size Compute corrected stress intensity factors K cp = αk I a + r y a With: α = 1 α = 1 + 0,15 r y 0,05 t a 0,035 t a α = 1,6 r y 0,05 t a 2 0,05 t a < r y 0,12 t a r y > 0,12 t a 45 - code_aster and salome_meca course material GNU FDL Licence

Non Linear fracture mechanics Accounting for confined plasticity by 3D approach: STAT_NON_LINE CALC_G RELATION ELAS_VMIS_LINE ELAS_VMIS_LINE ELAS_VMIS_PUIS ELAS_VMIS_PUIS ELAS_VMIS_TRAC ELAS_VMIS_TRAC VMIS_ISOT_LINE ELAS_VMIS_LINE VMIS_ISOT_PUIS ELAS_VMIS_PUIS VMIS_ISOT_TRAC ELAS_VMIS_TRAC!! Loading must be radial and monotonous See DERA_ELGA in CALC_CHAMP Compare VMIS_ISOT_ and ELAS_VMIS_ in STAT_NON_LINE Compare by activating or not CALCUL_CONTRAINTE= NON in CALC_G 46 - code_aster and salome_meca course material GNU FDL Licence

Outline Main criteria in fracture mechanics Linear fracture mechanics in code_aster Non linear fracture mechanics References 47 - code_aster and salome_meca course material GNU FDL Licence

References General user documentation Application domains of operators in fracture mechanics of code_aster and advices for users [U2.05.01] Notice for utilisation of cohesive zone models [U2.05.07] Realisation for a computation of prediction for cleavage fracture [U2.05.08] Documentation of operators Operators DEFI_FOND_FISS [U4.82.01], CALC_G [U4.82.03] et POST_K1_K2_K3 [U4.82.05] Reference documentation Computation of stress intensity factors by Displacement Jump Extrapolation Method [R7.02.08] Computation of coefficients of stress intensity in plane linear thermoelasticity [R7.02.05] Energy release rate in linear thermo-elasticity [R7.02.01] and non-linear thermo-elasticity [R7.02.03] Elastic energy release rate en thermo-elasticity-plasticity by Gp approach [R7.02.16] Other references : Plasticité et Rupture - Jean-Jacques Marigo course Formation ITECH Mécanique de la rupture 48 - code_aster and salome_meca course material GNU FDL Licence

End of presentation Is something missing or unclear in this document? Or feeling happy to have read such a clear tutorial? Please, we welcome any feedbacks about code_aster training materials. Do not hesitate to share with us your comments on the code_aster forum dedicated thread. 49 - code_aster and salome_meca course material GNU FDL Licence

Appendix for TP forma05b Best results with quadratic and Barsoum CALC_G : Rinf 2 elements Rsup 5 elements POST_K1_K2_K3 : ABSC_CURV_MAXI 5 elements crack crack Quadratic Barsoum R_SUP ABSC_CURV_MAXI CALC_G or POST_K1_K2_K3 in 2D? R_INF Similar results Both very accurate K and G independent of parameters 50 - code_aster and salome_meca course material GNU FDL Licence

Appendix for TP forma07a DEFI_FOND_FISS in 3D Define crack front with GROUP_MA FOND_FISS=_F( GROUP_MA='LFF', GROUP_NO_ORIG='NFF1', GROUP_NO_EXTR='NFF2'), Define LEVRE_SUP and LEVRE_INF (optional with CALC_G) CALC_G or POST_K1_K2_K3? Some advice POST_K1_K2_K3 : 3D if structured mesh CALC_G : 3D if free mesh Use OPTION= CALC_K_G Accuracy : LISSAGE in CALC_G LAGRANGE+NB_POINT_FOND Better than LEGENDRE Better than LAGRANGE Computational time : LEGENDRE Faster than LAGRANGE+NB_POINT_FOND Faster than LAGRANGE Oscillations of G and K : LEGENDRE Better than LAGRANGE+NB_POINT_FOND Better than LAGRANGE 51 - code_aster and salome_meca course material GNU FDL Licence