Current Status of Bunch Emission Simulation for the PITZ Gun

Similar documents
DESY/TEMF Meeting Status 2012

DESY/TEMF Meeting - Status 2011

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code

Electron Emission Studies Using Enhanced QE Models

Numerical modelling of photoemission for the PITZ photoinjector

Lab Report TEMF - TU Darmstadt

Tomographic transverse phase space measurements at PITZ.

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Modeling of the secondary electron emission in rf photocathode guns

Introduction to the benchmark problem

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance

Motivation of emission studies at PITZ

Selected Beam Studies at PITZ in 2017

Emission-related Activities at PITZ Proposals for the DFG-Networking "Hi 2 PE"

Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF

Lab Report TEMF, TU Darmstadt

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR

Large Scale Parallel Wake Field Computations with PBCI

Start-to-End Simulations

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Dark current at the Euro-XFEL

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov Cornell University

Photo Injector Test facility at DESY, Zeuthen site

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Simulation of transverse emittance measurements using the single slit method

Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options

Tomography module for transverse phase-space measurements at PITZ.

11 th International Computational Accelerator Physics Conference (ICAP) 2012

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

RF-Gun Experience at PITZ - Longitudinal Phase Space

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014

SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS

Linac optimisation for the New Light Source

Phase space measurements with tomographic reconstruction at PITZ.

Laser acceleration of electrons at Femilab/Nicadd photoinjector

Multi-quadrupole scan for emittance determination at PITZ

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Injector Experimental Progress

Status of linear collider designs:

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018

Coupling Impedance of Ferrite Devices Description of Simulation Approach

Velocity Bunching Studies at FLASH. Bolko Beutner, DESY XFEL Beam Dynamics Meeting

Diagnostic Systems for High Brightness Electron Injectors

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Single-shot Ultrafast Electron Microscopy

High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

Accelerator Physics Issues of ERL Prototype

CST EM : Examples. Chang-Kyun PARK (Ph. D. St.) Thin Films & Devices (TFD) Lab.

Using IMPACT T to perform an optimization of a DC gun system Including merger

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov

Ellipsoidal Laser Status & Results Introduction Laser system & on-table data Results Redesign Outlook

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

Projected and slice emittance measurements using multi-quadrupole scan and streak readout at PITZ

Developing an Eletron source for the XFEL -

Using an Electron Cooler for Space Charge Compensation in the GSI Synchrotron SIS18 William D. Stem Oliver Boine-Frankenheim

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

Laboratory Report Rostock University

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract

Studies on charge production from Cs 2 Te photocathodes in the PITZ L-band normal conducting radio frequency photo injector

FACET-II Design Update

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

An Introduction to Plasma Accelerators

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

Simulations for photoinjectors C.Limborg

Low energy high brilliance beam characterization

High-Fidelity Injector Modeling with Parallel Finite Element 3D PIC Code Pic3P

Generation and characterization of ultra-short electron and x-ray x pulses

modeling of space charge effects and CSR in bunch compression systems

High gradient, high average power structure development at UCLA and Univ. Rome in X-X. band

Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation)

Emittance and photocathodes

Update on Development of High Current Bunched Electron Beam from Magnetized DC Photogun

Reduction of thermal emittance of rf guns *

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

LIGHT. ...from laser ion acceleration to future applications. - project overview and lates experimental results -

Ultra-Short Low Charge Operation at FLASH and the European XFEL

Photo Injector Test facility at DESY, Zeuthen site.

AREAL Test Facility for Advanced Accelerator and Radiation Sources Concepts

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

Photo Injector Test facility at DESY, Zeuthen site.

Implementational Aspects of Eigenmode Computation based on Perturbation Theory

Tapered Transitions Dominating the PETRA III Impedance Model.

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

Design of Electron Gun

Angular momentum dominated electron beam and flat beam generation. FNPL video conference Feb. 28, 2005 Yin-e Sun 1

FACET-II Design, Parameters and Capabilities

LCLS Injector Prototyping at the GTF

Development of Soft X-rayX using Laser Compton Scattering

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

Transcription:

TUD-DESY Meeting 2013 ROOM 114, Darmstadt, Germany, 19.12.2013 Current Status of Bunch Emission Simulation for the PITZ Gun Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 1

Contents Reviews: motivation, simulation model and settings, technical problems & solutions, CST simulation logfiles, etc. CST Simulation Results: emittance studies (convergence studies for r=0.4mm, Q0=1nC, comparisons with ASTRA), charge emission study (r=0.2mm-0.4mm, Q0=1nC) Summary and Outlook: charge emission study (r=0.3mm, Q0=2nC), inhomogeneous case 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 2

Reviews Motivation of this study: investigations on the huge discrepancies between the simulation results and experimental data which contribute to understanding on the emittance growth within the PITZ Gun. Problem: Beam uniformity assumption violated few mm away from cathode in the boosted frame The 3D CST PIC Approach can be performed in order to solve the problem. see talks from Dr. Erion Gjonaj, @ Hamburg 12.2011 and Zeuthen 12.2013 for details Cavity Field Solenoids Field Particle Import Interface Simulation Parameters Q tot =1nC, XY rms =0.4mm, Bunch length =2ps/21.5ps\2ps, E kin =0.55eV, field gradient=60.58mv/m, Local Mesh Refinement Technical Problems Cavity field interpolation at the cathode plane Resolution over the initial bunch length (particle import interface) Cavity field accuracy CPU&MEMORY 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 3 field Ratio=1.04, MaxBz=-0.2279T Applicable Solutions Mirrored gun model Export field data in ascii and redefine mesh steps in each direction Improve the local mesh steps down to 0.005mm or so Apply an initial distribution which spreads in time instead Eigenmode calculations with comparable high resolution for PIC Cluster Calculation domain: 3 cm Meshcell numbers needed with resolution of 10μm : 1095 millions Timescale: 29 hours

30 25 Calculation Domain in CST: z = (0-3) cm Photocathode @ z=0 CST Simulation Time /hours 20 15 10 Computer Configuration Info: CPU : 2 * Intel Xeon E5-2643 (Quadcore, 3.30 GHz, 2 * 8.0 GT/s QPI, 10 MB L2 Cache) Memory : 256 GB Harddisk: 500 GB SATA RAID1 + 3000 GB Finest Mesh Resolution x y z 0.01mm calculation domain in z direction = 3cm Calculation Time 29 hours Meshcell Numbers 1095 Millions CPU 5 0 0 200 400 600 800 300 1000 1200 Meshcell Numbers /millions 250 Computer Configuration Info: Memory Peak Physical Memory /GB 200 150 100 CPU : 2 * Intel Xeon E5-2643 (Quadcore, 3.30 GHz, 2 * 8.0 GT/s QPI, 10 MB L2 Cache) Memory : 256 GB Harddisk: 500 GB SATA RAID1 + 3000 GB Finest Mesh Resolution x y z 0.01mm Calculation domain in z = 3cm Meshcell Numbers 1095millions Peak Memory Needed 254 GB 50 0 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie 0 Elektromagnetischer 200 Felder 400 Ye Chen 600 4 800 1000 1200 Meshcell Numbers / millions

CST Simulation Results ---Emittance Studies Shorten calculation domain to 20 mm for convergence study Simulation results with a high resolution of 10μm for r=0.4mm, Q=1nC case r=0.4mm, Q=1nC for Xrms, Zrms, Ekin, E relative error < 1% relative error < 1% relative error < 1% relative error < 1% 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 5

CST Emittance Studies 3D Transcerse Phase Space at z=18.6758 mm Particle Distributions @ z=18.6758 mm z y x px/pz /(rad) x /mm 2D-XY 3D-XZ Particle Density /(normalized arbitrary unit) x /mm 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 6

CST Emittance Studies r=0.4mm, Q=1nC for transverse emittance The relative error is below 1%. 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 7

Comparisons with ASTRA r=0.4mm, Q=1nC relative error : 1.5% relative error : 0.5% for Xrms, Zrms, Ekin, E relative error : 1.5% relative error : 1% 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 8

Comparisons with ASTRA r=0.4mm, Q=1nC for transverse emittance 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 9

Comparisons with ASTRA r=0.25mm, Q=1nC r=0.40mm, Q=1nC r=0.30mm, Q=1nC r=0.45mm, Q=1nC 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 10

Comparisons with ASTRA Broaden the calculation domain to 8cm with a relatively medium resolution of 30 μm in x & y and 10 μm in z Transverse Phase Space @ z=77.9 mm px/pz /(rad) 3D 3D-XZ 2D-XY Particle Distributions @ z=77.9 mm Particle Density /(normalized arbitrary unit) 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 11 x /mm x /mm

Charge Emission Studies --- Space Charge Limit Particle Density/(arbitrary unit) Cathode Plane @ z=0 z r = 0.2mm, Q=1nC Calculation Domain=2mm Simulation Time: only for emission Z = 0 mm 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 12 Z = 2 mm

Charge Emission Studies --- Space Charge Limit SPCH Limited Q r=0.25mm =0.97nC Q r=0.4mm =1nC Q r=0.3mm =1nC Q r=0.2mm =0.84nC 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 13

Summary and Discussions Convergent simulation results obtained for Q=1nC,XY rms =0.4mm case Good agreements on low-order beam quality parameters with ASTRA Discrepancies on the transverse emittance are found compared to ASTRA CST SPCH limit observed for XY rms =0.2mm & 0.25mm case. Exact peak emitted charge need to be calculated by use of much finer resolution. Q peak? 19. Dec. 2013 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 14 Charge emission study, r=0.3mm, Q0=2nC, Q peak?? Emittance @ z 8cm for different laser spot size Further emittance study with inhomogeneous distributions