Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

Size: px
Start display at page:

Download "Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017"

Transcription

1 Fractional quantum Hall effect and duality Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

2 Plan

3 Plan General prologue: Fractional Quantum Hall Effect (FQHE)

4 Plan General prologue: Fractional Quantum Hall Effect (FQHE) Composite fermions

5 Plan General prologue: Fractional Quantum Hall Effect (FQHE) Composite fermions The puzzle of particle-hole symmetry

6 Plan General prologue: Fractional Quantum Hall Effect (FQHE) Composite fermions The puzzle of particle-hole symmetry Dirac composite fermions

7 General Prologue QCD is a prime example of a strongly coupled theory The particle excitations of the vacuum are very different from the microscopic degree of freedom A very similar situation in FQHE

8 The setup H = X a (p a + ea a ) 2 2m + X ha,bi e 2 x a x b

9 Integer quantum Hall effect Ignore Coulomb interactions When electrons moving in 2D in a magnetic field, energy is quantized: Landau level IQHE: electrons filling n Landau levels n=3 n=2 = B m n=1 degeneracy BA 2

10 Plateaux require energy gap

11 Fractional QHE Assume we have less particles than states on LLL n=3 n=2 n=1 In the approximation of noninteracting electrons: exponential degeneracy of states

12 Fractional QHE Assume we have less particles than states on LLL n=3 n=2 n=1 In the approximation of noninteracting electrons: exponential degeneracy of states

13 Why the FQH problem is hard degenerate perturbation theory Starting point: exponentially large number of degenerate states Any small perturbation lifts the degeneracy no small parameter

14 Lowest Landau level limit H = X a (p a + ea a ) 2 2m + X ha,bi e 2 x a x b B m n=1 n=0

15 Lowest Landau level limit H = X a (p a + ea a ) 2 2m + X ha,bi e 2 x a x b m! 0 B m!1 n=1 n=0

16 Lowest Landau level limit H = X a (p a + ea a ) 2 2m + X ha,bi e 2 x a x b m! 0 n=1 H = P LLL X a,b e 2 x a x b B m!1 Projection to n=0 lowest Landau level

17 Experimental hints

18 Jain s sequences of QH plateaux = n +1 2n +1 = n 2n +1

19 Systematics of Jain s sequences Gapped states Energy gap goes down ~ 1/n for n n= : gapless, likely Fermi liquid state

20 A powerful theory with a flaw

21 Flux attachment (Wilczek 1982, Jain 1989) Flux attachment: statistics does not change by attaching an even number of flux quanta

22 Flux attachment (Wilczek 1982, Jain 1989) Flux attachment: statistics does not change by attaching an even number of flux quanta

23 Flux attachment (Wilczek 1982, Jain 1989) Flux attachment: statistics does not change by attaching an even number of flux quanta ( 1)

24 Flux attachment (Wilczek 1982, Jain 1989) Flux attachment: statistics does not change by attaching an even number of flux quanta ( 1)

25 Flux attachment (Wilczek 1982, Jain 1989) Flux attachment: statistics does not change by attaching an even number of flux quanta ( 1) exp(i ) = (+1)

26 Flux attachment (Wilczek 1982, Jain 1989) Flux attachment: statistics does not change by attaching an even number of flux quanta ( 1)

27 Flux attachment (Wilczek 1982, Jain 1989) Flux attachment: statistics does not change by attaching an even number of flux quanta ( 1)

28 Flux attachment (Wilczek 1982, Jain 1989) Flux attachment: statistics does not change by attaching an even number of flux quanta ( 1) exp(2i ) =( 1)

29 Flux attachment (Wilczek 1982, Jain 1989) Flux attachment: statistics does not change by attaching an even number of flux quanta ( 1) exp(2i ) =( 1) e = CF

30 Composite fermion =1/3 FQH e e e per e

31 Composite fermion =1/3 FQH cf cf cf per e

32 Composite fermion =1/3 FQH cf cf cf per e average per cf

33 Composite fermion =1/3 FQH cf cf cf per e average per cf IQHE of CFs with ν=1

34 Composite fermion =2/3 FQH F F F F per F F average per F F FQHE for original fermions = IQHE for composite fermions (n=2)

35 HLR field theory L = i (@ 0 ia 0 + ia 0 ) 1 2m (@ i ia i + ia i ) µ a a b = r a =2 2 flux attachment mean field: B e = B b = B 4 n = 1 2 B e =0

36 Jain s sequence of plateaux Using the composite fermion most observed fractions can be explained Electrons Composite fermions = n 2n +1 CF = n = n +1 2n +1 CF = n +1

37 Prediction for nu=1/2 state Halperin Lee Read 1993 e e e per e

38 Prediction for nu=1/2 state Halperin Lee Read 1993 cf cf cf per e

39 Prediction for nu=1/2 state Halperin Lee Read 1993 cf cf cf per e Zero B field for cf

40 Prediction for nu=1/2 state Halperin Lee Read 1993 cf cf cf per e Zero B field for cf CFs form a Fermi liquid; HLR theory

41

42 ν=1/2

43 Is the composite fermion real? Composite fermion can be detected as a quasiparticle near half-filling large semiclassical orbit when magnetic fields do not exactly cancel

44 R (k ) 3 2 (a) W = 40 nm a = 200 nm n = 1.74 x cm -2 T = 0.3 K ν = ν = 1/2 i = B (T) (Kamburov et al, 2014)

45 For a long time it was thought that the HLR theory (zoomed in the near Fermi surface region) gives the correct low-energy effective theory There is one crucial problem

46

47 The problem of particle-hole symmetry

48 Particle-hole symmetry emptyi = fulli PH symmetry c k 1 = c k i 1 = i! 1 exact symmetry the Hamiltonian on the LLL, when mixing of higher LLs negligible

49 PH symmetry in the CF theory PH conjugate pairs of FQH states = n 2n +1 = n +1 2n +1 ν=1/3 ν=2/3

50 PH symmetry in the CF theory PH conjugate pairs of FQH states = n 2n +1 = n +1 2n +1 ν=2/5 ν=3/5

51 PH symmetry in the CF theory PH conjugate pairs of FQH states = n 2n +1 = n +1 2n +1 ν=3/7 ν=4/7

52 PH symmetry in the CF theory PH conjugate pairs of FQH states = n 2n +1 = n +1 2n +1 ν=3/7 ν=4/7 CF picture does not respect PH symmetry

53 PH symmetry of a Fermi liquid?

54 PH symmetry of a Fermi liquid? PH

55 PH symmetry of a Fermi liquid? PH

56 PH symmetry of a Fermi liquid? =?

57 PH symmetry in HLR HLR Lagrangian does not have any symmetry that can be identified with PH symmetry ~1997 The problem was considered hard as it requires projection to lowest Landau level PH conjugation acts nonlocally

58 Sharpening the problem Consider a 2-component massless Dirac fermion Can realize fractional quantum Hall effect Natural particle-hole symmetry at zero density E 0

59 The puzzle of QHE for Dirac fermion Half filled Landau level arises naturally at zero chemical potential Turn on a magnetic field: ground state is a Fermi liquid Volume of Fermi sphere ~ magnetic field Which conserved charge in Luttinger s theorem???

60 Solution to the problem of particlehole symmetry

61 Prelude to solution: particle-vortex duality Peskin; Dasgupta, Halperin L 1 µ 2 m L 2 = (@ µ a µ ) 2 m Goldstone boson particle photon vortex

62 Coupling to external gauge field L 1 = (@ µ A µ ) 2 m L 2 = (@ µ a µ ) 2 m µ A a j µ = 1 2 a

63 Hypothetical duality DTS 2015 Metlitski, Vishwanath 2015 Wang, Senthil 2015 electron theory L = i e µ (@ µ ia µ ) e CF theory L = i µ (@ µ ia µ ) 1 4 µ A a

64 Particle-vortex duality S = Z d 3 x apple i µ (@ µ ia µ ) 1 4 µ A a = S A 0 = b 4 S a 0 =0! h 0 i = B 4 Turn on magnetic field lead to a finite density Landau s reasoning: Fermi surface original fermion ψ magnetic field density composite fermion ψe density magnetic field

65 Dirac composite fermion Low energy dynamics of a half-filled Landau level is described by a low-energy effective theory of a new fermion ( composite fermion ) coupled to a dynamical gauge field The composite fermion is electrically neutral Density of composite fermion = physical magnetic field

66 Particle-hole symmetry as CT symmetry Magnetic field breaks C, P, T preserves PT, CT, CP Particle-hole symmetry of the n=0 Landau level can be identified with CT Effective theory of the composite fermion has CT symmetry

67 Action of CT A 0 (t, x)! A 0 ( t, x) A i (t, x)! A i ( t, x) a 0 (t, x)! a 0 ( t, x) a i (t, x)! a i ( t, x) (t, x)! i 2 ( t, x)

68 CT on composite fermion

69 CT on composite fermion PH

70 CT on composite fermion PH

71 CT on composite fermion PH

72 CT on composite fermion PH Particle-hole symmetry maps particle to particle k! k! i 2

73 CT on composite fermion PH Particle-hole symmetry maps particle to particle k! k! i 2 DTS 2015

74 Away from half filling S = Z d 3 x apple i µ (@ µ ia µ ) 1 4 µ A a = S A 0 = b 4 S a 0 =0! h 0 i = B 4 =0 Now the CFs move in large circular orbits

75 R (k ) 3 2 (a) W = 40 nm a = 200 nm n = 1.74 x cm -2 T = 0.3 K ν = ν = 1/2 i = B (T) (Kamburov et al, 2014)

76 Mapping Jain s sequences = n 2n +1 CF = n = n +1 2n +1 CF = n +1

77 Mapping Jain s sequences = n 2n +1 = n +1 2n +1 CF = n + 1 2?

78 Mapping Jain s sequences = n 2n +1 CF = n + 1 2? = n +1 2n +1 CFs form an IQH state at half-integer filling factor: must be a Dirac fermion

79 IQHE in graphene xy = n + 1 e ~ Figure 4 QHE for massless Dirac fermions. Hall conductivity j xy and longitudinal resistivity r xx of graphene as a function of their concentration at B ¼ 14 T and T ¼ 4 K. j xy ; (4e 2 /h)n is calculated from the measured dependences of (V ) and (V ) as ¼ /( 2 þ 2 ). The Novoselov et al 2005

80 (Particle-hole) 2 Θ 2 = ±1 Θ

81 On a single Landau level M

82 On a single Landau level 2 =( 1) M(M 1)/ M

83 On a single Landau level 2 =( 1) M(M 1)/ M M =2N CF 2 =( 1) N CF

84 On a single Landau level 2 =( 1) M(M 1)/ M M =2N CF 2 =( 1) N CF Dirac CF:! ( i 2 ) 2 = Geraedts, Zaletel, Mong, Metlitski, Vishwanath, Motrunich; Levin, Son

85 Consequences of PH symmetry j = xx E + xy E ẑ + xx rt + xy rt ẑ conductivities thermoelectric coefficients At exact half filling, in the presence of particle-hole symmetric disorders HLR xy = e2 2h xy = 2h e 2 xx =0 Potter, Serbyn, Vishwanath 2015

86 A new gapped state The composite fermions can form Cooper pairs Simplest pairing does not break particle-hole symmetry h i6=0 A new gapped state: PH-Pfaffian state

87 Consequences of Dirac CF Suppression of Friedel oscillations in correlations of particle-hole symmetric observables Ô =( 0 )r 2 k k k k Geraedts, Zaletel, Mong, Metlitsky, Vishwanath, Montrunich, 2015 Direct proof of Berry phase π of the composite fermion

88 A window to duality Fermionic particle-vortex duality can be derived of a more elementary fermion-boson duality Karch, Tong; Seiberg, Senthil, Wang, Witten small N version of duality between CS theories, tested at large N New dualities can be obtained Example: Nf=2 QED3 is self-dual Cenke Xu

89 The elementary duality L = L[,A] AdA L = L[,a]+ 1 4 ada Ada

90 Comments on duality One side of duality is a theory of a single 2- component Dirac fermion coupled to U(1) gauge field It is usually thought QED3 with Nf fermions is unstable with respect to SSB for Nf<Nf*. Nf* ~ 6 in Schwinger-Dyson One lattice simulation (Karthik, Narayanan 2015) indicates Nf* < 2. The stability of theory with Nf=1 is not required for fractional quantum Hall effect (finite density)

91 Conclusion The low-energy quasiparticle of half-filled Landau level is completely different from the electron Symmetries allowed to guess the form of the lowenergy effective theory Hints on new field-theoretic dualities in 2+1 D

92 References

93 References DTS, PRX 5, (2015) Wang, Senthil Metlitski, Vishwanath Geraedts et al., Mross, Alicea, Motrunich,

Fractional quantum Hall effect and duality. Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017

Fractional quantum Hall effect and duality. Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017 Fractional quantum Hall effect and duality Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017 Plan Fractional quantum Hall effect Halperin-Lee-Read (HLR) theory Problem

More information

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 The Dirac composite fermions in fractional quantum Hall effect Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 A story of a symmetry lost and recovered Dam Thanh Son (University

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son GGI conference Gauge/gravity duality 2015 Ref.: 1502.03446 Plan Plan Fractional quantum Hall effect Plan Fractional quantum Hall effect Composite fermion

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

The Half-Filled Landau Level

The Half-Filled Landau Level Nigel Cooper Department of Physics, University of Cambridge Celebration for Bert Halperin s 75th January 31, 2017 Chong Wang, Bert Halperin & Ady Stern. [C. Wang, NRC, B. I. Halperin & A. Stern, arxiv:1701.00007].

More information

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev.

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. B92 (2015) 235105 Huajia Wang University of Illinois Urbana Champaign Introduction/Motivation

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Dualities, Old and New. David Tong: MIT Pappalardo Fellow,

Dualities, Old and New. David Tong: MIT Pappalardo Fellow, Dualities, Old and New David Tong: MIT Pappalardo Fellow, 2001-2004 Quantum Field Theory Quantum Field Theory... is hard 1. Numerics: How to Proceed? How to Proceed? 1. Numerics: 2. Toy Models (e.g. supersymmetry)

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Many faces of Mirror Symmetries

Many faces of Mirror Symmetries Many faces of Mirror Symmetries Huajia Wang University of llinois at Urbana Champaign S. Kachru, M. Mulligan, G.Torroba, H. Wang, arxiv: 1608.05077 S. Kachru, M. Mulligan, G.Torroba, H. Wang, arxiv: 1609.02149

More information

Beyond the Quantum Hall Effect

Beyond the Quantum Hall Effect Beyond the Quantum Hall Effect Jim Eisenstein California Institute of Technology School on Low Dimensional Nanoscopic Systems Harish-chandra Research Institute January February 2008 Outline of the Lectures

More information

The Quantum Hall Effects

The Quantum Hall Effects The Quantum Hall Effects Integer and Fractional Michael Adler July 1, 2010 1 / 20 Outline 1 Introduction Experiment Prerequisites 2 Integer Quantum Hall Effect Quantization of Conductance Edge States 3

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

Superinsulator: a new topological state of matter

Superinsulator: a new topological state of matter Superinsulator: a new topological state of matter M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: Igor Lukyanchuk, University of Picardie

More information

Holographic Anyonic Superfluids

Holographic Anyonic Superfluids Holographic Anyonic Superfluids Matt Lippert (Amsterdam) with Niko Jokela (USC) and Gilad Lifschytz (Haifa) Plan Anyons, SL(2,Z), and Quantum Hall Effect Superfluids and Anyon Superfliuds A Holographic

More information

Symmetry Protected Topological Phases of Matter

Symmetry Protected Topological Phases of Matter Symmetry Protected Topological Phases of Matter T. Senthil (MIT) Review: T. Senthil, Annual Reviews of Condensed Matter Physics, 2015 Topological insulators 1.0 Free electron band theory: distinct insulating

More information

Berry Phase and Anomalous Transport of the Composite Fermions at the Half-Filled Landau Level

Berry Phase and Anomalous Transport of the Composite Fermions at the Half-Filled Landau Level Berry Phase and Anomalous Transport of the Composite Fermions at the Half-Filled Landau Level W. Pan 1,*, W. Kang 2,*, K.W. Baldwin 3, K.W. West 3, L.N. Pfeiffer 3, and D.C. Tsui 3 1 Sandia National Laboratories,

More information

Emergence and Mechanism in the Fractional Quantum Hall Effect

Emergence and Mechanism in the Fractional Quantum Hall Effect Emergence and Mechanism in the Fractional Quantum Hall Effect Jonathan Bain Department of Technology, Culture and Society Tandon School of Engineering, New York University Brooklyn, New York 1. Two Versions

More information

Composite Dirac liquids

Composite Dirac liquids Composite Dirac liquids Composite Fermi liquid non-interacting 3D TI surface Interactions Composite Dirac liquid ~ Jason Alicea, Caltech David Mross, Andrew Essin, & JA, Physical Review X 5, 011011 (2015)

More information

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality HARVARD Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality Indian Institute of Science Education and Research, Pune Subir Sachdev November 15, 2017 Talk online: sachdev.physics.harvard.edu

More information

Zooming in on the Quantum Hall Effect

Zooming in on the Quantum Hall Effect Zooming in on the Quantum Hall Effect Cristiane MORAIS SMITH Institute for Theoretical Physics, Utrecht University, The Netherlands Capri Spring School p.1/31 Experimental Motivation Historical Summary:

More information

The Geometry of the Quantum Hall Effect

The Geometry of the Quantum Hall Effect The Geometry of the Quantum Hall Effect Dam Thanh Son (University of Chicago) Refs: Carlos Hoyos, DTS arxiv:1109.2651 DTS, M.Wingate cond-mat/0509786 Plan Review of quantum Hall physics Summary of results

More information

SPT: a window into highly entangled phases

SPT: a window into highly entangled phases SPT: a window into highly entangled phases T. Senthil (MIT) Collaborators: Chong Wang, A. Potter Why study SPT? 1. Because it may be there... Focus on electronic systems with realistic symmetries in d

More information

Conformal Field Theory of Composite Fermions in the QHE

Conformal Field Theory of Composite Fermions in the QHE Conformal Field Theory of Composite Fermions in the QHE Andrea Cappelli (INFN and Physics Dept., Florence) Outline Introduction: wave functions, edge excitations and CFT CFT for Jain wfs: Hansson et al.

More information

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h. Quantum Hall effect V1 V2 R L I I x = N e2 h V y V x =0 G xy = N e2 h n.b. h/e 2 = 25 kohms Quantization of Hall resistance is incredibly precise: good to 1 part in 10 10 I believe. WHY?? Robustness Why

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics F.E. Camino, W. Zhou and V.J. Goldman Stony Brook University Outline Exchange statistics in 2D,

More information

Condensed Matter Physics and the Nature of Spacetime

Condensed Matter Physics and the Nature of Spacetime Condensed Matter Physics and the Nature of Spacetime Jonathan Bain Polytechnic University Prospects for modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. 1. EFTs

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Magnetic field spectrum of the correlated 2D electron system: Electron interactions lead to a range of manifestations 10? = 4? = 2 Resistance (arb.

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Symmetry protected topological phases in quantum spin systems

Symmetry protected topological phases in quantum spin systems 10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015 Symmetry protected topological phases in quantum spin systems NIMS U. Tokyo Shintaro Takayoshi Collaboration with A. Tanaka (NIMS)

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Quantum numbers and collective phases of composite fermions

Quantum numbers and collective phases of composite fermions Quantum numbers and collective phases of composite fermions Quantum numbers Effective magnetic field Mass Magnetic moment Charge Statistics Fermi wave vector Vorticity (vortex charge) Effective magnetic

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Lecture 2 2D Electrons in Excited Landau Levels

Lecture 2 2D Electrons in Excited Landau Levels Lecture 2 2D Electrons in Excited Landau Levels What is the Ground State of an Electron Gas? lower density Wigner Two Dimensional Electrons at High Magnetic Fields E Landau levels N=2 N=1 N= Hartree-Fock

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

arxiv: v2 [cond-mat.str-el] 10 Jan 2018

arxiv: v2 [cond-mat.str-el] 10 Jan 2018 Dirac Composite Fermion - A Particle-Hole Spinor Jian Yang, arxiv:7.85v [cond-mat.str-el] Jan 8 Te particle-ole PH symmetry at alf-filled Landau level requires te relationsip between te flux number N φ

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

THE CASES OF ν = 5/2 AND ν = 12/5. Reminder re QHE:

THE CASES OF ν = 5/2 AND ν = 12/5. Reminder re QHE: LECTURE 6 THE FRACTIONAL QUANTUM HALL EFFECT : THE CASES OF ν = 5/2 AND ν = 12/5 Reminder re QHE: Occurs in (effectively) 2D electron system ( 2DES ) (e.g. inversion layer in GaAs - GaAlAs heterostructure)

More information

Nonabelian hierarchies

Nonabelian hierarchies Nonabelian hierarchies collaborators: Yoran Tournois, UzK Maria Hermanns, UzK Hans Hansson, SU Steve H. Simon, Oxford Susanne Viefers, UiO Quantum Hall hierarchies, arxiv:1601.01697 Outline Haldane-Halperin

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Superuniversality and non-abelian bosonization in 2+1 dimensions

Superuniversality and non-abelian bosonization in 2+1 dimensions Superuniversality and non-abelian bosonization in + dimensions Burgess & Dolan (000) Micael Mulligan UC Riverside Institute for CM Teory UIUC in collusion wit: Aaron Hui and Eun-A Kim pase transitions

More information

Non-Abelian Statistics. in the Fractional Quantum Hall States * X. G. Wen. School of Natural Sciences. Institute of Advanced Study

Non-Abelian Statistics. in the Fractional Quantum Hall States * X. G. Wen. School of Natural Sciences. Institute of Advanced Study IASSNS-HEP-90/70 Sep. 1990 Non-Abelian Statistics in the Fractional Quantum Hall States * X. G. Wen School of Natural Sciences Institute of Advanced Study Princeton, NJ 08540 ABSTRACT: The Fractional Quantum

More information

A Brief Introduction to Duality Web

A Brief Introduction to Duality Web A Brief Introduction to Duality Web WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu Abstract: This note is prepared for the journal club talk given on

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Topological Phases under Strong Magnetic Fields

Topological Phases under Strong Magnetic Fields Topological Phases under Strong Magnetic Fields Mark O. Goerbig ITAP, Turunç, July 2013 Historical Introduction What is the common point between graphene, quantum Hall effects and topological insulators?...

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

Quantum oscillations in insulators with neutral Fermi surfaces

Quantum oscillations in insulators with neutral Fermi surfaces Quantum oscillations in insulators with neutral Fermi surfaces ITF-Seminar IFW Institute - Dresden October 4, 2017 Inti Sodemann MPI-PKS Dresden Contents Theory of quantum oscillations of insulators with

More information

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Kai Sun University of Michigan, Ann Arbor Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Outline How to construct a discretized Chern-Simons gauge theory A necessary and sufficient condition for

More information

9 Quantum Field Theory for Children

9 Quantum Field Theory for Children 101 9 Quantum Field Theory for Children The theories (known and hypothetical) needed to describe the (very) early universe are quantum field theories (QFT). The fundamental entities of these theories are

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

arxiv: v1 [cond-mat.str-el] 1 Jun 2017

arxiv: v1 [cond-mat.str-el] 1 Jun 2017 Symmetric-Gapped Surface States of Fractional Topological Insulators arxiv:1706.0049v1 [cond-mat.str-el] 1 Jun 017 Gil Young Cho, 1, Jeffrey C. Y. Teo, 3 and Eduardo Fradkin 4 1 School of Physics, Korea

More information

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂 Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem Cenke Xu 许岑珂 University of California, Santa Barbara Quantum Phase Transitions between bosonic Symmetry

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Geometric responses of Quantum Hall systems

Geometric responses of Quantum Hall systems Geometric responses of Quantum Hall systems Alexander Abanov December 14, 2015 Cologne Geometric Aspects of the Quantum Hall Effect Fractional Quantum Hall state exotic fluid Two-dimensional electron gas

More information

Boson Vortex duality. Abstract

Boson Vortex duality. Abstract Boson Vortex duality Subir Sachdev Department of Physics, Harvard University, Cambridge, Massachusetts, 0238, USA and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Dated:

More information

Fractional Quantum Hall States with Conformal Field Theories

Fractional Quantum Hall States with Conformal Field Theories Fractional Quantum Hall States with Conformal Field Theories Lei Su Department of Physics, University of Chicago Abstract: Fractional quantum Hall (FQH states are topological phases with anyonic excitations

More information

Non-Abelian Anyons in the Quantum Hall Effect

Non-Abelian Anyons in the Quantum Hall Effect Non-Abelian Anyons in the Quantum Hall Effect Andrea Cappelli (INFN and Physics Dept., Florence) with L. Georgiev (Sofia), G. Zemba (Buenos Aires), G. Viola (Florence) Outline Incompressible Hall fluids:

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Topological Quantum Computation A very basic introduction

Topological Quantum Computation A very basic introduction Topological Quantum Computation A very basic introduction Alessandra Di Pierro alessandra.dipierro@univr.it Dipartimento di Informatica Università di Verona PhD Course on Quantum Computing Part I 1 Introduction

More information

Topological insulator part I: Phenomena

Topological insulator part I: Phenomena Phys60.nb 5 Topological insulator part I: Phenomena (Part II and Part III discusses how to understand a topological insluator based band-structure theory and gauge theory) (Part IV discusses more complicated

More information

Bosonic Symmetry Protected Topological States: Theory, Numerics, And Experimental Platform. Zhen Bi University of California, Santa Barbara

Bosonic Symmetry Protected Topological States: Theory, Numerics, And Experimental Platform. Zhen Bi University of California, Santa Barbara Bosonic Symmetry Protected Topological States: Theory, Numerics, And Experimental Platform Zhen Bi University of California, Santa Barbara Acknowledgements Collaborators from UCSB: Cenke Xu, Leon Balents,

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Topological insulator part II: Berry Phase and Topological index

Topological insulator part II: Berry Phase and Topological index Phys60.nb 11 3 Topological insulator part II: Berry Phase and Topological index 3.1. Last chapter Topological insulator: an insulator in the bulk and a metal near the boundary (surface or edge) Quantum

More information

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute Fermi liquid & Non- Fermi liquids Sung- Sik Lee McMaster University Perimeter Ins>tute Goal of many- body physics : to extract a small set of useful informa>on out of a large number of degrees of freedom

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern Building Frac-onal Topological Insulators Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern The program Background: Topological insulators Frac-onaliza-on Exactly solvable Hamiltonians for frac-onal

More information

Quantum Oscillations in Graphene in the Presence of Disorder

Quantum Oscillations in Graphene in the Presence of Disorder WDS'9 Proceedings of Contributed Papers, Part III, 97, 9. ISBN 978-8-778-- MATFYZPRESS Quantum Oscillations in Graphene in the Presence of Disorder D. Iablonskyi Taras Shevchenko National University of

More information

2D Electron Systems: Magneto-Transport Quantum Hall Effects

2D Electron Systems: Magneto-Transport Quantum Hall Effects Hauptseminar: Advanced Physics of Nanosystems 2D Electron Systems: Magneto-Transport Quantum Hall Effects Steffen Sedlak The Hall Effect P.Y. Yu,, M.Cardona, Fundamentals of Semiconductors, Springer Verlag,

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Topology and Fractionalization in 2D Electron Systems

Topology and Fractionalization in 2D Electron Systems Lectures on Mesoscopic Physics and Quantum Transport, June 1, 018 Topology and Fractionalization in D Electron Systems Xin Wan Zhejiang University xinwan@zju.edu.cn Outline Two-dimensional Electron Systems

More information

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m. Fractionalization of charge and statistics in graphene and related structures M. Franz University of British Columbia franz@physics.ubc.ca January 5, 2008 In collaboration with: C. Weeks, G. Rosenberg,

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

arxiv: v1 [cond-mat.str-el] 6 May 2010

arxiv: v1 [cond-mat.str-el] 6 May 2010 MIT-CTP/4147 Correlated Topological Insulators and the Fractional Magnetoelectric Effect B. Swingle, M. Barkeshli, J. McGreevy, and T. Senthil Department of Physics, Massachusetts Institute of Technology,

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

arxiv: v1 [cond-mat.str-el] 6 Jul 2011

arxiv: v1 [cond-mat.str-el] 6 Jul 2011 Phase Diagram of the Kane-Mele-Hubbard model arxiv:1107.145v1 [cond-mat.str-el] 6 Jul 011 Christian Griset 1 and Cenke Xu 1 1 Department of Physics, University of California, Santa Barbara, CA 93106 (Dated:

More information

Fractional Charge. Particles with charge e/3 and e/5 have been observed experimentally......and they re not quarks.

Fractional Charge. Particles with charge e/3 and e/5 have been observed experimentally......and they re not quarks. Fractional Charge Particles with charge e/3 and e/5 have been observed experimentally......and they re not quarks. 1 Outline: 1. What is fractional charge? 2. Observing fractional charge in the fractional

More information

Generalized Global Symmetries

Generalized Global Symmetries Generalized Global Symmetries Anton Kapustin Simons Center for Geometry and Physics, Stony Brook April 9, 2015 Anton Kapustin (Simons Center for Geometry and Physics, Generalized StonyGlobal Brook) Symmetries

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Entanglement Chern numbers for random systems

Entanglement Chern numbers for random systems POSTECH, Korea, July 31 (2015) Ψ = 1 D D Entanglement Chern numbers for random systems j Ψ j Ψj Yasuhiro Hatsugai Institute of Physics, Univ. of Tsukuba Ref: T. Fukui & Y. Hatsugai, J. Phys. Soc. Jpn.

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information