Topological Phases under Strong Magnetic Fields

Similar documents
Quantum Hall Effects An Introduction

Zooming in on the Quantum Hall Effect

arxiv: v2 [cond-mat.mes-hall] 21 Oct 2009

Beyond the Quantum Hall Effect

Is the composite fermion a Dirac particle?

Correlated 2D Electron Aspects of the Quantum Hall Effect

2D Electron Systems: Magneto-Transport Quantum Hall Effects

Graphite, graphene and relativistic electrons

Topological Insulators

Is the composite fermion a Dirac particle?

Physics of Semiconductors

The Quantum Hall Effects

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Quantum Hall Effect. Jessica Geisenhoff. December 6, 2017

Effects of Interactions in Suspended Graphene

Quantum Condensed Matter Physics Lecture 17

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

Topological insulators

The Quantum Hall Effect

Electron interactions in graphene in a strong magnetic field

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

5 Topological insulator with time-reversal symmetry

Quantum numbers and collective phases of composite fermions

Lecture 2 2D Electrons in Excited Landau Levels

Introductory lecture on topological insulators. Reza Asgari

Conformal Field Theory of Composite Fermions in the QHE

Topological insulator (TI)

Carbon based Nanoscale Electronics

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Electronic properties of graphene. Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay)

Basics of topological insulator

Quantized Resistance. Zhifan He, Huimin Yang Fudan University (China) April 9, Physics 141A

Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime

Fatih Balli Department of Physics, University of South Carolina 11/6/2015. Fatih Balli, Department of Physics UofSC

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

The Quantum Spin Hall Effect

Quantum Oscillations in Graphene in the Presence of Disorder

Electron interactions in graphene in a strong magnetic field

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Dirac fermions in condensed matters

GRAPHENE the first 2D crystal lattice

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Quantum Hall Effect in Graphene p-n Junctions

Physics of graphene. Hideo Aoki Univ Tokyo, Japan. Yasuhiro Hatsugai Univ Tokyo / Tsukuba, Japan Takahiro Fukui Ibaraki Univ, Japan

Luttinger Liquid at the Edge of a Graphene Vacuum

Integer quantum Hall effect for bosons: A physical realization

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Braid Group, Gauge Invariance and Topological Order

Classification of Solids

Introduction to topological insulators. Jennifer Cano

Topological insulator with time-reversal symmetry

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Graphene and Planar Dirac Equation

Topological Physics in Band Insulators II

Spin Superfluidity and Graphene in a Strong Magnetic Field

Effective Field Theories of Topological Insulators

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

A study of the magnetotransport properties of the graphene (I. Monolayer)

Les états de bord d un. isolant de Hall atomique

Topological Defects inside a Topological Band Insulator

Graphene and Quantum Hall (2+1)D Physics

Minimal Update of Solid State Physics

THERMOPOWER AND MAGNETORESISTANCE STUDIES IN A TWO-DIMENSIONAL ELECTRON GAS

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Topology and Fractionalization in 2D Electron Systems

where a is the lattice constant of the triangular Bravais lattice. reciprocal space is spanned by

Topology of electronic bands and Topological Order

Topological Quantum Computation A very basic introduction

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Quantum disordering magnetic order in insulators, metals, and superconductors

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Graphene. Tianyu Ye November 30th, 2011

arxiv: v1 [cond-mat.str-el] 11 Dec 2011

Emergence and Mechanism in the Fractional Quantum Hall Effect

Entanglement Chern numbers for random systems

Room temperature topological insulators

Dirac fermions in Graphite:

Graphene and Carbon Nanotubes

Topological Physics in Band Insulators. Gene Mele DRL 2N17a

POEM: Physics of Emergent Materials

Topological insulators. Pavel Buividovich (Regensburg)

Fractional quantum Hall effect and duality. Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017

Vortex States in a Non-Abelian Magnetic Field

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Electrical Standards based on quantum effects: Part II. Beat Jeckelmann

Topological Bandstructures for Ultracold Atoms

arxiv: v1 [cond-mat.other] 20 Apr 2010

Topological insulator part I: Phenomena

Matrix product states for the fractional quantum Hall effect

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

Organizing Principles for Understanding Matter

Superinsulator: a new topological state of matter

Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance

Inti Sodemann (MIT) Séptima Escuela de Física Matemática, Universidad de Los Andes, Bogotá, Mayo 25, 2015

Universal phase transitions in Topological lattice models

Transcription:

Topological Phases under Strong Magnetic Fields Mark O. Goerbig ITAP, Turunç, July 2013

Historical Introduction What is the common point between graphene, quantum Hall effects and topological insulators?... and what is it?

The 1920ies: Band Theory quantum treatment of (non-interacting) electrons in a periodic lattice bands = energy of the electrons as a function of a quasi-momentum

Chrystal Electrons and Bloch s Theorem discrete translations T = exp(iˆp R j ) represent a symmetry in a Bravais lattice (described by lattice vectors R j ) the operator ˆp (generator of discrete translations) plays the role of a momentum (quasi-momentum or lattice moment) Rj

Chrystal Electrons and Bloch s Theorem discrete translations T = exp(iˆp R j ) represent a symmetry in a Bravais lattice (described by lattice vectors R j ) the eigenvalues of ˆp are good quantum numbers: energy bands ǫ l (p) Bloch functions: ψ(r) = p e ip r/ u p (r)

Bravais and Arbitrary Lattices M. C. Escher (decomposed) arbitrary lattice = Bravais lattice + basis (of N atoms ) triangular lattice + complicated basis There are as many electronic bands as atoms per unit cell

Band Structure and Conduction Properties energy energy Fermi metal (2D) level momentum Fermi level density of states electron metal hole metal insulator (2D) Fermi level gap semimetal (2D) I II I II Fermi level

1950-70: Many-Body Theory Physical System described by an order parameter (a) k = ψ k, ψ k, (superconductivity) (b) M µ (r) = τ,τ ψ τ(r)σ µ τ,τ ψ τ (r) (ferromagnetism) Ginzburg-Landau theory of second-order phase transitions (1957) = 0 (disordered) 0 (ordered) symmetry breaking (a) broken (gauge) symmetry U(1) (b) broken (rotation) symmetry O(3) emergence of (collective) Goldstone modes (a) superfluid mode, with ω k (b) spin waves, with ω k 2

The Revolution(s) of the 1980ies 3 essential discoveries: integer quantum Hall effect (1980, v. Klitzing, Dorda, Pepper) fractional quantum Hall effect (1982, Tsui, Störmer, Gossard) high-temperature superconductivity (1986, Bednorz, Müller)

Integer Quantum Hall Effect (I) 2.0 I x V y 3.0 V x 2.5 1.5 2.0 ρ xx (k Ω ) 1.0 6 5 4 3 2 3/ 2 1 3/ 4 2/3 3/5 4/7 1/ 2 3/7 4/9 2/5 1.5 1.0 ρ xy (h/e ) 2 5/9 5/11 0.5 5/3 4/3 8/5 7/5 0 0 4 6/11 6/13 5/7 8/15 4/5 7/13 7/15 8 12 16 Magnetic Field B (T) Magnetic Field B[T] 0.5 0.0 [mesurement by J. Smet et al., MPI-Stuttgart] QHE = plateau in Hall res. & vanishing long. res.

Integer Quantum Hall Effect (II) Quantised Hall resistance at low temperatures R H = h e 2 1 n h/e 2 : universal constant n: quantum number (topological invariant) result independent of geometric and microscopic details quantisation of high precision (> 10 9 ) resistance standard: R K 90 = 25812,807Ω

Fractional Quantum Hall Effect partially filled Landau level Coulomb interactions relevant 1983: Laughlin s N-particle wave function no (local) order parameter associated with symmetry breaking no Goldstone modes quasi-particles with fractional charges and statistics 1990ies : description in terms of topological (Chern-Simons) field theories

The Physics of the New Millenium simulation of condensed-matter models with optical lattices (cold atoms) 2004 : physics of graphene (2D graphite) 2005-07 : topological insulators

Graphene First 2D Crystal honeycomb lattice = two triangular (Barvais) lattices B e 2 A e 3 e 1 B B band structure

Band Structure and Conduction Properties (Bis) energy energy Fermi metal (2D) level momentum Fermi level density of states electron metal hole metal insulator (2D) Fermi level gap semimetal (2D) I II I II Fermi level graphene (undoped) Fermi level

Topological Insulators generic form of a two-band Hamiltonian: H = ǫ 0 (q)½+ ǫ j (q)σ j j=x,y,z Haldane (1988): anomalous quantum Hall effect quantum spin Hall effect (QSHE) Kane and Mele (2005): graphene with spin-orbit coupling Bernevig, Hughes, Zhang (2006): prediction of a QSHE in HgTe/CdTe quantum wells König et al. (2007): experimental verification of the QSHE 3D topological insulators (mostly based on bismuth): surface states ultra-relativistic massless electrons

Outline of the Classes Mon 1: Introduction and Landau quantisation Mon 2: Landau-level degeneracy and disorder/confinement potential Tue 1: Issues of the IQHE Tue 2: Towards the FQHE, Laughlin s wave function and its properties

Further Reading D. Yoshioka, The Quantum Hall Effect, Springer, Berlin (2002). S. M. Girvin, The Quantum Hall Effect: Novel Excitations and Broken Symmetries, Les Houches Summer School 1998 http://arxiv.org/abs/cond-mat/9907002 G. Murthy and R. Shankar, Rev. Mod. Phys. 75, 1101 (2003). http://arxiv.org/abs/cond-mat/0205326 M. O. Goerbig, Quantum Hall Effects http://arxiv.org/abs/0909.1998

1. Introduction To the Integer Quantum Hall Effect and Materials

Classical Hall Effect (1879) (b) R H I C1 C6 C2 C5 B C3 + + + + + + 2D electron gas C4 Hall resistance magnetic field B longitudinal resistance Hall resistance Quantum Hall system : 2D electrons in a B-field Drude model (classical stationary equation): Hall resistance: dp dt = e ( E+ p m B ) p τ = 0 R H = B/en el

Shubnikov-de Haas Effect (1930) (a) (b) Hall resistance longitudinal resistance Density of states hω C B c magnetic field B oscillations in longitudinal resistance Einstein relations σ 0 n el / µ ρ(ǫ F ) Landau quantisation (into levels ǫ n ) E F Energy σ 0 ρ(ǫ F ) n f(ǫ F ǫ n )

Quantum Hall Effect (QHE) 2.0 I x V y 3.0 V x 2.5 1.5 2.0 ρ xx (k Ω ) 1.0 6 5 4 3 2 3/ 2 1 3/ 4 2/3 3/5 4/7 5/9 1/ 2 3/7 4/9 5/11 2/5 1.5 1.0 ρ xy (h/e ) 2 0.5 5/3 4/3 8/5 7/5 0 0 4 4/5 5/7 6/11 8/15 7/13 6/13 7/15 8 12 16 Magnetic Field B (T) Magnetic Field B[T] 0.5 0.0 QHE = plateau in R H & R L = 0 1980 : Integer quantum Hall effect (IQHE) 1982 : Fractional quantum Hall effect (FQHE)

Metal-Oxide Field-Effect Transistor (MOSFET) (a) EF metal oxide (insulator) semiconductor conduction band acceptor levels valence band I z metal oxide semiconductor V G II E z E1 (b) EF metal VG oxide (insulator) (c) semiconductor metal oxide (insulator) conduction band acceptor levels valence band EF V G E0 2D electrons z conduction band acceptor levels valence band z z usually silicon-based materials (Si/SiO 2 interfaces)

GaAs/AlGaAs Heterostructure (a) AlGaAs GaAs (b) AlGaAs GaAs E F dopants E F dopants 2D electrons z z Impurity levels farther away from 2DEG (as compared to Si/SiO 2 ) enhanced mobility (FQHE)

Nobel Prize in Physics 2010 : Graphene Kostya Novoselov Andre Geim "for groundbreaking experiments regarding the two-dimensional material graphene"

What is Graphene? graphene = 2D carbon crystal (honeycomb) sp 2Hybridation hybridisation sp 2 2s 2p 2p 2p sp sp sp 2p x y z z 120 o

Graphene and its Family 2D 3D 1D 0D

From Graphite to Graphene (strong) covalent bonds in the planes (weak) van der Waals bonds between the planes

How to Make Graphene: Recipe (1) put thin graphite chip on scotch tape

How to Make Graphene: Recipe (2) : fold scotch tape on graphite chip and undo : ~10

How to Make Graphene: Recipe (3) glue (dirty) scotch tape on substrate (SiO 2)

How to Make Graphene: Recipe (4) lift carefully scotch tape from substrate

How to Make Graphene: Recipe (5) orientation marks graphene? thick graphite less thick graphite place substrate under optical microscope

How to Make Graphene: Recipe (6) zoom in region where there could be graphene

Electronic Mesurement of Graphene SiO 2 Si dopé Vg Novoselov et al., Science 306, p. 666 (2004)

2. Landau Quantisation and Integer Quantum Hall Effect

Transition energy (mev) Relative transmission Relative transmission Infrared Transmission Spectroscopy relative transmission Transmission energy [mev] 1.00 0.98 0.96 80 70 60 50 40 30 20 10 L L (A) 0.4 T 1.9 K (B) E L 3 2 L 1 10 20 30 40 50 60 70 80 Energy (mev) 3 L2 D 2 L3 D ( ) ( ) L L L E 1 c ~ 2e B 0 0.0 0.5 1.0 1.5 2.0 Sqrt[B] sqrt(b) L 0 L L L 1 2 3 1 L2 C 2 L1 C ( ) ( ) (C) B Energy [mev] E 1 E 1 L L A B D (D) C 0 L1 B 1 L0 B ( ) ( ) L1 L2 ( A) relative transmission 1.00 0.98 0.96 0.94 10 20 30 40 50 60 70 80 90 0.4T 0.2T transition C 0.3T 0.5T 0.7T 0.92 1 T 0.90 transition B 0.88 2T 4T 0.86 10 20 30 40 50 60 70 80 90 Energy [mev] Energy (mev) Grenoble high field group: Sadowski et al., PRL 97, 266405 (2007) 1.00 0.99 selection rules : λ,n λ,n±1

Edge States (a) n+1 n µ LLs bended upwards at the edges (confinement potential) x (b) n 1 ν = n+1 yn+1 max ν = n 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 000000000000000000000000 1111111111111111111111110000 yn max yn 1 max ν = n 1 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 y y chiral edge states only forward scattering ν= n+1 ν= n ν= n 1

Four-terminal Resistance Measurement R ~ µ µ = 0 L 3 2 µ = µ 2 L 2 3 µ = µ 3 L I 1 4 I 6 µ = µ = µ 6 5 R 5 R ~ µ µ = µ µ H 5 3 R L : hot spots [Klass et al, Z. Phys. B:Cond. Matt. 82, 351 (1991)]

IQHE One-Particle Localisation (a) ε E F n density of states NL (n+1) R xx R xy h/e 2 n ν =n B

IQHE One-Particle Localisation (a) ε E F n (b) ε E F n density of states density of states NL (n+1) R xx R xy R xx R xy h/e 2 n ν =n B B

IQHE One-Particle Localisation (a) ε (b) ε (c) ε E F n E F n E F n localised states extended states density of states density of states density of states NL (n+1) R xx R xy h/e 2 n R xx R xy R h/e 2 n 2 xx h/e (n+1) R xy ν =n B B B

ν IQHE in Graphene Novoselov et al., Nature 438, 197 (2005) Zhang et al., Nature 438, 201 (2005) Density of states Graphene IQHE: R = h/e H 2 ν at ν = 2(2n+1) V g =15V T=30mK 1/ν B=9T T=1.6K Usual IQHE: at ν = 2n (no Zeeman)

Percolation Model STS Measurement 2DEG on n-insb surface Hashimoto et al., PRL 101, 256802 (2008) (a)-(g) di/dv for different values of sample potentials (lower spin branch of LL n = 0) (i) calculated LDOS for a given disorder potential in LL n = 0 (j) di/dv in upper spin branch of LL n = 0

Fractional Quantum Hall Effect beyond Laughlin 2.0 I x V y 3.0 V x 2.5 1.5 2.0 ρ xx (k Ω ) 1.0 6 5 4 3 2 3/ 2 1 3/ 4 2/3 3/5 4/7 5/9 1/ 2 3/7 4/9 5/11 2/5 1.5 1.0 ρ xy (h/e ) 2 0.5 5/3 4/3 8/5 7/5 0 0 4 4/5 5/7 6/11 8/15 7/13 6/13 7/15 8 12 16 Magnetic Field B (T) Magnetic Field B[T] 0.5 0.0 QHE = plateau in R H & R L = 0 FQHE series: ν = p/(2sp+1) = 1/3,2/5,3/7,4/9,...

Jain s Wavefunctions (1989) Idea: reinterpretation of Laughlin s wavefunction ψ L s({z j }) = i<j (z i z j ) 2s χ p=1 ({z j }) i<j (z i z j ) 2s : vortex factor (2s flux quanta per vortex) χ p=1 ({z j }) = i<j (z i z j ): wavefunction at ν = 1

Jain s Wavefunctions (1989) Idea: reinterpretation of Laughlin s wavefunction ψ L s({z j }) = i<j (z i z j ) 2s χ p=1 ({z j }) i<j (z i z j ) 2s : vortex factor (2s flux quanta per vortex) χ p=1 ({z j }) = i<j (z i z j ): wavefunction at ν = 1 Generalisation to integer ν = p ψ J s,p({z j }) = P LLL i<j (z i z j ) 2s χ p ({z j, z j }) χ p ({z j, z j }): wavefunction for p completely filled levels P LLL : projector on lowest LL ( analyticity)

Physical Picture: Composite Fermions CF = electron+ vortex (carrying 2s flux quanta) with renormalised field coupling eb (eb) ν = 1/3 electronic filling 1/3 CF theory 1 filled CF level electron "free" flux quantum pseudo vortex (with 2 flux quanta) composite fermion (CF)

Physical Picture: Composite Fermions CF = electron+ vortex (carrying 2s flux quanta) with renormalised field coupling eb (eb) ν = 1/3 electronic filling 1/3 CF theory 1 filled CF level electron "free" flux quantum pseudo vortex (with 2 flux quanta) composite fermion (CF) ν = 2/5 2 filled CF levels At ν = p/(2ps+1) ν = n el /n B = p, with n B = (eb) /h: FQHE of electrons=iqhe of CFs

Generalisation: FQHE at half-filling 1987: Obervation of a FQHE at ν = 5/2, 7/2 (even denominator) 1991: Proposal of a Pfaffian wave function (Moore & Read; Greiter, Wilzcek & Wen) ( ) 1 ψ MR ({z j }) = Pf (z i z j ) 2 z i z j quasiparticle charge e = e/4 with non-abelian statistics Further generalisations to ν = K/(K +2): Read & Rezayi i<j

Multicomponent Systems A physical spin: SU(2) (doubling of LLs) B bilayer: SU(2) isospin Landau levels +> > ν = 1/2 + d exciton C graphene (2D graphite) ν = 1/2 ν = ν + ν = 1 T + τ 2 τ 1 e2 1 e 3 e two fold valley degeneracy SU(2) isospin : A sublattice : B sublattice spin + isospin : SU(4)